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Abstract: Efficient electrical generation of mid-infrared
light is challenging because of the dearth of materials with
natural dipole-active electronic transitions in this spectral
region. One approach to solve this problem is through
quantum-engineering of the electron dispersion to create
artificial transitions, as in quantum cascade devices. In this
work we propose an alternative method to generate mid-
infrared light, utilizing the coupling between longitudinal
and transverse degrees of freedom due to the nonlocal opti-
cal response of nanoscopic polar dielectric crystals. Polar
crystals support sub-diffraction photonic modes in the mid-
infrared. They also support longitudinal phonons, which
couple efficiently with electrical currents through the Froh-
lich interaction. As we have shown in previous theoretical
and experimental works, these two degrees of freedom can
hybridize forming longitudinal-transverse polaritons. Here
we theoretically demonstrate that longitudinal-transverse
polaritons can be efficiently generated by electrical cur-
rents, leading to resonant narrowband photonic emission.
This approach can therefore be utilised to electrically gener-
ate far-field mid-infrared photons in the absence of dipole-
active electronic transitions, potentially underpinning a
novel generation of mid-infrared optoelectronic devices.

Keywords: electroluminescence; Frohlich interaction; sur-
face phonon polaritons.

1 Introduction

Surface phonon polaritons (SPhPs) are hybrid light—-matter
excitations formed from the coupling of free-photons to
optical phonons in a polar dielectric crystal [1, 2]. They are
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highly promising for mid-infrared nanophotonics because,
like plasmons in the visible, they are morphologically
dependent sub-diffraction excitations. This means they are
largely tuneable [3—8] and have great potential in any appli-
cation which benefits from a strong electric field such as
sensing [9], nonlinear optics [10-12] or near field imaging
[13, 14]. Novel properties of hyperbolic SPhPs [15-21] allow
for great flexibility in the design of mid-infrared SPhP based
devices compared to systems operating in the visible [22].
Moreover SPhP resonances are derived from the lattice
phonons, and do not require a high electron density allow-
ing them to have significantly narrower linewidths than
mid-infrared plasmonic alternatives [23].

In the field of optoelectronics [24] a key proposed
application of SPhPs is in mid-infrared thermal emis-
sion. Through Kirchhoff’s law their intrinsically narrow
linewidths allow for the design of narrowband thermal
emitters with directional and spectrally tuneable emission
[25-28]. Despite these impressive results thermal emitters
run on spontaneous emission from the thermally oscillating
charges of the polar lattice and cannot achieve substantial
temporal coherence or lasing. Moreover, the only way to
enhance emission is by increasing the device temperature
which leads to large short wavelength emission and dimin-
ished efficiency in the target spectral range.

Resonant electrical injection would solve these prob-
lems but materials do not typically have strong interband
transitions in the mid-infrared and optoelectronic devices
operating there have to rely on artificial electronic transi-
tions, created through bandgap engineering [29-31].

Recent works in surface phonon polariton physics have
suggested a solution to this problem.

While longitudinal and transverse excitations are
orthogonal and thus non-interacting in bulk linear polar
crystals, in systems with broken translational symmetry
they are able to hybridise through common boundary condi-
tions on the electrical and mechanical fields. This effect was
recently demonstrated in a study of hybridization between
transverse SPhPs localised in 4H-SiC nanopillar resonators
and zone-folded longitudinal optical (LO) phonons [32]. The
resulting excitations were termed longitudinal-transverse
polaritons (LTPs): a reference to the hybrid nature of their
electric field and to the resulting anti-crossing in the modal
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dispersion around the LO phonon frequency. Our theory is
a version with retardation of Ridley’s one [33-35], in which
the role of interface polaritons is played by SPhPs and the
role of hybridons by LTPs. The inclusion of retardation in
our theory allows us to describe nanostructured systems
in which light can be outcoupled by arrays of defects [36].
Importantly, the longitudinal polarization field of the LO
component can couple directly to charge currents transiting
through the lattice. The electrical generation of localised
phonons in polar nanolayers has been studied previously in
the context of both optical [35, 37-39] and acoustic phonons
[40]. It is known to lead to measurable effects such as
velocity saturation in semiconductor devices [41, 42]. It has
also previously been predicted that coherent generation of
localised LO phonons could be possible in GaN quantum
wells [43, 44].

In this Paper we explore the idea that the unique hybrid
nature of LTPs can allow them to be utilised as intercon-
nects between electronic and photonic degrees of freedom
in optoelectronic devices. We develop a transparent the-
ory of LTP-driven Frohlich scattering in a planar device,
calculating the efficiency of SPhP emission relative to the
thermal case. We demonstrate that electrically excited emis-
sion is possible; suggesting that LTP interconnects could be
widely useful in optoelectronic devices operating across the
mid-infrared.

2 Overview

Polar crystals support short-wavelength LO phonons. These
are dispersive, meaning their frequency is a function of
wavevector . (k) Longitudinal phonons are characterized
by a curl-free polarization field, V X P = 0, which in bulk
implies P is parallel to the propagation vector k,sok X P =
0, as illustrated in Figure 1a. Optical phonons at the surface
of a polar crystal can also couple to photons, forming sub-
diffraction optical modes termed surface phonon polaritons
(SPhPs), which exist in the Reststrahlen region between the
lattice longitudinal and transverse optical phonon frequen-
cies. In this spectral window a polar crystal is character-
ized by a negative dielectric function and responds like
a metal to external electromagnetic fields. In local optical
theories the polarization field of SPhPs is almost everywhere
divergence free, V - P = 0, excepting the interfaces of the
polar material. In this Paper we refer to SPhPs as trans-
verse excitations, signifying that their polarization field
and complex wavevectors are orthogonal in each medium
(k - P = 0), as schematically shown in Figure 1a. SPhPs are
purely transverse because local optics parameterizes the
transverse dielectric function of the polar lattice with only
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Figure 1: Overview of SPhP-LO phonon coupling and electrical
generation. (a) Comparison of the polarization field P for a longitudinal
optical (LO) phonon and a transverse surface phonon polariton (SPhP). In
the former the polarization field is parallel to the wavevector k, while in
the latter it is orthogonal to it. (b) Illustration of strong coupling between
LO and SPhP modes. Energy is passed coherently at frequency €2
between the two degrees of freedom, leading to the formation of a
hybrid LTP mode. (c) Diagrammatic sketch of how the coupling between
LO phonons and SPhPs can dress the Frohlich interaction between
electrons and LO phonons, leading to a resonant interaction between
electrons and LTPs.

