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Abstract: Efficient electrical generation of mid-infrared

light is challenging because of the dearth of materials with

natural dipole-active electronic transitions in this spectral

region. One approach to solve this problem is through

quantum-engineering of the electron dispersion to create

artificial transitions, as in quantum cascade devices. In this

work we propose an alternative method to generate mid-

infrared light, utilizing the coupling between longitudinal

and transverse degrees of freedom due to the nonlocal opti-

cal response of nanoscopic polar dielectric crystals. Polar

crystals support sub-diffraction photonic modes in the mid-

infrared. They also support longitudinal phonons, which

couple efficiently with electrical currents through the Fröh-

lich interaction. As we have shown in previous theoretical

and experimental works, these two degrees of freedom can

hybridize forming longitudinal-transverse polaritons. Here

we theoretically demonstrate that longitudinal-transverse

polaritons can be efficiently generated by electrical cur-

rents, leading to resonant narrowband photonic emission.

This approach can therefore be utilised to electrically gener-

ate far-field mid-infrared photons in the absence of dipole-

active electronic transitions, potentially underpinning a

novel generation of mid-infrared optoelectronic devices.

Keywords: electroluminescence; Fröhlich interaction; sur-

face phonon polaritons.

1 Introduction

Surface phonon polaritons (SPhPs) are hybrid light–matter

excitations formed from the coupling of free-photons to

optical phonons in a polar dielectric crystal [1, 2]. They are
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highly promising for mid-infrared nanophotonics because,

like plasmons in the visible, they are morphologically

dependent sub-diffraction excitations. This means they are

largely tuneable [3–8] and have great potential in any appli-

cation which benefits from a strong electric field such as

sensing [9], nonlinear optics [10–12] or near field imaging

[13, 14]. Novel properties of hyperbolic SPhPs [15–21] allow

for great flexibility in the design ofmid-infrared SPhP based

devices compared to systems operating in the visible [22].

Moreover SPhP resonances are derived from the lattice

phonons, and do not require a high electron density allow-

ing them to have significantly narrower linewidths than

mid-infrared plasmonic alternatives [23].

In the field of optoelectronics [24] a key proposed

application of SPhPs is in mid-infrared thermal emis-

sion. Through Kirchhoff’s law their intrinsically narrow

linewidths allow for the design of narrowband thermal

emitters with directional and spectrally tuneable emission

[25–28]. Despite these impressive results thermal emitters

run on spontaneous emission from the thermally oscillating

charges of the polar lattice and cannot achieve substantial

temporal coherence or lasing. Moreover, the only way to

enhance emission is by increasing the device temperature

which leads to large short wavelength emission and dimin-

ished efficiency in the target spectral range.

Resonant electrical injection would solve these prob-

lems but materials do not typically have strong interband

transitions in the mid-infrared and optoelectronic devices

operating there have to rely on artificial electronic transi-

tions, created through bandgap engineering [29–31].

Recent works in surface phonon polariton physics have

suggested a solution to this problem.

While longitudinal and transverse excitations are

orthogonal and thus non-interacting in bulk linear polar

crystals, in systems with broken translational symmetry

they are able to hybridise through commonboundary condi-

tions on the electrical andmechanical fields. This effect was

recently demonstrated in a study of hybridization between

transverse SPhPs localised in 4H-SiC nanopillar resonators

and zone-folded longitudinal optical (LO) phonons [32]. The

resulting excitations were termed longitudinal-transverse

polaritons (LTPs): a reference to the hybrid nature of their

electric field and to the resulting anti-crossing in the modal
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dispersion around the LO phonon frequency. Our theory is

a version with retardation of Ridley’s one [33–35], in which

the role of interface polaritons is played by SPhPs and the

role of hybridons by LTPs. The inclusion of retardation in

our theory allows us to describe nanostructured systems

in which light can be outcoupled by arrays of defects [36].

Importantly, the longitudinal polarization field of the LO

component can couple directly to charge currents transiting

through the lattice. The electrical generation of localised

phonons in polar nanolayers has been studied previously in

the context of both optical [35, 37–39] and acoustic phonons

[40]. It is known to lead to measurable effects such as

velocity saturation in semiconductor devices [41, 42]. It has

also previously been predicted that coherent generation of

localised LO phonons could be possible in GaN quantum

wells [43, 44].

In this Paperwe explore the idea that the unique hybrid

nature of LTPs can allow them to be utilised as intercon-

nects between electronic and photonic degrees of freedom

in optoelectronic devices. We develop a transparent the-

ory of LTP-driven Fröhlich scattering in a planar device,

calculating the efficiency of SPhP emission relative to the

thermal case.We demonstrate that electrically excited emis-

sion is possible; suggesting that LTP interconnects could be

widely useful in optoelectronic devices operating across the

mid-infrared.

2 Overview

Polar crystals support short-wavelength LO phonons. These

are dispersive, meaning their frequency is a function of

wavevector𝜔L

(
k
)
. Longitudinal phonons are characterized

by a curl-free polarization field, ∇× P = 0, which in bulk

implies P is parallel to the propagation vector k, so k × P =
0, as illustrated in Figure 1a. Optical phonons at the surface

of a polar crystal can also couple to photons, forming sub-

diffraction optical modes termed surface phonon polaritons

(SPhPs), which exist in the Reststrahlen region between the

lattice longitudinal and transverse optical phonon frequen-

cies. In this spectral window a polar crystal is character-

ized by a negative dielectric function and responds like

a metal to external electromagnetic fields. In local optical

theories the polarization field of SPhPs is almost everywhere

divergence free, ∇ ⋅ P = 0, excepting the interfaces of the

polar material. In this Paper we refer to SPhPs as trans-

verse excitations, signifying that their polarization field

and complex wavevectors are orthogonal in each medium

(k ⋅ P = 0), as schematically shown in Figure 1a. SPhPs are

purely transverse because local optics parameterizes the

transverse dielectric function of the polar lattice with only

a)

b)

c)

Figure 1: Overview of SPhP-LO phonon coupling and electrical

generation. (a) Comparison of the polarization field P for a longitudinal

optical (LO) phonon and a transverse surface phonon polariton (SPhP). In

the former the polarization field is parallel to the wavevector k, while in

the latter it is orthogonal to it. (b) Illustration of strong coupling between

LO and SPhP modes. Energy is passed coherently at frequencyΩ
between the two degrees of freedom, leading to the formation of a

hybrid LTP mode. (c) Diagrammatic sketch of how the coupling between

LO phonons and SPhPs can dress the Fröhlich interaction between

electrons and LO phonons, leading to a resonant interaction between

electrons and LTPs.

the zone-center k = 0 phonon frequencies, neglecting dis-

persion of, and energy transport in, the optical phonon

branches. As we demonstrated in a recent series of publi-

cations, which allowed us to quantitatively reproduce pre-

viously unexplained experimental data [45–49], accounting

for the optical phonon dispersion leads to a nonlocal the-

ory of polar optics analogous to that in plasmonic systems

[50–54] in which LO phonons and SPhPs interact through

shared electro-mechanical boundary conditions. In large

resonators the effect is an increased non-radiative damping

[45] as propagative phonons leach energy from the SPhP, but

in nanoscale systems the interaction can become coherent.

