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Abstract: Among the family of transition metal dichalco-

genides, 1T-TaS2 stands out for several peculiar physical

properties including a rich charge density wave phase dia-

gram, quantum spin liquid candidacy and low temper-

ature Mott insulator phase. As 1T-TaS2 is thinned down

to the few-layer limit, interesting physics emerges in this

quasi 2D material. Here, using scanning near-field opti-

cal microscopy, we perform a spatial- and temperature-

dependent study on the phase transitions of a few-layer

thick microcrystal of 1T-TaS2. We investigate encapsulated

air-sensitive 1T-TaS2 prepared under inert conditions down

to cryogenic temperatures. We find an abrupt metal-to-

insulator transition in this few-layer limit. Our results pro-

vide new insight in contrast to previous transport stud-

ies on thin 1T-TaS2 where the resistivity jump became

undetectable, and to spatially resolved studies on non-

encapsulated samples which found a gradual, spatially

inhomogeneous transition. A statistical analysis suggests

bimodal high and low temperature phases, and that the
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characteristic phase transition hysteresis is preserved down

to a few-layer limit.
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1 Introduction

Transition metal dichalcogenides (TMDs) have returned to

the forefront of condensed matter research in recent years,

bearing the potential for novel physics and a plethora of

applications [1–8]. Among these, quasi two-dimensional

material 1T-TaS2 (T: triclinic) remains both one of the most

intensely studied TMDs [9–37] and a system that continues

to elude fully satisfactory answers. It has been shown to be

superconducting under pressure [12, 36, 38–40] and has no

long range magnetic ordering down to millikelvin temper-

atures, pointing to the possibility of being a quantum spin

liquid [9, 17, 33–35]. Among these, one of the most notewor-

thy features is its rich charge density wave (CDW) phase

diagram, which itself may contribute to its overall peculiar

properties [10–13, 26–32, 41, 42]. Of note, a sharp jump in

resistivity concomitant with a low temperature CDW phase

transition has been linked to a Mott insulating phase.

The generally established and agreed upon charge

density wave phase diagram (Figure 1A) is an initial tran-

sition from an incommensurate charge density wave to

nearly commensurate charge density wave phase (ICDW

and NCCDW, respectively), which occurs above room tem-

perature near 350 K [12–14, 26, 43–47].With decreasing tem-

perature, a nearly commensurate to commensurate CDW

(CCDW) phase transition occurs, with the transition tem-

perature around 200 K in bulk samples of 1T-TaS2. In the

bulk, each CDW phase transition has been related to a cor-

responding first-order transition in the resistivity, typically

attributed to the formation of the hallmark of the 1T-TaS2
CCDW phase, where

√
13 ×

√
13 Star-of-David clusters are

formed by 13 Ta atoms. In each cluster, 12 Ta atoms are

paired, with the spin of the remaining unpaired atom being

the foundation for its quantum spin liquid candidacy [9, 17,

23, 33, 35]. In addition, the corresponding strong electron
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Figure 1: Experimental configuration of thin encapsulated 1T-TaS2. (A) Schematic of CDW phase transitions upon temperature variation from high

(red) to low (blue) temperature and its inverse. (B) Schematic of s-SNOM experiment on 1T-TaS2. A laser of 𝜆0 = 900 cm−1 was used. (C) Optical image

of measured sample. The 1T-TaS2 flake is encapsulated by a layer of graphene and thin hBN, indicated by the dashed white box. (D) AFM image of the

encapsulated 1T-TaS2 sample. The 1T-TaS2 flake is 5–7 nm thick.

correlation is posited to drive the concomitant Mott insula-

tor phase. Despite the many confirmations of bulk 1T-TaS2’s

properties, questions about the electronic and structural

phases in 1T-TaS2 with decreasing thickness remain.