the zone-center k = 0 phonon frequencies, neglecting dis-
persion of, and energy transport in, the optical phonon
branches. As we demonstrated in a recent series of publi-
cations, which allowed us to quantitatively reproduce pre-
viously unexplained experimental data [45-49], accounting
for the optical phonon dispersion leads to a nonlocal the-
ory of polar optics analogous to that in plasmonic systems
[50-54] in which LO phonons and SPhPs interact through
shared electro-mechanical boundary conditions. In large
resonators the effect is an increased non-radiative damping
[45] as propagative phonons leach energy from the SPhP, but
in nanoscale systems the interaction can become coherent.
In this regime energy passes multiple times between LO
phonons and SPhPs before dissipating so the two modes
can no longer be considered distinct. Instead they are best
understood as a hybrid excitation, termed longitudinal-
transverse polariton (LTP), illustrated in Figure 1b, whose
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electric field is a linear mixture of each component. The
crossover point between these regimes occurs where the
thickness of the polar medium approaches the longitudinal
phonon propagation length in the material and a discrete LO
phonon spectrum emerges. At this limit an appreciable frac-
tion of LO phonons excited at the edge of the polar crystal
are able to transit the layer before decaying non-radiatively,
allowing their energy to recycle into SPhPs.

Longitudinal phonons can be excited by electrons pass-
ing through a polar crystal. Charged electrons perturb the
ions of the crystal lattice from their equilibrium positions.
This emission of LO phonons, named after Frohlich, is one
of the leading dissipation channels for Ohmic losses and is
illustrated by the upper diagram in Figure 1c. In a system
supporting LTPs the emitted LO phonons can convert energy
into SPhPs, and following the scheme in Figure 1b this leads
to a dressed Frohlich interaction in which electrons reso-
nantly emit LTPs, illustrated in the lower diagram Figure 1c.
As SPhPs can couple to the external environment through
nanophotonic elements, emitting radiation in the far-field,
this mechanism is able to act as an interconnect between
electronic and photonic sub-systems, allowing injected elec-
trical currents to radiate photons in the far-field.

In this Paper we study the simple example of an LTP
interconnect consisting of a thin polar film of thickness d
embedded in a bulk material with dielectric constant e,
sketched in Figure 2 [47]. For simplicity we calculate the
modes of our device considering infinite lateral extent. We
consider the polar layer to be cubic silicon carbide (3C-SiC),
characterized in the local limit by the Lorentzian dielectric
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Figure 2: Sketch of the device studied in this paper. SPhPs supported by
a polar layer of thickness d and dielectric function € in a cladding
semiconductor with dielectric constant e, are excited by application of a
voltage across the film. The SPhPs are then emitted at a rate proportional
to their photonic fraction.
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where @, = 973 cm™! is the zone-center LO phonon fre-
quency, wy = 796 cm~! is the zone-center TO phonon fre-
quency, y = 4 cm™! is the non-radiative damping rate, and
€, = 6.521s the high-frequency dielectric constant [55]. The
cladding is taken as silicon (Si), characterized by the dielec-
tric constant €, = 11.71.

The polar layer supports a SPhP mode at each interface
which is uncoupled in a thick film. When d approaches the
skin-depth of the SPhP they begin to hybridize forming two
polariton branches, one with frequency below the uncou-
pled mode frequency, and one with frequency above [56].
In this work we concern ourselves with the high-frequency
SPhP whose frequency is close to the zone-center longitu-
dinal phonon frequency [57]. In Appendix Al the complex
frequency of this mode is derived in the local-response-
approximation, where the dispersion of the underlying
phonon modes of the lattice is disregarded. In Figure 3a we
plot the local density of states which describes the SPhP
dispersion
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in which (ogp is the SPhP frequency as a function of in-
plane wavevector ( for a layer thickness d = 2 nm. At small
wavevectors the mode is in the epsilon-near-zero (ENZ)
regime [58, 59] where the SPhP phase shift over the film
thickness is negligible, and the frequency lies near the zone-
center LO phonon frequency w;, indicated by the black
dashed line in Figure 3a. At large wavevectors this is no
longer the case, the SPhPs on each interface of the polar
layer begin to decouple and the mode red shifts toward the
asymptotic SPhP frequency of the bilayer which it reaches
when q is sufficiently large that the SPhPs on each interface
no longer overlap. The real modal frequency %{wflp} is
indicated by the green dash-dotted line. Note that for sim-
plicity in Figure 3 and for the remainder of this Paper we
ignore the lower energy SPhP mode. This excitation, whose
small-wavevector dispersion begins at e approaches the
same asymptotic frequency from the low-wavenumber side
in the large wavevector limit.

A thin film whose thickness approaches the LO phonon
propagation length also acts as a Fabry-Pérot resonator
for LO phonons, leading to the appearance of a discrete
spectrum of longitudinal modes with quantized modal fre-
quencies

O =/} = Bl +E2). ®

in which n&€N labels the discrete phonon branch,
B =153%x10° cms~! is the LO phonon velocity in the
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Figure 3: Density of states and modal dispersions for a 3C-SiC film of thickness 2 nm characterised by Eq. (1), sandwiched in a Si cladding (e, = 11.71).