In this regime energy passes multiple times between LO

phonons and SPhPs before dissipating so the two modes

can no longer be considered distinct. Instead they are best

understood as a hybrid excitation, termed longitudinal-

transverse polariton (LTP), illustrated in Figure 1b, whose
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electric field is a linear mixture of each component. The

crossover point between these regimes occurs where the

thickness of the polar medium approaches the longitudinal

phononpropagation length in thematerial and adiscrete LO

phonon spectrum emerges. At this limit an appreciable frac-

tion of LO phonons excited at the edge of the polar crystal

are able to transit the layer before decaying non-radiatively,

allowing their energy to recycle into SPhPs.

Longitudinal phonons can be excited by electrons pass-

ing through a polar crystal. Charged electrons perturb the

ions of the crystal lattice from their equilibrium positions.

This emission of LO phonons, named after Fröhlich, is one

of the leading dissipation channels for Ohmic losses and is

illustrated by the upper diagram in Figure 1c. In a system

supporting LTPs the emitted LOphonons can convert energy

into SPhPs, and following the scheme in Figure 1b this leads

to a dressed Fröhlich interaction in which electrons reso-

nantly emit LTPs, illustrated in the lower diagram Figure 1c.

As SPhPs can couple to the external environment through

nanophotonic elements, emitting radiation in the far-field,

this mechanism is able to act as an interconnect between

electronic and photonic sub-systems, allowing injected elec-

trical currents to radiate photons in the far-field.

In this Paper we study the simple example of an LTP

interconnect consisting of a thin polar film of thickness d

embedded in a bulk material with dielectric constant 𝜖c,

sketched in Figure 2 [47]. For simplicity we calculate the

modes of our device considering infinite lateral extent. We

consider the polar layer to be cubic silicon carbide (3C-SiC),

characterized in the local limit by the Lorentzian dielectric

function

𝜖(𝜔) = 𝜖∞
𝜔2
L
−𝜔(𝜔+ i𝛾)

𝜔2
T
−𝜔(𝜔+ i𝛾)

, (1)

Figure 2: Sketch of the device studied in this paper. SPhPs supported by

a polar layer of thickness d and dielectric function 𝜖 in a cladding

semiconductor with dielectric constant 𝜖c are excited by application of a

voltage across the film. The SPhPs are then emitted at a rate proportional

to their photonic fraction.

where 𝜔L = 973 cm−1 is the zone-center LO phonon fre-

quency, 𝜔T = 796 cm−1 is the zone-center TO phonon fre-

quency, 𝛾 = 4 cm−1 is the non-radiative damping rate, and

𝜖∞ = 6.52 is the high-frequency dielectric constant [55]. The

cladding is taken as silicon (Si), characterized by the dielec-

tric constant 𝜖c = 11.71.

The polar layer supports a SPhPmode at each interface

which is uncoupled in a thick film. When d approaches the

skin-depth of the SPhP they begin to hybridize forming two

polariton branches, one with frequency below the uncou-

pled mode frequency, and one with frequency above [56].

In this work we concern ourselves with the high-frequency

SPhP whose frequency is close to the zone-center longitu-

dinal phonon frequency [57]. In Appendix A1 the complex

frequency of this mode is derived in the local-response-

approximation, where the dispersion of the underlying

phonon modes of the lattice is disregarded. In Figure 3a we

plot the local density of states which describes the SPhP

dispersion

𝜌SP
q
(𝜔) = 1

𝜋

ℑ
{
𝜔SP
q

}
(
𝜔−R

{
𝜔SP
q

})2 +ℑ
{
𝜔SP
q

}2 , (2)

in which 𝜔SP
q

is the SPhP frequency as a function of in-

plane wavevector q for a layer thickness d = 2 nm. At small

wavevectors the mode is in the epsilon-near-zero (ENZ)

regime [58, 59] where the SPhP phase shift over the film

thickness is negligible, and the frequency lies near the zone-

center LO phonon frequency 𝜔L, indicated by the black

dashed line in Figure 3a. At large wavevectors this is no

longer the case, the SPhPs on each interface of the polar

layer begin to decouple and the mode red shifts toward the

asymptotic SPhP frequency of the bilayer which it reaches

when q is sufficiently large that the SPhPs on each interface

no longer overlap. The real modal frequency R
{
𝜔SP
q

}
is

indicated by the green dash-dotted line. Note that for sim-

plicity in Figure 3 and for the remainder of this Paper we

ignore the lower energy SPhP mode. This excitation, whose

small-wavevector dispersion begins at 𝜔T approaches the

same asymptotic frequency from the low-wavenumber side

in the large wavevector limit.

A thin filmwhose thickness approaches the LO phonon

propagation length also acts as a Fabry–Pérot resonator

for LO phonons, leading to the appearance of a discrete

spectrum of longitudinal modes with quantized modal fre-

quencies

𝜔L
q,n

=
√
𝜔2
L
− 𝛽2

L

(|q|2 + 𝜉2
n

)
, (3)

in which n ∈ ℕ labels the discrete phonon branch,

𝛽L = 15.3 × 105 cm s−1 is the LO phonon velocity in the
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a) b)

Figure 3: Density of states and modal dispersions for a 3C-SiC film of thickness 2 nm characterised by Eq. (1), sandwiched in a Si cladding (𝜖c = 11.71).

In panel (a), representing the prediction of a local theory, the black dashed line shows the bulk LO phonon frequency𝜔L and the dot-dashed green line

the local SPhP dispersion𝜔SP
q
(Appendix A1). In panel (b), representing the prediction of a nonlocal theory, the black dashed lines shows the localised

LO phonon frequencies𝜔L
q,n

and the dot-dashed green lines the LTP frequencies𝜔LTP
q, j
. In both panels blue solid lines mark edge of the light-cone in the

cladding.

low-wavevector quadratic regime [45, 60] and the quantized

out-of-plane wavevector of the nth localised phonon mode

is given by

𝜉n =
(2n− 1)𝜋

d
. (4)

The factor 2n− 1 here ensures only LO phonons with

equal parity to the high-frequency SPhP branch are con-

sidered, as in the symmetric structure under considera-

tion only these modes are coupled. The remaining phonon

modes couple to the low-frequency SPhP and are not consid-

ered in this Paper.

In the full nonlocal problem the transverse and lon-

gitudinal electromagnetic fields in the waveguide must be

calculated simultaneously. As the standard Maxwell bound-

ary conditions on the transverse components of the electric

and magnetic fields leave an under-specified problem this

requires the application of additional boundary conditions.

We have previously derived the appropriate additional con-

ditions on the mechanical fields in the polar layer con-

sidering continuity of the nonlocal Poynting vector, which

accounts for energy carried in both the electromagnetic and

mechanical fields, across each interface [45]. This imposes

continuity of the lattice displacement fieldX and the normal

component of the lattice stress tensor 𝝉̄ . Note that in this

work we ignore TO phonon modes in the polar material,

an approximation we previously demonstrated was valid

in SiC because of the large LO-TO splitting [47]. In this limit

the problem is over-specified and it is not possible to utilize

all the additional boundary conditions, we choose to apply

the Pekar–Ridley condition [61] X = 0 at the interfaces of

the polar film. Under these approximations it is possible

to derive the analytic expression for the LO-SPhP coupling

frequency [48]

|Ωq,n|2 = 2𝛽2
L

d2

𝜔2
L
−𝜔SP 2

q

𝜔SP
q
𝜔L
q,n

. (5)

The LO-SPhP coupling is mediated by interactions

between the two excitations at the surface of the polar layer,

meaning it is highly sensitive to the time the LO phonon

takes to propagate across the film. For this reason it is dimin-

ished in thicker films, and formodes close to the zone-center

LO frequency where the phonon group velocity is small.

