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1. ORIGIN OF THE ELECTRIC FIELD’S POLARIZATION TILT

Let us write the 2D polarization of the laser field considered in this work (Eq. 1 in the main text)
in terms of the laboratory-frame vectors:

E(t) = a(t) ℜ{(Exux + Eyuy + Ezuz)e−iωt−iϕCEP}, (S1)

where Ex = E0 is the strong-field component, Ey = iε0Ex is the incoming elliptical component,
and Ez is the longitudinal component, parallel to the propagation direction z, which arises due to
tight focusing [1, 2]. This component can be derived from Maxwell’s equations, and it is given by:
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)
. (S2)

In standard Gaussian beams, the weak spatial modulation of Ex and Ey leads to vanishing Ez.
However, Ez becomes strong when light is confined in space, as it happens in a tightly focused
beam. In a weakly elliptical field, with Ex >> Ey, the contribution from ∂Ey/∂y (second term in
Eq. S2) is negligible, and we have

Ez = −i
2x

W2k
Ex. (S3)

Note that Ez has opposite phase at opposite sides of the Gaussian beam axis due to the change of
sign of ∂Ex/∂x at x = 0, see Eq. S2, whereas the phase of Ex and Ey does not change. As a result,
the field acquires a non-trivial polarization pattern in space. Indeed, Ez and Ey are in phase at the
left side of the beam (x < 0) and out of phase at the right side (x > 0), whereas Ez and Ex have a
phase delay of ±π/2. As a result, the plane of polarization of the driving field rotates around the
x axis, i.e. it tilts towards the propagation direction, in opposite directions at opposite sides of the
propagation axis.

Note that the tilt direction (the sign of γ) is connected to the so-called spin-momentum locking
[3], which means that the direction of the transverse photon spin arising upon tight focusing is
univocally determined by the direction in which the wave propagates. Therefore, the tilt direction
is also a protected quantity, locked to the propagation direction of the wave and to the sign of
the incoming ellipticity, which makes our approach robust with respect to possible experimental
fluctuations.

2. CONTROL OVER THE LASER POLARIZATION

Here we describe how we can control the total ellipticity ε and tilt angle γ of the driving field by
adjusting the beam waist W and incoming ellipticity ε0. By comparing Eq. 1 in the main text with
Eqs. S1 and S3, it is straightforward to see that the total ellipticity upon tight focusing in Eq. 1 is
given by
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0 + [2x/(W2k)]2, (S4)



and the forward tilt angle is

γ = arctan
(

Ez

Ey

)
= arctan

(
−2x

ε0W2k

)
. (S5)

Eqs. S4 and S5 show how, by controlling W and ε0, we can efficiently tailor the polarization
tilt of the driving field. Fig. S1 in section 6 shows the values of ε and γ obtained for different
combinations of W and ε0.

3. ORIENTATIONAL AVERAGING OF THE LASER-INDUCED POLARIZATION

The induced polarization in the medium of randomly oriented propylene oxide molecules was
calculated by averaging over the contribution from different molecular orientations:

P(t, x) =
1

8π2

∫ 2π

0

∫ π

0

∫ 2π

0
Pϕθχ(t, x) sin(θ) dϕ dθ dχ, (S6)

where ϕ, θ and χ are the three Euler angles and Pϕθχ is the polarization response of a particular
molecular orientation in the laboratory frame. We used the Lebedev quadrature [4] of order 11
(50 points) to integrate over ϕ and θ. For each Lebedev point, the polarization of the electric-field
vector of the laser field was defined in a way that its strong-field component pointed in the same
direction, which allowed us to reach convergence in χ using 4 points via trapezoidal numerical
integration.

4. SINGLE-MOLECULE RESPONSE

The light-induced polarization was evaluated using real-time time-dependent density functional
theory Octopus [5–8]. We used the local-density approximation [9–11] to account for electronic
exchange and correlation effects, and the averaged-density self-interaction correction [12] to
account describe the long-range behaviour of the electron density. The 1s orbitals of the heavier
atoms (carbon and oxygen) are barely affected by the laser field, and they were described using
pseudo-potentials. The Kohn-Sham orbitals and the electron density were expanded into a
uniform real-space grid of points separated by 0.4 a.u. enclosed in a sphere of radius R = 42 a.u.,
and we used a complex absorbing potential with width 20 a.u. and height −0.2 a.u. to avoid
unphysical reflexions of the electron density.