In panel (a), representing the prediction of a local theory, the black dashed li

ne shows the bulk LO phonon frequency w, and the dot-dashed green line

the local SPhP dispersion wf{*’ (Appendix A1). In panel (b), representing the prediction of a nonlocal theory, the black dashed lines shows the localised
LO phonon frequencies cofl.n and the dot-dashed green lines the LTP frequencies a)(LIT;’ In both panels blue solid lines mark edge of the light-cone in the

cladding.

low-wavevector quadratic regime [45, 60] and the quantized

out-of-plane wavevector of the nth localised phonon mode
is given by

£ = @2n—-Dx

n d ‘

The factor 2n — 1 here ensures only LO phonons with
equal parity to the high-frequency SPhP branch are con-
sidered, as in the symmetric structure under considera-
tion only these modes are coupled. The remaining phonon
modes couple to the low-frequency SPhP and are not consid-
ered in this Paper.

In the full nonlocal problem the transverse and lon-
gitudinal electromagnetic fields in the waveguide must be
calculated simultaneously. As the standard Maxwell bound-
ary conditions on the transverse components of the electric
and magnetic fields leave an under-specified problem this
requires the application of additional boundary conditions.
We have previously derived the appropriate additional con-
ditions on the mechanical fields in the polar layer con-
sidering continuity of the nonlocal Poynting vector, which
accounts for energy carried in both the electromagnetic and
mechanical fields, across each interface [45]. This imposes
continuity of the lattice displacement field X and the normal
component of the lattice stress tensor 7. Note that in this
work we ignore TO phonon modes in the polar material,
an approximation we previously demonstrated was valid
in SiC because of the large LO-TO splitting [47]. In this limit
the problem is over-specified and it is not possible to utilize
all the additional boundary conditions, we choose to apply
the Pekar—Ridley condition [61] X = 0 at the interfaces of
the polar film. Under these approximations it is possible

@

to derive the analytic expression for the LO-SPhP coupling
frequency [48]
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The LO-SPhP coupling is mediated by interactions
between the two excitations at the surface of the polar layer,
meaning it is highly sensitive to the time the LO phonon
takes to propagate across the film. For this reason it is dimin-
ished in thicker films, and for modes close to the zone-center
LO frequency where the phonon group velocity is small.

For a 2nm 3C-SiC film we observe two localised LO
modes in the spectral window under study, illustrated by
the n =1 and n =2 dashed black lines in Figure 3b. The
LTP modes are linear superpositions of the underlying SPhP
and LO phonon modes coupled at frequencies given by
Eq. (5), whose eigenfrequencies can be derived explicitly by
Hopfield diagonalization [62] as discussed in Appendix A2.
The complex LTP frequencies are given by w]‘f}’ where j
labels the discrete polariton branches. The total number of
LTP branches is equal to the number of bare modes: one
greater than the number of localised LO phonons. We find
three modes: an almost dispersionless upper polariton w >
oy, (j = u), a middle branch (j = m) sandwiched between
the localised LO frequencies and a lower polariton branch
(j = D which tends to the ENZ modal frequency at large
in-plane wavevectors. The multimode analogue of Eq. (2)
is plotted in the colormap Figure 3b, while real modal fre-
quencies 9‘{{ w‘(f}l? } are shown with dash-dotted green lines
and marked by the relative value of .
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The nonlocal physics which leads to LTP formation can
be understood considering the dispersion of the LO phonon
branch in the lattice. Away from the zero-wavevector I"
point the band red-shifts. At each frequency the LO phonon
mode has a unique wavelength, calculable from the disper-
sion relation, and when an integer multiple of this wave-
length fits within the polar film a Fabry—Pérot mode forms.
These discrete modes couple to the SPhP, leading to the
altered dispersion in Figure 3b. The wavevectors of the
three localised modes participating in the coupling satisfy
the resonance condition in Eq. (4).

The process of LTP-driven electrically excited emission
sketched in Figure 1 has many moving parts which must
be taken into account to correctly model the conversion of
electrical to photonic energy. Electrons are driven by exter-
nally applied voltages and can radiate LTPs which can then
either decay radiatively emitting photons into the far-field
or non-radiatively. To arrive at a fundamental and intelligi-
ble understanding of the potential of LTP interconnects for
the design of mid-infrared optoelectronic devices we keep
the full microscopic complexity of the LTP physics and make
important simplifications to the description of the couplings
to the external environment:

I.  We do not utilize a self-consistent out-of-equilibrium
many-body theory of the electrical transport [59].
Instead we consider an electron gas at thermal equilib-
rium with a well-defined temperature T, described by
a Maxwell-Boltzmann distribution

3 o—€3/ksTe

fE(Te) =8¢

VoN(T) ©

where N, (T,) = 4 [ "’Z:EZT E ] % is the density of states in
the conduction band, # is the degeneracy factor in the
conduction band, V is the electronic quantisation vol-
ume, K is the three-dimension electron wavevector and
€y is the electron energy. In Appendix Cwe consider the
balance between electron energy and drift velocity in
the thermalized electron gas, demonstrating that both
the drift velocity and applied electric field between the
device contacts can be uniquely determined using only
the temperature T, and carrier density n, of the gas.
In all calculations presented in this Paper the electron
density is taken to be n, = 10'® cm?. This density is cho-
sen low enough not to significantly perturb the SPhP
resonances [60] and to allow us to consider the gas
to be non-degenerate, removing the need to consider
Pauli blocking in the outgoing electronic states (see
Appendix C).
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II. LTPs in the system are below-light-line excitations. An
outcoupling mechanism must be introduced in order
to allow them to radiate in the far-field. We will not
evaluate a specific extraction grating or prism geome-
try, as here our aim is to provide a general evaluation
of the efficiency of the underlying emission mechanism.
A good estimate of the level at which an LTP is able to
couple to the far-field can be obtained by considering
how photon-like the mode is. The effective photon pop-
ulation is given by the LTP population times its photonic
fraction, equal to the ratio of the group velocity to the
speed-of-light in vacuum

Eqj=—2h ()

In this model polaritons with vanishing group
velocity, in the flat-band region of the LTP dispersion,
have a vanishing coefficient £ ; as they are essen-
tially just localised LO phonon modes decoupled from
the SPhP. Those in regions near anti-crossings achieve
instead a finite & ; from their SPhP component and
for suitably small values of the wavevector they can be
extracted using standard and relatively efficient grat-
ings or prisms.