For a 2 nm 3C-SiC film we observe two localised LO

modes in the spectral window under study, illustrated by

the n = 1 and n = 2 dashed black lines in Figure 3b. The

LTPmodes are linear superpositions of the underlying SPhP

and LO phonon modes coupled at frequencies given by

Eq. (5), whose eigenfrequencies can be derived explicitly by

Hopfield diagonalization [62] as discussed in Appendix A2.

The complex LTP frequencies are given by 𝜔LTP
q, j

where j

labels the discrete polariton branches. The total number of

LTP branches is equal to the number of bare modes: one

greater than the number of localised LO phonons. We find

three modes: an almost dispersionless upper polariton 𝜔 >

𝜔L (j = u), a middle branch (j = m) sandwiched between

the localised LO frequencies and a lower polariton branch

(j = l) which tends to the ENZ modal frequency at large

in-plane wavevectors. The multimode analogue of Eq. (2)

is plotted in the colormap Figure 3b, while real modal fre-

quenciesR
{
𝜔LTP
q, j

}
are shownwith dash-dotted green lines

and marked by the relative value of j.
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The nonlocal physics which leads to LTP formation can

be understood considering the dispersion of the LO phonon

branch in the lattice. Away from the zero-wavevector Γ
point the band red-shifts. At each frequency the LO phonon

mode has a unique wavelength, calculable from the disper-

sion relation, and when an integer multiple of this wave-

length fits within the polar film a Fabry–Pérot mode forms.

These discrete modes couple to the SPhP, leading to the

altered dispersion in Figure 3b. The wavevectors of the

three localised modes participating in the coupling satisfy

the resonance condition in Eq. (4).

The process of LTP-driven electrically excited emission

sketched in Figure 1 has many moving parts which must

be taken into account to correctly model the conversion of

electrical to photonic energy. Electrons are driven by exter-

nally applied voltages and can radiate LTPs which can then

either decay radiatively emitting photons into the far-field

or non-radiatively. To arrive at a fundamental and intelligi-

ble understanding of the potential of LTP interconnects for

the design of mid-infrared optoelectronic devices we keep

the full microscopic complexity of the LTP physics andmake

important simplifications to the description of the couplings

to the external environment:

I. We do not utilize a self-consistent out-of-equilibrium

many-body theory of the electrical transport [59].

Instead we consider an electron gas at thermal equilib-

rium with a well-defined temperature Te described by

a Maxwell–Boltzmann distribution

f
k⃗

(
Te

)
= 8𝜋3

V

e−𝜀 k⃗∕kBTe

Nc

(
Te

) , (6)

where Nc

(
Te

)
= 4𝜂

[
m∗kBTe
2𝜋ℏ2

]3∕2
is the density of states in

the conduction band, 𝜂 is the degeneracy factor in the

conduction band, V is the electronic quantisation vol-

ume, k⃗ is the three-dimension electron wavevector and

𝜀
k⃗
is the electron energy. In Appendix Cwe consider the

balance between electron energy and drift velocity in

the thermalized electron gas, demonstrating that both

the drift velocity and applied electric field between the

device contacts can be uniquely determined using only

the temperature Te and carrier density ne of the gas.

In all calculations presented in this Paper the electron

density is taken to be ne = 1018 cm3. This density is cho-

sen low enough not to significantly perturb the SPhP

resonances [60] and to allow us to consider the gas

to be non-degenerate, removing the need to consider

Pauli blocking in the outgoing electronic states (see

Appendix C).

II. LTPs in the system are below-light-line excitations. An

outcoupling mechanism must be introduced in order

to allow them to radiate in the far-field. We will not

evaluate a specific extraction grating or prism geome-

try, as here our aim is to provide a general evaluation

of the efficiency of the underlying emissionmechanism.

A good estimate of the level at which an LTP is able to

couple to the far-field can be obtained by considering

how photon-like the mode is. The effective photon pop-

ulation is given by the LTP population times its photonic

fraction, equal to the ratio of the group velocity to the

speed-of-light in vacuum

𝜉q, j =
1

c

d𝜔LTP
q, j

dq
. (7)

In this model polaritons with vanishing group

velocity, in the flat-band region of the LTP dispersion,

have a vanishing coefficient 𝜉q, j as they are essen-

tially just localised LO phonon modes decoupled from

the SPhP. Those in regions near anti-crossings achieve

instead a finite 𝜉q, j from their SPhP component and

for suitably small values of the wavevector they can be

extracted using standard and relatively efficient grat-

ings or prisms.

We are now able to formulate a rate equation for the

LTP populations Nq, j in the presence of both thermal and

electrical pumping

Ṅq, j = 𝛾LTPq, j

[
NTH
q, j
(Tl)− Nq, j

]
+ ΓLTP

q, j
(Nq, j, Te), (8)

where 𝛾LTP
q, j

, defined in Appendix A2 is the branch- and

momentum-resolved LTP damping and

ΓLTP
q, j

(Nq, j, Te) = Γ+
q, j
(Te)(1+ Nq, j)− Γ−

q, j
(Te)Nq, j, (9)

is the term describing LTP emission and reabsorption by the

electron gas, depending on both the electronic temperature

Te and the LTP population. The emission (+) and absorption
(−) coefficients are defined in Appendix D. When the lattice

is at equilibrium with the electron gas the LTP population

remains stationary, implying that ΓLTP
q, j

(NTH
q, j
(T), T) = 0. We

do not mark explicitly the dependence upon the electron

density ne, but both Γ+
q, j
(Te) and Γ−

q, j
(Te) are linearly pro-

portional to it. In Eq. (8) we also introduced a finite lattice

temperature Tl to account for thermal LTP occupation, with

equilibrium thermal distribution

NTH
q, j
(T) =

[
exp

(
ℏ𝜔LTP

q, j

kBT

)
− 1

]−1

. (10)
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The population in the steady-state Ṅq, j = 0 is therefore

given by

Nss
q, j
(Te, Tl) =

𝛾LTP
q, j

NTH
q, j

(
Tl
)
+ Γ+

q, j
(Te)

𝛾LTP
q, j

+ Γ−
q, j
(Te)− Γ+

q, j
(Te)

. (11)

We also introduce a related quantity, the spectral

steady-state population, which allows taking into account

the finite linewidth of the LTP resonances. This relates to the

branch-resolved population through

Nss
q, j

(
𝜔, Te, Tl

)
= Nss

q, j

(
Te, Tl

)
𝜌LTP
q, j (𝜔), (12)

in which 𝜌LTP
q, j

(𝜔) is the density of LTP states at wavevector

q in branch j at frequency 𝜔. This density is modeled as a

Lorentzian and is defined in Appendix A2.