2 Results and discussion

Here, we use scattering type scanning near-field optical

microscopy [48–51] (s-SNOM) operating at cryogenic tem-

peratures down to 50 K to study the temperature-driven

phase transitions of a thin flake of 1T-TaS2 on a microscopic

scale in real space. The spatial resolution of such mea-

surements is largely determined by the radius of the AFM

tip, on the scale of ≈20–30 nm in our measurements [49].

This allows us to probe the phase transition on the natural

length scales of thermodynamic transitions, in contrast to

the atomic scale of other scanning probe techniques, and

with far higher resolution than far-field diffraction limited

techniques. Thus, spatial variations that are otherwise inac-

cessible can be observed, as well as the correlation with

the physical topography of the sample. A schematic of the

experimental setup can be seen in Figure 1B. An incident

light with wavenumber 𝜆0 = 900 cm−1 is irradiated onto an

atomic force microscope (AFM) tip, resulting in a strongly

confined region of enhanced near-field, where the area is on

the order of the tip radius, allowing for a resolution beyond

the diffraction limit. The experiment is conducted in AFM

tappingmode, and the AFM topography is collected simulta-

neously with the near-field signal. The back-scattered near

field signal S is collected and demodulated at the tapping

frequency to isolate it from the far field background. All

data presented here have been demodulated at the third

harmonic.

Optical microscope and AFM topographical images of

the device are shown in Figure 1C and D, respectively. The

full heterostructure consists of a thin capping layer of 2 nm

hexagonal boron nitride (hBN) and monolayer of natural

graphene, encapsulating a thin layer of 1T-TaS2 of 5–7 nm

in thickness. As the AFM tip is on the scale of 20–30 nm and

is the primary limitation of our spatial resolution, the thin

encapsulation layer is highly unlikely to impact the spatial

resolution of our measurements [49]. A thick bottom layer

of hBN is used to provide stability and support the overall

stack. Importantly, it also isolates the device and protects

it from defects on the SiO2/Si substrate. The 1T-TaS2 flake is

mechanically exfoliated in a glovebox to prevent oxidation

of the air unstable surface [13, 52, 53]. Due to the multi-step

nature of the device fabrication, impurities are unavoid-

able. In order to mitigate these, contact cleaning using an

AFM operating in contact mode was employed. The result

of the contact cleaning can be clearly seen when comparing

the topographic image of the sample before contact cleaning

(Figure 2A) and after contact cleaning (Figure 2B). The lower

part of the sample has a reduced number of impurities, and

there is a line of ‘dirt’, which has been pushed to the edge
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Figure 2: Contact cleaning of sample. (A) AFM topography of sample. (B) Same as (A), after a portion of the sample has undergone contact cleaning.

The cleaned impurities are clearly seen to be pushed to the edges of the area, marked by the dotted white box.

of the cleaned area, marked in Figure 2B by a white dashed

box. All measurements are focused on this area, in regions

which are free of defects.

To investigate the metal-to-insulator transition, the

sample was slowly cooled from 295 K down to 50 K in

our home-built cryogenic SNOM system, during which spa-

tial near-field scans (Figure 3B–F, Figure S1) were collected

along with the topography (Figure 3A) at a series of temper-

atures. The samples were cooled at a rate slower than 0.5

K/min and allowed to stabilise for several minutes before

measurement to account for thermal drift and for the sam-

ple temperature to equilibrate. The signal was demodu-

lated at the third harmonic S3 to separate out the near-field

component. To perform temperature-dependent analysis,

all near-field signals were normalised to the temperature-

independent near-field signal in the region marked by

orange in the topography in Figure 3A. It has been estab-

lished that in SNOMmeasurements, metallic regions appear

bright, while insulating regions appear dark (yellow and

blue, respectively, in this colour scheme) [18, 54]. A visual

inspection indicates that the sample is fullymetallic at 295 K,

indicating the expectedmetallicity at room temperature. An

abrupt transition occurs near 140 K,where the lower (clean)

region becomes insulating. The remainder of the sample

undergoes a spatially gradual transition until the sample

becomes fully insulating at around 50 K.