We are now able to formulate a rate equation for the
LTP populations N ; in the presence of both thermal and
electrical pumping

X LTP [ o/TH LTP

Ny = 7P [NTUT) = Ny | + TN, . T, @)
where yLT]P defined in Appendix A2 is the branch- and
momentum-resolved LTP damping and

FLTP(N T, = r+ AT+ Ny ) —

@.)° Ly TNy O)

is the term describing LTP emission and reabsorption by the
electron gas, depending on hoth the electronic temperature
T, and the LTP population. The emission (+) and absorption
(—) coefficients are defined in Appendix D. When the lattice
is at equilibrium with the electron gas the LTP population
remains stationary, implying that FLTP(NTH(T) T) = 0. We
do not mark explicitly the dependence upon the electron
density n,, but both 1":; ].(Te) and Fq’ ].(Te) are linearly pro-
portional to it. In Eq. (8) we also introduced a finite lattice
temperature T, to account for thermal LTP occupation, with
equilibrium thermal distribution

AP !
TH(y — @ \_
NqJ.(T)_ lexp( kT > 1] .

(10)
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The population in the steady-state N, a
given by

j=0is therefore

)/LTPNTH(TI) + F+ (T)

q.J
YL +
q,j + Fq,j(Te) L q,j(Te)

N;fj(Te, )= (1D

We also introduce a related quantity, the spectral
steady-state population, which allows taking into account
the finite linewidth of the LTP resonances. This relates to the
branch-resolved population through

NS (@0, T, Ty) = N3,(To, Ty) 9 (), (12)

in which pLTP(a)) is the density of LTP states at wavevector
qin branch j at frequency w. This density is modeled as a
Lorentzian and is defined in Appendix A2.

Note that our rate-equation does not account for Joule
heating of the phonon reservoir. Although in a realistic
device the temperature of the electronic sub-system T, and
of the lattice T, would evolve toward equilibrium over time,
describing this process is beyond the scope of this Paper as
the dynamics would be device- and operation-dependent.

3 Results

LTP-driven electrically excited emission is the result of two
chained processes: incoupling from electronic current to
LTP modes and subsequently outcoupling to the far-field.
The former depends on the density of initial and final states
within the electron gas, and is enhanced at moderately large
wavevectors where the polariton is phonon-like but the
transferred wavevector is not sufficient to prohibit phase-
matching. This differs from a thermal excitation which only
varies according to the modal frequency and the corre-
sponding Bose—Einstein population N;ZI.(TI) at the temper-
ature of the crystal lattice.

We are now in a position to estimate the efficiency of
the LPT interconnect by comparing it with the same device
operated as a thermal emitter. To simulate thermal emission
we consider the system at the equilibrium device temper-
ature T, = T, = 600 K, a temperature typical for SiC-based
thermal emitters [28]. For the electrically excited emission
we consider instead a fixed electronic temperature T, =
1000 K, a temperature chosen to have electrons propagating
near their saturation velocity (Appendix C), and three differ-
ent lattice temperatures: T; = 0, 300, and 600 K. The results
corresponding to the first value represent the intensity of
purely electrically excited emission, allowing us to estimate
its intrinsic efficiency when compared to the purely thermal
process. The results corresponding to the second and third
values provide an estimate for the populations expected
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in actual devices operating at room temperature and high
temperature, respectively.

In the left column of Figure 4 we plot the steady-state
LTP populations per unit frequency from Eq. (12) in the case
of purely thermal (a), purely electrical (T; = 0 K) (c), room
temperature (T; = 300 K) (g) and high temperature (T, =
600 K) (h) operation.

In the thermal case all regions of the dispersion are
similarly populated: because the Reststrahlen region is rel-
atively narrow the thermal occupancy N(E(T,) varies slowly
over the plotted region. For the purely electrical incou-
pling (c) LTPs are instead far more likely to be generated
in the spectral region near to the zone-center LO phonon
frequency w; . Electrical, finite temperature results (g, h) are
intermediate between the previous two: while the dominant
emission remains the electrical one near to the LO fre-
quency, additional thermal radiation leads to an increased
emission into the lower polariton branch. In the right col-
umn of Figure 4 we plot instead the steady state photon
population for the same parameters that is we multiply
the results in the left column by the corresponding photon
fraction from Eq. (7). We can see how large photonic com-
ponents are generated in the smaller wavevector regions,
specifically in high-dispersion regions below the polariton
stopbands. Note that the photonic populations in this figure
go to zero near to the light-line, in the region where the
underlying LTP group velocity is near-zero.

Regardless of the extraction mechanism used to emit
LTPs to the far-field, both electrical and thermal emission in
the same mode would be extracted with the same efficiency.
Moreover, the wavevector region g ~ 107, well resolved in
Figure 4, only requires standard micrometer-sized gratings
for outcoupling. This figure thus provides the main result of
this paper, demonstrating that the LTP interconnect we pro-
pose can emit more than standard narrow-band SPhP-based
thermal emitters [28], while greatly reducing the energy
dissipated outside the narrow region of interest.