Note that our rate-equation does not account for Joule

heating of the phonon reservoir. Although in a realistic

device the temperature of the electronic sub-system Te and

of the lattice Tl would evolve toward equilibrium over time,

describing this process is beyond the scope of this Paper as

the dynamics would be device- and operation-dependent.

3 Results

LTP-driven electrically excited emission is the result of two

chained processes: incoupling from electronic current to

LTP modes and subsequently outcoupling to the far-field.

The former depends on the density of initial and final states

within the electron gas, and is enhanced atmoderately large

wavevectors where the polariton is phonon-like but the

transferred wavevector is not sufficient to prohibit phase-

matching. This differs from a thermal excitation which only

varies according to the modal frequency and the corre-

sponding Bose–Einstein population NTH
q, j
(Tl) at the temper-

ature of the crystal lattice.

We are now in a position to estimate the efficiency of

the LPT interconnect by comparing it with the same device

operated as a thermal emitter. To simulate thermal emission

we consider the system at the equilibrium device temper-

ature Tl = Te = 600 K, a temperature typical for SiC-based

thermal emitters [28]. For the electrically excited emission

we consider instead a fixed electronic temperature Te =
1000 K, a temperature chosen to have electrons propagating

near their saturation velocity (Appendix C), and three differ-

ent lattice temperatures: Tl = 0, 300, and 600 K. The results

corresponding to the first value represent the intensity of

purely electrically excited emission, allowing us to estimate

its intrinsic efficiencywhen compared to the purely thermal

process. The results corresponding to the second and third

values provide an estimate for the populations expected

in actual devices operating at room temperature and high

temperature, respectively.

In the left column of Figure 4 we plot the steady-state

LTP populations per unit frequency from Eq. (12) in the case

of purely thermal (a), purely electrical (Tl = 0 K) (c), room

temperature (Tl = 300 K) (g) and high temperature (Tl =
600 K) (h) operation.

In the thermal case all regions of the dispersion are

similarly populated: because the Reststrahlen region is rel-

atively narrow the thermal occupancyNTH
q, j
(Tl) varies slowly

over the plotted region. For the purely electrical incou-

pling (c) LTPs are instead far more likely to be generated

in the spectral region near to the zone-center LO phonon

frequency𝜔L. Electrical, finite temperature results (g, h) are

intermediate between the previous two:while the dominant

emission remains the electrical one near to the LO fre-

quency, additional thermal radiation leads to an increased

emission into the lower polariton branch. In the right col-

umn of Figure 4 we plot instead the steady state photon

population for the same parameters that is we multiply

the results in the left column by the corresponding photon

fraction from Eq. (7). We can see how large photonic com-

ponents are generated in the smaller wavevector regions,

specifically in high-dispersion regions below the polariton

stopbands. Note that the photonic populations in this figure

go to zero near to the light-line, in the region where the

underlying LTP group velocity is near-zero.

Regardless of the extraction mechanism used to emit

LTPs to the far-field, both electrical and thermal emission in

the samemode would be extracted with the same efficiency.

Moreover, the wavevector region q ≈ 107, well resolved in

Figure 4, only requires standard micrometer-sized gratings

for outcoupling. This figure thus provides the main result of

this paper, demonstrating that the LTP interconnect we pro-

pose can emitmore than standard narrow-band SPhP-based

thermal emitters [28], while greatly reducing the energy

dissipated outside the narrow region of interest.

In order to proceed with the quantitative comparison

between electrical and thermal emission, we consider the

figure of merit black

𝜂(1)
q, j

(
Te, Tl, Td

)
=

Nss
q, j
(Te, Tl)

Nss
q, j
(Td, Td)

, (13)

which is the in-plane momentum q and branch j resolved

ratio between electrically excited emission with electronic

temperature Te and lattice temperature Tl, and purely ther-

mal emission at the equilibrum device temperature Td. In

Figure 5 we plot the branch resolved values of 𝜂(1)
q, j

as a

function of electronic temperature Te, with the in-plane

wavevector fixed to q = 107 m−1, for a 2 nm active region,
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a) b)

d)c)

e) f)

h)g)

Figure 4: Comparison of LTP and photonic steady-state populations generated by thermal and electrical processes. In the first column we plot the LTP

density, while in the second column we plot the photonic density, obtained by multiplying the LTP density by the photon fraction 𝜉q, j from Eq. (7). The

first row (a, b) shows data obtained considering purely thermal emission, obtained setting both the lattice and the electronic temperatures to the

same equilibrium device temperature Tl = Te = 600 K. The other three rows show instead data obtained considering electronic temperature

Te = 1000 K and lattice temperatures equal to Tl = 0 K (c, d), Tl = 300 K (e, f), and Tl = 600 K (g, h). Other parameters as in Figure 3. In all panels the

blue-solid line indicates the light-cone edge in the cladding, and the dot-dashed green lines indicate the real LTP frequencies. Note that the color in the

figure has been saturated to allow the thermal and the much larger electrical populations to be plotted on the same color scale.
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Figure 5: Figure of merit 𝜂(1)
q, j

from Eq. (13), as a function of the electronic

temperature Te, evaluated at fixed in-plane wavevector q = 107 m−1, for

active region of thickness 2 nm, device temperature Td = 600 K, and

lattice temperatures Tl = 0 K (a), Tl = 300 K (b), and Tl = 600 K (c). For

each temperature the figure of merit is plotted for each polariton branch,

with reference to the dispersion in Figure 3 these correspond to the

lower (green squares), middle (red diamonds) and upper (purple

triangles) polariton branches.

equilibrium device temperature Td = 600 K and Tl = 0 K

(a), Tl = 300 K (b) and Tl = 600 K (c). As the electronic tem-

perature increases, the magnitude of 𝜂(1)
q, j

increases and the

electrically excited emission becomes substantially larger

than the thermal one.

As already seen in Figure 4 the majority of electrical

generation happens into the upper-polariton branch (pur-

ple triangles) and middle-polariton branch (red diamonds),

which are spectrally close to the zone-center LO phonon fre-

quency 𝜔L, thus causing little dissipation outside a specific

and narrow frequency region and improving the energy

efficiency of the process when compared to the broadband

thermal dissipation. At finite values of Tl (Figure 5b and c)

the figure of merit for the middle- and upper-polaritons is

slightly enhanced because of the additional thermal emis-

sion. In the lower polariton branch (green squares) the elec-

trically excited emission is instead much smaller due to the

strong spectral separation between 𝜔L and the polariton

frequency [48], and at finite Tl it is largely dominated by the

thermal component.