5. MACROSCOPIC CALCULATION: FAR-FIELD IMAGE

The intensity of HHG in the far field was calculated using the Fraunhofer diffraction equation:

Fξ(β, N) ∝
∫ ∞

−∞

d2

dt2 Pξ(x, N)e−i Nω
c x sin βdx, (S7)

where ξ = x, y, Px and Py are the non-enantio-sensitive and enantio-sensitive components of the
induced polarization as a function of the transverse coordinate x in the near field in the frequency
domain, N is the harmonic number, β is the horizontal divergence angle, c is the speed of light in
vacuum, and ω is the fundamental frequency.

Note that, since the main component of the laser field is polarized in the x direction, and thus
the longitudinal component only varies with Ex, this is the relevant coordinate to perform the
macroscopic calculation. Due to the Gaussian profile of the driving field, the structure of the
laser’s polarization is the same for every value of y, and only its amplitude changes (following a
Gaussian decay). For the harmonics below the ionization potential (such as the ones considered
here) we can consider that the phase of the induced polarization does not depend on the laser’s
local amplitude. Thus Pξ(x, y, N) ∝ Pξ(x, y = 0, N), which results in Fξ(β, θ, N) ∝ Fξ(β, θ = 0, N),
being θ the vertical divergence angle, which means that the far-field harmonics conserve the
same structure along θ. On the other hand, we consider that the target is very thin, to avoid fast
phase variations of the driving field along z due to the Gouy phase, so propagation effects in the
z direction are negligible.
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6. CONTROL OVER THE LASER POLARIZATION

The total ellipticity ε and tilt angle γ of the driving laser field considered in the main text can
be controlled by adjusting the beam waist W and the incoming ellipticity ε0. Fig. S1a shows the
spatial profile of ε along the transverse coordinate x, for different values of W and ε0. Reducing
W, i.e. making the beam more tightly focused, leads to a stronger longitudinal component, and
thus to larger values of both ε and γ. The modulation of ε with ε0 is rather trivial: increasing
the incoming ellipticity leads to stronger total ellipticity. However, because the strength of the
longitudinal component does not depend on ε0 (for small ε0), the tilt angle γ decreases when
increasing ε0. This is shown in Fig. S1b, which presents the values of γ as a function of ε for
different values of ε0.

Fig. S1. a, Total ellipticity ε as a function of the transverse coordinate x for different values of
the incoming ellipticity ε0 and beam waist W. b, Forward tilting angle γ as a function of the
total ellipticity ε for different values of ε0.

7. ANGLE-INTEGRATED ENANTIO-SENSITIVE RESPONSE

Fig. S2. Spatially averaged dissymmetry factor gav (Eq. S8) as a function of the CEP and ε0 in
the light emitted at the 4th (a), 6th (b), and 8th (c) harmonic frequencies, see Fig. 2 of the main
text for laser parameters. For comparison with the spatially resolved dissymmetry factor, see
Figs. 3 and 4 of the main text.

Here we show how the enantio-sensitive response of the chiral molecules remains strong upon
spatial integration. The dissymmetry factor g(β) defined in the main text is an angularly resolved
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quantity which depends on the divergence angle β, see Figs. 3a-b. We can define a spatially
integrated quantity simply by weighting g(β) by the intensity I(β) and integrating over β. Since g
has opposite signs at each side of the beam’s axis, i.e. g(β) = −g(−β), we restrict the integration
to positive values of β, so the spatially averaged dissymmetry factor is calculated as:

gav =

∫ ∞
0 g(β) I(β)dβ∫ ∞

0 I(β)dβ
. (S8)

Fig. S2 shows the average dissymmetry factor for the 4th, 6th, and 8th harmonic orders. Note
that gav keeps the sign of g for β > 0, see Fig. 4 of the main text. Indeed, the modulation of gav
with the CEP and ϵ0 is qualitatively identical to that of g. Importantly, the degree of enantio-
sensitivity remains strong upon spatial integration, with the values of gav being approximately
three times smaller than the values of g at a divergence angle of 3 degrees (Fig. 4 of the main text).
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