In order to proceed with the quantitative comparison
between electrical and thermal emission, we consider the
figure of merit black

Ny (T, T)

T 13
NE (T4, Ty 13)

Mi(Te T1, Tg) =

which is the in-plane momentum ¢ and branch j resolved
ratio between electrically excited emission with electronic
temperature T, and lattice temperature T;, and purely ther-
mal emission at the equilibrum device temperature T,. In
Figure 5 we plot the branch resolved values of 11(1) as a
function of electronic temperature T,, with the m plane
wavevector fixed to ¢ = 10’ m~, for a 2 nm active region,
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Figure 4: Comparison of LTP and photonic steady-state populations generated by thermal and electrical processes. In the first column we plot the LTP
density, while in the second column we plot the photonic density, obtained by multiplying the LTP density by the photon fraction & ; from Eq. (7). The
first row (a, b) shows data obtained considering purely thermal emission, obtained setting both the lattice and the electronic temperatures to the
same equilibrium device temperature T, = T, = 600 K. The other three rows show instead data obtained considering electronic temperature

T, = 1000 K and lattice temperatures equal to 7, = 0 K(c, d), T, = 300 K (e, f), and 7, = 600 K (g, h). Other parameters as in Figure 3.In all panels the
blue-solid line indicates the light-cone edge in the cladding, and the dot-dashed green lines indicate the real LTP frequencies. Note that the color in the
figure has been saturated to allow the thermal and the much larger electrical populations to be plotted on the same color scale.
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Figure 5: Figure of merit r]f;)j from Eq. (13), as a function of the electronic
temperature T,, evaluated at fixed in-plane wavevector g = 107 m~", for
active region of thickness 2 nm, device temperature T, = 600 K, and
lattice temperatures T, = 0K (a), T, = 300 K (b), and T, = 600 K (c). For
each temperature the figure of merit is plotted for each polariton branch,
with reference to the dispersion in Figure 3 these correspond to the
lower (green squares), middle (red diamonds) and upper (purple
triangles) polariton branches.
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equilibrium device temperature T; =600K and T; = 0K
(@), T; = 300 K (b) and T; = 600 K (c). As the electronic tem-
perature increases, the magnitude of ;1(1)]. increases and the
electrically excited emission becomes éubstantially larger
than the thermal one.

As already seen in Figure 4 the majority of electrical
generation happens into the upper-polariton branch (pur-
ple triangles) and middle-polariton branch (red diamonds),
which are spectrally close to the zone-center LO phonon fre-
quency wy, thus causing little dissipation outside a specific
and narrow frequency region and improving the energy
efficiency of the process when compared to the broadband
thermal dissipation. At finite values of T; (Figure 5b and c)
the figure of merit for the middle- and upper-polaritons is
slightly enhanced because of the additional thermal emis-
sion. In the lower polariton branch (green squares) the elec-
trically excited emission is instead much smaller due to the
strong spectral separation between w; and the polariton
frequency [48], and at finite T, it is largely dominated by the
thermal component.

The second figure of merit we explore is the internal
quantum efficiency, that is the number of photons emitted
by a single electron propagating through a single layer given
by black

L 04T T T
V(T, T)nA 7

(14)

”(2) (Te) — Z
qQj

in which v(T,, T;) is the drift velocity, related to both the
temperature of the lattice T; and of the electron gas T, as
described in Appendix C, n, is the electronic density, and
A is the device in-plane area, which cancels from the final
result. In Figure 6a we plot nf{z’)j as a function of electronic
temperature for a 2 nm active layer operating at T, = 0K
(green squares), T; = 300 K (red diamonds), and T; = 600 K
(purple triangles). When the electronic temperature grows,
more LTPs are generated in the system, even if the growth
is sublinear due to the increase of electronic group veloc-
ity v(T,, T;) with the electronic temperature, as electrons
spend less time in the active region. At finite T, the 7@ is
suppressed near the equilibrum value T, = T;, where the
sum in Eq. (14) vanishes. The asymptotic behaviour T, >
T, is unaffected by the finite temperature of the lattice. In
Figure 6b we plot the same quantity as a function of the
active layer thickness at fixed electronic temperature T, =
1000 K for each lattice temperature, showing a saturation
of the efficiency for thicker layers in which nonlocal effects
decrease as shown in Eq. (5). The maximal quantum effi-
ciency is of the order of 10~ per nanometric layer. Super-
lattice structures can be used to increase the total emission
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Figure 6: Figure of merit #®. In panel (a) we plot it as a function of the
electronic temperature T,, for an active region of thickness 2 nm. In
panel (b) we plot the same quantity as a function of the thickness for a
constant electronic temperature 7, = 1000 K. Results are plotted for
lattice temperature 7, = 0 K (green squares), T, = 300 K (red diamonds)
and T, = 600 K (purple triangles). Dashed lines in panel (a) mark the
three lattice temperatures, at which the respective electrical LTP
generation vanishes.

efficiency, while being much more robust to imperfections
and easier to fabricate that those required for quantum
cascade devices.

4 Conclusions and perspectives

In this work we have investigated a novel method of mid-
infrared light-generation, exploiting the intrinsic optical
nonlocality of polar nano-devices. Utilising longitudinal-
transverse polaritons (LTPs) as interconnects between the
microscopic degrees of freedom of a polar lattice and the
far-field, we have demonstrated sizeably improved narrow-
band emission efficiency is achievable when comparing to
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equivalent thermal mid-infrared emitters. We illustrated
this using a simple, high-symmetry system in order to pro-
vide an unbiased assessment of the fundamental process
of electrical LTP generation. An optimised device could uti-
lize more complex geometries, as a channel waveguide or
nano-resonator to spatially restrict LTP excitation, and to
manipulate generated LTPs, but our aim in this paper is to
demonstrate the fundamental efficiency of a novel emission
channel and we leave device optimization for future works.
We hope our results will open the way toward an experi-
mental observation of LTP-driven electrically excited emis-
sion and from there to a novel generation of mid-infrared
optoelectronic devices.
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Appendix A: Local and nonlocal
spectra

A1 Local response of thin polar films

In this work we consider a trilayer waveguide, consisting
of a polar film of thickness d sandwiched between semi-
infinite positive dielectric cladding layers, occupying the
region —d < z < 0. The system is translationally invariant
in the xy plane. Modes of the system are characterized by
a 2D in-plane wavevector q, and out-of-plane wavevectors

given by
a=/Iql? - c?/,
a. = /Iql2 — e/,

respectively, in the film and the cladding, where € (¢,) is the
dielectric function in the film (cladding) and c is the speed
of light in vacuum. In all the Paper in-plane 2D vectors are
bold, and three dimensional vectors are indicated either list-
ing the in- and out-of-plane components in squared paren-
thesis or, when notationally clear, with an arrow symbol.
The full 3D wavevector of the mode in the layers is thus writ-
ten as [q, a], and similarly we write the full 3D coordinate
[r, z].