The second figure of merit we explore is the internal

quantum efficiency, that is the number of photons emitted

by a single electron propagating through a single layer given

by black

𝜂(2)
(
Te

)
=

∑
q, j

ΓLTP
q, j

(Nss
q, j
(Te, Tl), Te)𝜉q, j

𝜈
(
Te, Tl

)
neA

, (14)

in which 𝜈
(
Te, Tl

)
is the drift velocity, related to both the

temperature of the lattice Tl and of the electron gas Te as

described in Appendix C, ne is the electronic density, and

A is the device in-plane area, which cancels from the final

result. In Figure 6a we plot 𝜂(2)
q, j

as a function of electronic

temperature for a 2 nm active layer operating at Tl = 0 K

(green squares), Tl = 300 K (red diamonds), and Tl = 600 K

(purple triangles). When the electronic temperature grows,

more LTPs are generated in the system, even if the growth

is sublinear due to the increase of electronic group veloc-

ity 𝜈(Te, Tl) with the electronic temperature, as electrons

spend less time in the active region. At finite Tl the 𝜂
(2) is

suppressed near the equilibrum value Te = Tl, where the

sum in Eq. (14) vanishes. The asymptotic behaviour Te ≫

Tl is unaffected by the finite temperature of the lattice. In

Figure 6b we plot the same quantity as a function of the

active layer thickness at fixed electronic temperature Te =
1000 K for each lattice temperature, showing a saturation

of the efficiency for thicker layers in which nonlocal effects

decrease as shown in Eq. (5). The maximal quantum effi-

ciency is of the order of 10−6 per nanometric layer. Super-

lattice structures can be used to increase the total emission
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a)

b)

Figure 6: Figure of merit 𝜂(2). In panel (a) we plot it as a function of the

electronic temperature Te, for an active region of thickness 2 nm. In

panel (b) we plot the same quantity as a function of the thickness for a

constant electronic temperature Te = 1000 K. Results are plotted for

lattice temperature Tl = 0 K (green squares), Tl = 300 K (red diamonds)

and Tl = 600 K (purple triangles). Dashed lines in panel (a) mark the

three lattice temperatures, at which the respective electrical LTP

generation vanishes.

efficiency, while being much more robust to imperfections

and easier to fabricate that those required for quantum

cascade devices.

4 Conclusions and perspectives

In this work we have investigated a novel method of mid-

infrared light-generation, exploiting the intrinsic optical

nonlocality of polar nano-devices. Utilising longitudinal-

transverse polaritons (LTPs) as interconnects between the

microscopic degrees of freedom of a polar lattice and the

far-field, we have demonstrated sizeably improved narrow-

band emission efficiency is achievable when comparing to

equivalent thermal mid-infrared emitters. We illustrated

this using a simple, high-symmetry system in order to pro-

vide an unbiased assessment of the fundamental process

of electrical LTP generation. An optimised device could uti-

lize more complex geometries, as a channel waveguide or

nano-resonator to spatially restrict LTP excitation, and to

manipulate generated LTPs, but our aim in this paper is to

demonstrate the fundamental efficiency of a novel emission

channel and we leave device optimization for future works.

We hope our results will open the way toward an experi-

mental observation of LTP-driven electrically excited emis-

sion and from there to a novel generation of mid-infrared

optoelectronic devices.
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Appendix A: Local and nonlocal

spectra

A1 Local response of thin polar films

In this work we consider a trilayer waveguide, consisting

of a polar film of thickness d sandwiched between semi-

infinite positive dielectric cladding layers, occupying the

region −d < z < 0. The system is translationally invariant

in the xy plane. Modes of the system are characterized by

a 2D in-plane wavevector q, and out-of-plane wavevectors

given by

𝛼 =
√|q|2 − 𝜖𝜔2∕c2,

𝛼c =
√|q|2 − 𝜖c𝜔2∕c2,

(A1)

respectively, in the film and the cladding, where 𝜖 (𝜖c) is the

dielectric function in the film (cladding) and c is the speed

of light in vacuum. In all the Paper in-plane 2D vectors are

bold, and three dimensional vectors are indicated either list-

ing the in- and out-of-plane components in squared paren-

thesis or, when notationally clear, with an arrow symbol.

The full 3Dwavevector of themode in the layers is thuswrit-

ten as
[
q, 𝛼

]
, and similarly we write the full 3D coordinate

[r, z].
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Each interface between the polar film and cladding

supports a surface phonon polaritonwith electric field com-

ponents at the upper and lower interfaces given by [48]

E⃗u,q =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝛼c𝜖

𝛼𝜖c

[
q|q| ,− i|q|

𝛼c

]
e𝛼c(z+d)eiq⋅r z < −d,

−
[
q|q| , i|q|𝛼

]
e−𝛼(z+d)eiq⋅r −d < z < 0,

−𝛼c𝜖
𝛼𝜖c

[
q|q| , i|q|𝛼c

]
e−𝛼cz−𝛼deiq⋅r z > 0,

E⃗l,q =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝛼c𝜖

𝛼𝜖c

[
q|q| ,− i|q|

𝛼c

]
e𝛼c(z+d)−𝛼deiq⋅r z < −d,[

q|q| ,− i|q|
𝛼

]
e𝛼zeiq⋅r −d < z < 0,

−𝛼c𝜖
𝛼𝜖c

[
q|q| , i|q|𝛼c

]
e−𝛼czeiq⋅r z > 0,

(A2)

respectively. Denoting by z⃗ = [0, 1] the unit vector along z,

the magnetic field in each case can be found utilizing the

Maxwell–Faraday equation as

H⃗u,q =
i𝜔𝜖

c2𝛼

[
z⃗ × q|q| , 0

]
eiq⋅r

⎧⎪⎨⎪⎩
e𝛼c(z+d) z < −d,
e−𝛼(z+d) −d < z < 0,

e−𝛼cz−𝛼d z > 0,

H⃗l,q =
i𝜔𝜖

c2𝛼

[
z⃗ × q|q| , 0

]
eiq⋅r

⎧⎪⎨⎪⎩
e𝛼c(z+d)−𝛼d z < −d,
e𝛼z −d < z < 0,

e−𝛼cz z > 0,

(A3)

which have been constructed for continuity at the film

interfaces z = 0,−d. Themodes of the waveguide are linear
superpositions of those on each of its interfaceswith electric

field

E⃗q = UE⃗u,q + LE⃗l,q, (A4)

where U, L are coefficients describing the contribution of

the SPhPs at either interface. After applying boundary con-

ditions on the tangential component of the electric field

E⃗q ⋅ r we recover the following dispersion relation

⎡⎢⎢⎢⎢⎣

(
𝛼c𝜖

𝛼𝜖c
− 1

)
e−𝛼d 1+ 𝛼c𝜖

𝛼𝜖c

𝛼c𝜖

𝛼𝜖c
+ 1

(
𝛼c𝜖

𝛼𝜖c
− 1

)
e−𝛼d

⎤⎥⎥⎥⎥⎦
(
U

L

)
=

(
0

0

)
. (A5)

This equation is satisfied when the determinant of the

matrix is zero, which leads to the transcendental dispersion

relation

1− r2e−2𝛼d = 0, (A6)

in which r is the Fresnel reflection coefficient

r = 𝛼𝜖c − 𝛼c𝜖
𝛼𝜖c + 𝛼c𝜖

. (A7)

After manipulation Eq. (A6) can be recast in the form

[48]

2− tanh
(
𝛼d

)[𝜖𝛼c
𝜖c𝛼

+ 𝜖c𝛼

𝜖𝛼c

]
= 0. (A8)

Although in the thin film limit Eq. (A8) can simplify

dramatically [58] in this work we cannot utilise this approx-

imation as it breaks down at the larger wavevectors under

study. The SPhP frequency 𝜔SP
q

utilised in the main body

is found by numerical solution of Eq. (A8). This yields a

complex modal frequency as a function of wavevector q,

which leads to the loss rate

𝛾M
q
= I

{
𝜔SP
q

}
= 𝛾

2
, (A9)

in thewavevector region under study [58], a consequence of

strong confinement in the polar layer. Note that we neglect

the frequency and polarization dependence of the phononic

loss rate.

A2 Nonlocal response of thin polar films

The nonlocal optics of the system can be derived semi-

analytically considering the dispersion of LO phonons in the

polar film [48]. In the typical quadratic model of phonon

dispersion [45] the dispersive LO phonon frequency takes

the form

𝜔L 2

q⃗
= 𝜔2

L
− 𝛽2

L

[|q|2 + q2
z

]
, (A10)

where𝜔L is the frequency at zero-wavevector, q⃗ =
[
q, qz

]
is

the 3D wavevector and 𝛽L is a characteristic velocity. In a

planar layer enforcing Pekar boundary conditions, as when

the Reststrahlen bands in the layer and the cladding do not

overlap, this leads to discrete, localised LO phonon modes

with frequencies

𝜔L
q,n

=
√
𝜔2
L
− 𝛽2

L

(
𝜉2
n
+ |q|2), (A11)

where 𝜉n is the quantized out-of-plane wavevector defined

in Eq. (4) in the main text.

The SPhP mode considered in Appendix A1 and these

localised LO phonons interact through shared electro-

mechanical boundary conditions [45]. In the trilayer under

study we previously derived the analytical form of this

coupling Ωn,q, given by Eq. (5) [48]. Using this result the

interacting system can be described in the rotating wave

approximation by the quadratic Hamiltonian

̂
LTP = ℏ

∑
q

{
𝜔SP
q
â†
q
âq +

∑
n

[
𝜔L
q,n
b̂†
q,n
b̂q,n

+Ωq,n

(
âqb̂

†
q,n

+ â†
q
b̂q,n

)]}
, (A12)
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in which â†
q
(b̂†

q,n) are the annihilation operators for the

SPhP (nth LO phonon) mode, obeying bosonic commutation

rules [
âq, â

†
q′

]
= 𝛿q,q′ ,[

b̂q,n, b̂
†
q′,n′

]
= 𝛿q,q′𝛿n,n′ .

(A13)

The quadratic bosonic Hamiltonian in Eq. (A12) can

be diagonalized using a multimode Hopfield–Bogoliubov

diagonalization into a spectrum of longitudinal-transverse

polaritons (LTPs) [48] with frequencies 𝜔LTP
q, j

̂
LTP = ℏ

∑
q, j

𝜔LTP
q, j

d̂†
q, j
d̂q, j, (A14)

described by creation operators

d̂q, j = 𝛼q, jâq +
∑
n

𝛽q, j,nb̂q,n, (A15)

in which j indexes the polariton branch, and the Hopfield

coefficients 𝛼q, j, 𝛽q, j,n preserve the unitary nature of the

transformation

|𝛼q, j|2 +∑
n

|𝛽q, j,n|2 = 1. (A16)

This ensures that the resulting LTP modes are also

bosonic; whose creation and annihilation operators satisfy

the commutation relation[
d̂q, j, d̂

†
q′,j ′

]
= 𝛿q,q′𝛿 j,j ′ , (A17)

and j indexes the different LTP branches.

The homogeneous lineshape of the jth LTP branch can

be written as a Lorentzian

𝜌LTP
q, j

(𝜔) = 1

𝜋

𝛾LTP
q, j(

𝜔−𝜔LTP
q, j

)2

+
(
𝛾LTP
q, j

)2
, (A18)

where the homogeneous LTP linewidth can be written from

Eq. (A15) as a weighed sum of the different involved scatter-

ing channels as

𝛾LTP
q, j

= 𝛾 + |𝛼q, j|2(𝛾Mq − 𝛾
)
. (A19)

A3 Quantization of the LO mode

In this Paper we aim to describe interactions between elec-

trons and localised LO phonon modes through the Fröhlich

interaction. To do this we require the Hamiltonian model-

ing the interaction of the two systems. Given an electronic

charge density operator 𝜌 we can write

̂Int = −
∫

d2r dz
[
𝜌(r, z)𝜙̂(r, z)+ ĵ(r, z) ⋅ Â(r, z)

]
, (A20)

where 𝜙̂ is the electric potential arising from LO phonon

modes, ĵ is the electric current density operator and Â

is the electromagnetic vector potential. The first term of

this Hamiltonian describes the interaction between an elec-

tronic charge and the induced LTP charge in the lattice,

while the second describes interaction between electronic

currents and the electromagnetic tranverse fields. The for-

mer one is dominant for low-frequency currents and in

this Paper we will consider only this component, using the

Fröhlich Hamiltonian

̂Frö = −
∫

d2r dz 𝜌(r, z)𝜙̂(r, z). (A21)

In a local model the discontinuity in the out-of-plane

electric field at the boundaries of the polar layer leads to a

finite induced charge which, due to the transverse nature

of the electric field, is unable to spread into the interior

of the polar layer. In our nonlocal model instead, charge

induced at the edge of the polar layer is able to spread into

the interior, manifesting as a source of LO phonons. This

charging is entirely encoded in the LO phonon fields and

their corresponding scalar potential.

The electric potential at fixed in-plane wavevector q in

branch nwith out-of-plane wavevector 𝜉n given by Eq. (4) is

proportional to

uq,n(r, z) = sin
[
𝜉n
(
z+ d∕2

)]
eiq⋅r. (A22)

To parameterize the Hamiltonian Eq. (A21) it is neces-

sary to quantize the phonon field. This can be carried out

from the corresponding electric field

E⃗q,n(r, z) = −Bq,n∇uq,n(r, z), (A23)

where Bq,n is a constant to be determined by the quantiza-

tion procedure. Utilizing the results of Refs. [49, 63], where

we developed a quantum theory on local and nonlocal polar

media,

2𝜖0
ℏ𝜔L

q,n
∫

d3r
𝜖∞𝜔

L 2
q,n

[
𝜔2
L
−𝜔2

T

][
𝜔L 2
q,n

−𝜔2
T
+ 𝛽2

L

(|q|2 + 𝜉2
n

)]2 |E⃗q,n|2
= sgn

(
𝜔L
q,n

)
, (A24)

where 𝜔L
q,n

is the mode frequency, given in this case be

Eq. (3). For the Fabry–Pérotmodes under study, considering

that 𝜉n = n𝜋∕d we can find

∫
d3r|E⃗q,n|2 = |Bq,n|2 Ad2𝛽2

L

[
𝜔2
L
−𝜔2

q,n

]
, (A25)

with A the device in-plane area. After substituting Eq. (A25)

back into Eq. (A24) we recover the quantization constant
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Bq,n =
√

ℏ𝜔L
q,n

𝜖0𝜖
𝜌
q,nAd

√
𝛽2
L

𝜔2
L
−𝜔L 2

q,n

, (A26)

inwhich, compared to the local case𝜔L
q,n

= 𝜔L, we acquired

a dispersive Fröhlich constant

𝜖
𝜌
q,n = 𝜖∞

𝜔L 2
q,n

𝜔2
L
−𝜔2

T

. (A27)

Finally, we can write the second-quantized form of the

LO phonon potential

𝜙̂(r, z) =
∑
q,n

Bq,nuq,n(r, z)
[
b̂q,n + b̂†−q,n

]
, (A28)

which parameterizes the LO phonon contribution to

Eq. (A21).