(AD)
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Each interface between the polar film and cladding
supports a surface phonon polariton with electric field com-
ponents at the upper and lower interfaces given by [48]

-

23 [q _idl] a(ridgiar 5 < g
aec |q|. ac i
E‘uq =<1 l’ M —a(z+d)eiq-r —d<z<0,
’ al’ @]
_% l’ M e—aCZ—adeiq-r 7> 0’
aec |q| ac i
@€ [q _ 4] aort)-atgar < _g
aec |q|. ac i
Eiq= A9} orgiar -d<z<0,
’ lq”  a ]
_E l’ M e—aczeiq-r 7> 0’
aec |q| ac i

L

(A2)
respectively. Denoting by Z = [0, 1] the unit vector along z,
the magnetic field in each case can be found utilizing the
Maxwell-Faraday equation as

. i i e (z+d) 7z < —d,
I—-}u’q = l;)—; ZX li, 0[eldrd g—a(z+d) —-d<z<0,
L q| e—acz—ad z>0,
' ) ) eac(z+d)—ad z7< —d,
ﬁll’q:w;—e _z'xi,O eldr] paz —-d<z<0,
cal ldl e %’ z>0,

(A3)
which have been constructed for continuity at the film
interfaces z = 0, —d. The modes of the waveguide are linear
superpositions of those on each of its interfaces with electric
field

Eq=UE, +LE, (A4)

where U, L are coefficients describing the contribution of
the SPhPs at either interface. After applying boundary con-
ditions on the tangential component of the electric field
E, - r we recover the following dispersion relation

a.€ —ad a.€
——1)e 1+ =
(aec > aec U — 0 (AS)
%€ 4 <ace - 1) e-ed |\ 0o/

ae,

q

ae,

This equation is satisfied when the determinant of the
matrix is zero, which leads to the transcendental dispersion
relation

1—rle~2ed =, (A6)
in which r is the Fresnel reflection coefficient
p= %~ &€ (A7)

ae. + a.e

DE GRUYTER

After manipulation Eq. (A6) can be recast in the form
[48]

2 — tanh(ad) [e"‘c + GC“] =0. (A8)

€0 €,
Although in the thin film limit Eq. (A8) can simplify
dramatically [58] in this work we cannot utilise this approx-
imation as it breaks down at the larger wavevectors under
study. The SPhP frequency wflp utilised in the main body
is found by numerical solution of Eq. (A8). This yields a
complex modal frequency as a function of wavevector (¢,
which leads to the loss rate
M _~J sp|l _7
Vg = {“’q } T
in the wavevector region under study [58], a consequence of
strong confinement in the polar layer. Note that we neglect
the frequency and polarization dependence of the phononic
loss rate.

(A9)

A2 Nonlocal response of thin polar films

The nonlocal optics of the system can be derived semi-
analytically considering the dispersion of LO phonons in the
polar film [48]. In the typical quadratic model of phonon
dispersion [45] the dispersive LO phonon frequency takes
the form

oy’ =of - fi[lql* + g, (A10)
where w, is the frequency at zero-wavevector, § = [q, qz] is
the 3D wavevector and f; is a characteristic velocity. In a
planar layer enforcing Pekar boundary conditions, as when
the Reststrahlen bands in the layer and the cladding do not
overlap, this leads to discrete, localised LO phonon modes
with frequencies

@k, =\ o — F(E2+ |qP2).

where &, is the quantized out-of-plane wavevector defined
in Eq. (4) in the main text.

The SPhP mode considered in Appendix Al and these
localised LO phonons interact through shared electro-
mechanical boundary conditions [45]. In the trilayer under
study we previously derived the analytical form of this
coupling €, ., given by Eq. (5) [48]. Using this result the
interacting system can be described in the rotating wave
approximation by the quadratic Hamiltonian

FLTP _ SPAT A L pf %
H = hZ{a)q gy + Z [wq,an,an,n
q n

(A11)

(A12)
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in which &; (lA)ILn) are the annihilation operators for the
SPhP (nth LO phonon) mode, obeying bosonic commutation

rules
soat]
[aq,aq,] = Oqq>

[bq bl ] = B Ot

The quadratic bosonic Hamiltonian in Eq. (A12) can
be diagonalized using a multimode Hopfield—Bogoliubov
diagonalization into a spectrum of longitudinal-transverse
polaritons (LTPs) [48] with frequencies a)’(f]?

(A13)

HLTP thLTPd' d\

qj qj @7 (A14)

described by creation operators

dyj = g g + D P jubyn
n

in which j indexes the polariton branch, and the Hopfield

coefficients ag j, By, preserve the unitary nature of the

transformation

(A15)

lag 12+ DBy jnl* =1 (A16)
n
This ensures that the resulting LTP modes are also
bosonic; whose creation and annihilation operators satisfy
the commutation relation

[dtu’d ] = gy 6>

and j indexes the different LTP branches.
The homogeneous lineshape of the jth LTP branch can
be written as a Lorentzian

(A17)

LTP
LTP (1) = 1 Yqj

a2 LTP 2 LTP 2’
w—-—wr) + ;
< q.j ) (yq,J )

(A18)

where the homogeneous LTP linewidth can be written from
Eq. (A15) as a weighed sum of the different involved scatter-
ing channels as

YEP =y + lag (v = 7). (A19)

A3 Quantization of the LO mode

In this Paper we aim to describe interactions between elec-
trons and localised LO phonon modes through the Frohlich
interaction. To do this we require the Hamiltonian model-
ing the interaction of the two systems. Given an electronic
charge density operator g we can write