Appendix B: Electron gas

Electrons interact with LO phonons through the Fröhlich

Hamiltonian in Eq. (A21). Introducing the fermionic annihi-

lation operators ĉ
k⃗
with 3D momentum k⃗ =

[
k, k

]
, describ-

ing electrons in the conduction band, the free electron

Hamiltonian is given by

̂ =
∑
k⃗

𝜀
k⃗
ĉ†
k⃗
ĉ
k⃗
, (B1)

where the free-electron energy is 𝜀
k⃗
= ℏ2|k⃗|2∕2 m∗ andm∗

is the effective electron mass in the cladding region. We

consider a Si cladding region and we will thus consider the

conductivity effective mass m∗ = 0.26me, where me is the

free-electronmass. The electronic creation and annihilation

operators obey Fermionic anti-commutator rules{
ĉ
k⃗
, ĉ†

k⃗′

}
= 𝛿

k⃗, k⃗′
, (B2)

and have free plane-wave wavefunctions of form

𝜓
k⃗
(r, z) = 1√

LA
eik⋅reikz, (B3)

where L is the electronic quantization length along z and

A the sample surface. By inverting Eq. (A15) to write the

LO phonon operators in terms of the LTPs we can rewrite

Eq. (A21) as

̂Frö =
(2𝜋)2

A

∑
k⃗,q, k⃗′, j

ℏ𝜅q,k,k′, j𝛿
(
k
′ − k− q

)
×

[
ĉ†
k⃗
ĉ
k⃗′
d̂†
q, j

+ ĉ†
k⃗′
ĉ
k⃗
d̂q, j

]
, (B4)

in which k⃗ =
[
k, k

]
is the incoming electronic wavevector

and k⃗′ =
[
k
′, k′

]
is the outgoing one. Integrating over the

in-plane component of the out-going wavevector k′ we put

the Fröhlich Hamiltonian in the form

̂Frö =
∑

k⃗,k′,q, j

ℏ𝜅q,k,k′, j

[
ĉ†
k⃗
ĉ
k⃗+ q⃗d̂

†
q, j

+ ĉ†
k⃗+ q⃗

ĉ
k⃗
d̂q, j

]
, (B5)

clearly describing the dressed Fröhlich process in Figure 2c,

where the electron-LTP coupling coefficient has form

𝜅q,k,k′, j =
e

ℏ

∑
n

Bq,n𝛽q, j,nΞk,k′,n, (B6)

with the electron–phonon overlap integral given by

Ξk,k′,n =
1

L∫

0

−d
dz ei(k−k

′)z sin
[
𝜉n

(
z+ d∕2

)]
. (B7)

Note that in systems containing free charges the dielec-

tric function differs from Eq. (1), and is instead given by

𝜖(𝜔) = 𝜖∞
𝜔2
L
−𝜔(𝜔+ i𝛾)

𝜔2
T
−𝜔(𝜔+ i𝛾)

−
∑
j=e,h

n je
2

𝜖0m
∗
j

1

𝜔(𝜔+ iΓ)
, (B8)

where Γ is a characteristic free carrier scattering rate, nj
is the carrier density, m∗

j
is the carrier conductivity effec-

tive mass and j refers to electrons e, or holes h. In SiC the

relatively high frequencies of the Reststrahlen band mean

that even at large charge densities the shift in dielectric

function is minimal [64]. Deviations are most severe near

to 𝜔L where the Lorentz dielectric function vanishes. Note

that the predominant effect is a small blue shift in SPhP

frequencies. This would actually be beneficial for the effect

we aim to describe, as the SPhP mode would move toward

𝜔L where electron–phonon coupling is strongest.

Appendix C: Thermalized electron

model

Electrons interacting with the polar nanolayer considered

in this Paper are assumed to propagate under the influence

of an applied electric field polarized perpendicular to the

nanolayer. An average electron propagates at the drift veloc-

ity, which is limited throughmomentum relaxationwith the

crystal lattice. The lattice also provides energy relaxation

channels, which reduce the mean electronic energy and

prevent the electron gas from overheating. We describe the

electron gas as thermalised at a certain electronic temper-

ature Te. In the following we calculate closed relationships

between the applied field, the drift velocity, and the temper-

ature of the electron gas.
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We are able to write the balance equations between

electronic energy 𝜀 and drift velocity 𝜈 as [65]

𝜕𝜀

𝜕t
= −e𝜈 − ℏ𝜔L

𝜏𝜀
(
Te, Tl

) , (C1a)

𝜕𝜈

𝜕t
= − e

m∗ − 𝜈

𝜏m
(
Te, Tl

) , (C1b)

where  is the scalar electric field, 𝜏𝜀
(
Te, Tl

)
(𝜏m

(
Te, Tl

)
) is

the energy (momentum) relaxation time dependent on both

the electron and lattice temperatures. In the steady state

these equations can be directly solved

e𝜈 = − ℏ𝜔L

𝜏𝜀
(
Te, Tl

) , (C2)

e

m∗ = − 𝜈

𝜏m
(
Te, Tl

) , (C3)

allowing the electric field or drift velocity to be eliminated

m∗𝜈2 = ℏ𝜔L

𝜏m
(
Te, Tl

)
𝜏𝜀

(
Te, Tl

) , (C4a)

e22

m∗ = ℏ𝜔L

𝜏m
(
Te, Tl

)
𝜏𝜀

(
Te, Tl

) , (C4b)

Although it is not strictly possible to define a relaxation

time for the polar interaction, a consequence of the inelastic

andnon-velocity-randomising nature of the interaction [66],

it is possible to approximate an energy and momentum

relaxation time utilizing Fermi’s golden rule. Following Con-

well [67], the probability per unit time of a carrier scatter-

ing out of state with momentum k⃗ =
[
k, k

]
with exchanged

momentum q⃗ =
[
q, q

]
is given by

1

𝜏
k⃗
(Tl)

= 2𝜋

ℏ

∑
q⃗

[|⟨k⃗ + q⃗,NL − 1|̂Frö|k⃗,NL⟩|2
× 𝛿

(
𝜀
k⃗+ q⃗

− 𝜀
k⃗
− ℏ𝜔L

)
+ |⟨k⃗ − q⃗,NL + 1|̂Frö|k⃗,NL⟩|2

× 𝛿
(
𝜀
k⃗− q⃗

− 𝜀
k⃗
+ ℏ𝜔L

)]
, (C5)

in which the first term is the transition probability from

phonon absorption, the second is from phonon emission.

Here NL

(
Tl
)
is the equilibrium phonon population in the

LO phonon modes which are assumed to be non-dispersive.