Hip = = / ¢rdz [, 23,2 +jr.2) - A, 2)]. (420)
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where ¢ is the electric potential arising from LO phonon
modes, i is the electric current density operator and A
is the electromagnetic vector potential. The first term of
this Hamiltonian describes the interaction between an elec-
tronic charge and the induced LTP charge in the lattice,
while the second describes interaction between electronic
currents and the electromagnetic tranverse fields. The for-
mer one is dominant for low-frequency currents and in
this Paper we will consider only this component, using the
Frohlich Hamiltonian

ﬂm- =— / d?r dz j(r, z)<;z§(r, Z). (A21)

In a local model the discontinuity in the out-of-plane
electric field at the boundaries of the polar layer leads to a
finite induced charge which, due to the transverse nature
of the electric field, is unable to spread into the interior
of the polar layer. In our nonlocal model instead, charge
induced at the edge of the polar layer is able to spread into
the interior, manifesting as a source of LO phonons. This
charging is entirely encoded in the LO phonon fields and
their corresponding scalar potential.

The electric potential at fixed in-plane wavevector q in
branch n with out-of-plane wavevector &, given by Eq. (4) is
proportional to

Ug (T, 2) = sin|€, (z + d/2)] €™ (A22)

To parameterize the Hamiltonian Eq. (A21) it is neces-
sary to quantize the phonon field. This can be carried out
from the corresponding electric field

Eq,n(r, 2) = =By Vg,(r, 2), (A23)

where B , is a constant to be determined by the quantiza-
tion procedure. Utilizing the results of Refs. [49, 63], where
we developed a quantum theory on local and nonlocal polar
media,

€@ 2 [0? — w2 -
hZé‘B /dgl‘ qn[ T] 2|Eqn|2
. ,
I L AL ]

(A29)

=sgn (a)’&n )

where a)q is the mode frequency, given in this case be
Eq. (3). For the Fabry—Pérot modes under study, considering
that &, = nz/d we can find

3 2 2 2
/dr|Eqn| |Bqn|2ﬂ2[ ol

with A the device in-plane area. After substituting Eq. (A25)
back into Eq. (A24) we recover the quantization constant

(A25)
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(A26)

in which, compared to the local case wa Q= O, We acquired

a dispersive Frohlich constant
Cl)L 2
€hn = €072 (A27)
wL - wT
Finally, we can write the second-quantized form of the
LO phonon potential

.2 = Y Byatign(r.2)| By + 5| (A28)
q.n

which parameterizes the LO phonon contribution to

Eq. (A21).

Appendix B: Electron gas

Electrons interact with LO phonons through the Frohlich
Hamiltonian in Eq. (A21). Introducing the fermionic annihi-
lation operators ¢; with 3D momentum k= [k, k|, describ-
ing electrons in the conduction band, the free electron
Hamiltonian is given by

(BD)

where the free-electron energy is e ; = h?| k[2/2 m* and m*
is the effective electron mass in the cladding region. We
consider a Si cladding region and we will thus consider the
conductivity effective mass m* = 0.26m,, where m, is the
free-electron mass. The electronic creation and annihilation
operators obey Fermionic anti-commutator rules

{enét t=5; (B2)
and have free plane-wave wavefunctions of form
1 ikr ik
v (r,z) = ——eXTel®, (B3)
, VIA

where L is the electronic quantization length along z and
A the sample surface. By inverting Eq. (A15) to write the
LO phonon operators in terms of the LTPs we can rewrite
Eq. (A21) as

5 @)
HFIO A Z h’Kq,k,k’ ]5(k k - q)
k.q.k',j
RS N gy
x |elend: +€ dy ). (B4)
in which k = [k, k] is the incoming electronic wavevector
and k' = [K', k'] is the outgoing one. Integrating over the
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in-plane component of the out-going wavevector k' we put
the Frohlich Hamiltonian in the form

Heg = ) Mgy [ Ceipade i+ Mé;dq,j ., (BS)

kK q,j

clearly describing the dressed Frohlich process in Figure 2c,
where the electron-LTP coupling coefficient has form

(B6)

e -
Kqkij = 3 2BanPajnSia
n

with the electron—phonon overlap integral given by
R
Bt = 1 /_ &z eK) sin[g (z+d/2)].  (BD)

Note that in systems containing free charges the dielec-
tric function differs from Eq. (1), and is instead given by

o —w@+iy) n jeZ 1

2

L

2 * T’
T eom]. w(w+ 1)

(B8)
;. — o(w + iy)

e(w) =€

(o)
j=e,h

where I is a characteristic free carrier scattering rate, n;
is the carrier density, m;f is the carrier conductivity effec-
tive mass and j refers to electrons e, or holes h. In SiC the
relatively high frequencies of the Reststrahlen band mean
that even at large charge densities the shift in dielectric
function is minimal [64]. Deviations are most severe near
to w;, where the Lorentz dielectric function vanishes. Note
that the predominant effect is a small blue shift in SPhP
frequencies. This would actually be beneficial for the effect
we aim to describe, as the SPhP mode would move toward
w;, where electron—phonon coupling is strongest.

Appendix C: Thermalized electron
model

Electrons interacting with the polar nanolayer considered
in this Paper are assumed to propagate under the influence
of an applied electric field polarized perpendicular to the
nanolayer. An average electron propagates at the drift veloc-
ity, which is limited through momentum relaxation with the
crystal lattice. The lattice also provides energy relaxation
channels, which reduce the mean electronic energy and
prevent the electron gas from overheating. We describe the
electron gas as thermalised at a certain electronic temper-
ature T,. In the following we calculate closed relationships
between the applied field, the drift velocity, and the temper-
ature of the electron gas.
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We are able to write the balance equations between
electronic energy € and drift velocity v as [65]

de hw

¢ — _pfy— L C1
ot eV 7. (T, T})’ (Cla)
ov e %

—=—_— -, Cib
at m* 1, (T, T)) (C1b)

where £ is the scalar electric field, 7, (T,, T;) (z,,(T,, T;)) is
the energy (momentum) relaxation time dependent on both
the electron and lattice temperatures. In the steady state
these equations can be directly solved

hw
ey = ———L | (c2)
7. (T, T))
eE ___ v (€3)

me~ 1,(T,,T)’

allowing the electric field or drift velocity to be eliminated

m*v? = thM, (C4a)
7.(T,, T))
et hawy (Cab)

m*  7,(T,, 7). (T..T)

Although it is not strictly possible to define a relaxation
time for the polar interaction, a consequence of the inelastic
and non-velocity-randomising nature of the interaction [66],
it is possible to approximate an energy and momentum
relaxation time utilizing Fermi’s golden rule. Following Con-
well [67], the probability per unit time of a carrier scatter-
ing out of state with momentum k = [k, k| with exchanged
momentum § = [q, q] is given by

1

2 . o
7(T) =% ['”“”MVL—1I71!m|k,NL>|2
k i

x 5(5%#1 . th>+ (K = G, Ny + 1 Flpes | K, N2

X‘S(f}_z{_gﬁ"'hak)]’ (C5)
in which the first term is the transition probability from
phonon absorption, the second is from phonon emission.
Here N (T;) is the equilibrium phonon population in the
LO phonon modes which are assumed to be non-dispersive.
If we assume spherical bands we can compute the inverse
scattering time directly as

1 _ 2e& [NL(T,) sinh‘l(

(7)) famee,

T+ (N,(T) +1) smh-1< FE_
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where & is the bulk Fréhlich matrix element

(o))

_ m*é*hw;, [ 1 1 ]
€ st '

e& =
7 anhnze,

in which e, (ey) is the high-frequency (static) dielectric
constant of the lattice and €, is the permittivity of free-space.
The inverse scattering time r;l(Tl) is not a relaxation
time, and as discussed above one cannot be strictly defined
for the polar interaction. We can however define the rate of
energy change for an electron with momentum k due to the

polar interaction, given by
de i _ th

E PI - T?(TZ) ’

(C8)

Pseudo-relaxation times can then be calculated by
taking the distributional average of this rate of energy
change. Assuming the electron gas is described by a
Maxwell-Boltzmann distribution at electronic temperature
T

e
83 e~cilkale

f%(Te)

. 3/2
where N, (T,) = 27 ['”2 ’f;lzTe] is the density of states in the
conduction band, n, is the electronic density and # is the
degeneracy factor in the conduction band. Integrating over

the distribution we find the energy pseudo-relaxation time
1 1 dey
7 (T, T;)  haoy \ dt |,

- V nm*zth e&
X \/@K()(g(zn) >

where the angular brackets are an average calculated over
the distribution in Eq. (C9), the K; are modified Bessel func-
tions, and we defined the dimensionless quantity g(T) =
hoy [kgT.

To find the momentum pseudo-relaxation time we start
instead by calculating the change of electronic wavevector
in the transport direction Z for a carrier with momentum
k= [k, k|, given by

e8(T)-8(T)/2 _ p8(T.)/2
es(h) —1

(C10)

dk _ 2« P k
) [KICK+ G, N, = 11 s | N P

X 5(%;{ - th) — k(K = G Ny+ 1 Mg K, Ny )2

X5<£§_ﬂ —&p+ ha)L)]

i (C11)
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As for the previous case we can integrate analytically,
yielding the result

dk:—e;’f[NL{ 1+@—hw

TEL

. i [1—
X sinh ( o, } + (N, + l){
+thsinh_1( l—th>}].
€% £

Analogously to the energy relaxation rate we can find
the pseudo-relaxation time by integrating over the elec-
tronic distribution. To do this we need to assume the dis-
tribution function is drifted, as the gas propagates at drift
velocity v along Z. The zero-order spherically symmetric
term does not contribute, the first-order perturbation of the
distribution is

(C12)

Tm(Tes Tz) _ 3ha)L
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i v 873 e~i/keTe

(1)
fe (Te) = kBT LA N(T,)"’ (€13

and integrating over the distribution yields the momentum
pseudo-relaxation time
1 1 /d(nk)
(T, ) ~ mrv\ dt |
3/2
_2e&N (T) g(Te) o812

3V \2mthaoy
(es)-509 4 1), <g(2T)>

+ (ests) 1)k, (g(;‘))] (C14)

We thus arrive at our results for the drift velocity and
the field intensity

00— )

~ m 7, (T, T,

 Voameg(T

m*ho;,

[ () o ()]

(C15a)

&, (T, 7))t (T,.T)

2 2
_ W (1) 8(Te) ir, [estm-str _1)

3

()0 (40) s e ()]

Appendix D: Calculation of
electrical injection

In this Appendix we calculate the LTP generation rate by
a thermalized, non-degenerate electron gas, described by
the distribution in Eq. (C9). As described in Appendix C this
electronic temperature can be related to the electronic drift
velocity.

The rate at which electrons with wavevector k emit an
LTP of in-plane wavevector q in branch j, while exchanging
out-of-plane momentum k' is given by

F _ 2
Fq, Ek/,j = ZﬂflneAL|Kq,k‘k,yj|

X 5<£k,k Exrqi T hcoLTP> fi(T), (@

where the F refers to emission (+) and absorption (—) of
a LTP, respectively. Integrating over the incident electronic

wavevector k we derive the total rate at which all electrons
emit LTPs in branch j with in-plane wavevector q

F _ / 2 F
rq’]._k/z;(quk,] (27[)4/dk /dk/d kI?,

= hAL2Re /dk’/dk/d K| Kq oo 12

X e kBTe 5<Ekk £k+q K + thTP)

(D2)

We account for linewidth broadening of the LTP modes
by using, instead of the Dirac’s delta, the Lorentzian density
of states from Eq. (A18).
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