If we assume spherical bands we can compute the inverse

scattering time directly as

1

𝜏
k⃗

(
Tl
) = 2eF√

2m∗𝜀
k⃗

[
NL

(
Tl
)
sinh−1

(√
𝜀
k⃗

ℏ𝜔L

)

+
(
NL

(
Tl
)
+ 1

)
sinh−1

(√
𝜀
k⃗

ℏ𝜔L

− 1

)]
, (C6)

where F is the bulk Fröhlich matrix element

eF =
m∗e2ℏ𝜔L

4𝜋ℏ2𝜖0

[
1

𝜖∞
− 1

𝜖st

]
, (C7)

in which 𝜖∞ (𝜖st) is the high-frequency (static) dielectric

constant of the lattice and 𝜖0 is the permittivity of free-space.

The inverse scattering time 𝜏−1
k⃗

(
Tl
)
is not a relaxation

time, and as discussed above one cannot be strictly defined

for the polar interaction. We can however define the rate of

energy change for an electron with momentum k⃗ due to the

polar interaction, given by

d𝜀
k⃗

dt

|||||PI = ℏ𝜔L

𝜏
k⃗

(
Tl
) , (C8)

Pseudo-relaxation times can then be calculated by

taking the distributional average of this rate of energy

change. Assuming the electron gas is described by a

Maxwell–Boltzmann distribution at electronic temperature

Te

f
k⃗

(
Te

)
= 8𝜋3

LA

e−𝜀 k⃗∕kBTe

Nc

(
Te

) , (C9)

where Nc

(
Te

)
= 2𝜂

[
m∗kBTe
2𝜋ℏ2

]3∕2
is the density of states in the

conduction band, ne is the electronic density and 𝜂 is the

degeneracy factor in the conduction band. Integrating over

the distribution we find the energy pseudo-relaxation time

1

𝜏𝜀
(
Te, Tl

) ≈ 1

ℏ𝜔L

⟨
d𝜀

k⃗

dt

|||||PI
⟩

= −
√

2

𝜋m∗ℏ𝜔L

eF
eg(Tl)−g(Te)∕2 − eg(Te)∕2

eg(Tl) − 1

×
√
g
(
Te

)
K0

(
g
(
Te

)
2

)
, (C10)

where the angular brackets are an average calculated over

the distribution in Eq. (C9), the Ki are modified Bessel func-

tions, and we defined the dimensionless quantity g(T) =
ℏ𝜔L∕kBT .

To find themomentum pseudo-relaxation timewe start

instead by calculating the change of electronic wavevector

in the transport direction z⃗ for a carrier with momentum

k⃗ =
[
k, k

]
, given by

dk

dt
= 2𝜋

ℏ

∑
q⃗

[
k|⟨k⃗ + q⃗,NL − 1|Frö|k⃗,NL⟩|2

× 𝛿
(
𝜀
k⃗+ q⃗

− 𝜀
k⃗
− ℏ𝜔L

)
− k|⟨k⃗ − q⃗,NL+ 1|Frö|k⃗,NL⟩|2

× 𝛿
(
𝜀
k⃗− q⃗

− 𝜀
k⃗
+ ℏ𝜔L

)]
. (C11)
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As for the previous case we can integrate analytically,

yielding the result

dk

dt
= −eF

ℏ

k|k⃗|
[
NL

{√
1+ ℏ𝜔L

𝜀
k⃗

− ℏ𝜔L

𝜀
k⃗

× sinh−1
(√

𝜀
k⃗

ℏ𝜔L

)}
+ (NL + 1)

{√
1− ℏ𝜔L

𝜀
k⃗

+ ℏ𝜔L

𝜀
k⃗

sinh−1
(√

1− ℏ𝜔L

𝜀
k⃗

)}]
. (C12)

Analogously to the energy relaxation rate we can find

the pseudo-relaxation time by integrating over the elec-

tronic distribution. To do this we need to assume the dis-

tribution function is drifted, as the gas propagates at drift

velocity 𝜈 along z⃗. The zero-order spherically symmetric

term does not contribute, the first-order perturbation of the

distribution is

f (1)
k⃗

(
Te

)
= k

ℏ𝜈

kBTe

8𝜋3

LA

e−𝜀 k⃗∕kBTe

Nc

(
Te

) , (C13)

and integrating over the distribution yields the momentum

pseudo-relaxation time

1

𝜏m
(
Te, Tl

) ≈ 1

m∗𝜈

⟨
d
(
ℏk

)
dt

|||||PI
⟩

= −2eFNL

(
Tl
)

3
√
𝜋

g
(
Te

)3∕2√
2m∗ℏ𝜔L

eg(Te)∕2

×
[(
eg(Tl)−g(Te) + 1

)
K1

(
g
(
Te

)
2

)

+
(
eg(Tl)−g(Te) − 1

)
K0

(
g
(
Te

)
2

)]
. (C14)

We thus arrive at our results for the drift velocity and

the field intensity

𝜈2 = ℏ𝜔L

m∗
𝜏m

(
Te, Tl

)
𝜏𝜀

(
Te, Tl

) = 3ℏ𝜔L√
2m∗g

(
Te

)
[
eg(Tl)−g(Te) − 1

]
K0

(
g(Te)
2

)
[(
eg(Tl)−g(Te) + 1

)
K1

(
g(Te)
2

)
+

(
eg(Tl)−g(Te) − 1

)
K0

(
g(Te)
2

)] , (C15a)

[

(
Te, Tl

)
F

]2
= m∗ℏ𝜔L

e22
F
𝜏m

(
Te, Tl

)
𝜏𝜀

(
Te, Tl

) = 2NL

(
Tl
)2
g
(
Te

)2
3𝜋

eg(Te)
[
eg(Tl)−g(Te) − 1

]
× K0

(
g
(
Te

)
2

)[(
eg(Tl)−g(Te) + 1

)
K1

(
g
(
Te

)
2

)
+

(
eg(Tl)−g(Te) − 1

)
K0

(
g
(
Te

)
2

)]
. (C15b)

Appendix D: Calculation of

electrical injection

In this Appendix we calculate the LTP generation rate by

a thermalized, non-degenerate electron gas, described by

the distribution in Eq. (C9). As described in Appendix C this

electronic temperature can be related to the electronic drift

velocity.

The rate at which electrons with wavevector k⃗ emit an

LTP of in-plane wavevector q in branch j, while exchanging

out-of-plane momentum k′ is given by

Γ∓
q, k⃗,k′, j

= 2𝜋ℏneAL|𝜅q,k,k′, j|2
× 𝛿

(
𝜀k,k − 𝜀k∓q,k′ ∓ ℏ𝜔LTP

q, j

)
f
k⃗
(Te), (D1)

where the ∓ refers to emission (+) and absorption (−) of
a LTP, respectively. Integrating over the incident electronic

wavevector k⃗ we derive the total rate at which all electrons

emit LTPs in branch j with in-plane wavevector q

Γ∓
q, j

=
∑
k′, k⃗

Γ∓
q, k⃗,k′, j

= AL2

(2𝜋)4 ∫
dk′

∫
dk

∫
d2kΓ∓

q, k⃗,k′, j

= ℏAL2 ne
Nc ∫

dk′
∫

dk
∫

d2k|𝜅q,k,k′, j|2
× e

−
𝜀
k⃗

kBTe 𝛿
(
𝜀k,k − 𝜀k∓q,k′ ∓ ℏ𝜔LTP

q, j

)
. (D2)

We account for linewidth broadening of the LTP modes

by using, instead of the Dirac’s delta, the Lorentzian density

of states from Eq. (A18).
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