We perform statistical analysis on the lower clean

region of the sample (marked by the blue polygon in

Figure 3A). This is to exclude the extrinsic effect of defects.

The results are presented in Figure 4. A histogram is plot-

ted for the normalised values of the near-field scans mea-

sured at each temperature (see Supplementary Figure S1 for

near-field images at additional temperatures) and plotted

as a function of temperature (Figure 4A). A clear bimodal

distribution is observed, indicating a first-order transition,

with one cluster centred around 0.90 of the normalisa-

tion value, and another around 0.66 of the normalisation

value.

As can be visually observed in the spatial measure-

ments (Figure 3, Figure S1), this abrupt jump in the distri-

bution occurs at 140 K, with a change in the contrast of

S3metallic/S3insulating ≈ 1.36 over a 5 K change in temperature

(Figure S1). Although there is some variation in peak loca-

tion, no clear temperature dependence is observed. The

peak locations of the normalised values for each tempera-

ture are plotted in Figure 4B. The cooling curve, for which

the histogram is plotted in Figure 4A, is marked in red. Mea-

surements taken upon heating of the sample are marked

by the blue squares (the near-field images can be found in

Supplementary Materials, Figure S2). Dashed lines are pro-

vided as a guide to the eye. The metallic and insulating val-

ues of 0.90 and 0.66, respectively, are obtained by a linear fit

to the peak values above and below T = 140 K, respectively.

While experimental constraints prevented a complete mea-

surement of the thermal cycle, enough heating data were

obtained to show that the sample remains insulating to at

least 170 K, indicating temperature-dependent hysteresis in

this thin flake of 1T-TaS2.

The clear separation of the peaks in the bimodal distri-

bution and hysteresis of the near-field signal in the cleaned,

isolated region of our microcrystal contrasts with some ear-

lier works on thin samples of 1T-TaS2 [14, 26, 55]. However,

transport measurements capture a global resistivity of the

entire sample and cannot account for spatial variations.

Furthermore, some of these earlier works of thin 1T-TaS2
were done on samples exposed to air, while measurements

done on samples protected from ambient conditions have

shown that this transition can persist in the few layer
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Figure 3: Temperature-dependent near-field images. (A) AFM topography of the sample. (B–F) Near-field amplitude images of 1T-TaS2 as the sample

was cooled, using a laser of 𝜆0 = 900 cm−1. There is a noticeable evolution in the normalised near field signal Snorm(1T-TaS2) as 1T-TaS2 transitions from

its metallic (bright/yellow) to insulating (dark/blue) phase near T trans = 140 K. The normalisation is performed relative to the bright arc in the middle of

the sample, as marked by the shaded orange area in (A). Statistical analysis in this work is performed on the shaded blue region in the lower right. The

complete series of temperature-dependent near-field images can be found in the Supplementary.

limit [13, 24]. We attribute the difference in our results to

the sample encapsulation and the local measurement being

performed only on the clean region, minimising the effect

from defects. The protection of the sample from substrate

defects may also be important, as the phase transition in

1T-TaS2 can be affected by substrate properties [56, 57]. We

would like to highlight that in contrast to Ref. [18], the sam-

ple studied here is fully isolated from the substrate, in addi-

tion to being thinner. Notably, Ref. [18] found a temperature

dependent shift in the peak centre of Snorm(1T-TaS2), partic-

ularly in the metallic state, as well as temperature regimes

forwhich both themetallic and insulating state co-existwith

a smooth transition boundary between the regions. From

the spatial near-field images, (Figure 3A–E, Figures S1 and

S2), a significant spatial variation of the transition exists

in regions with more defects. To contrast with the results

in the cleaned, isolated region where there was no spatial

inhomogeneity, in Figure 4C, we performed a similar statis-

tical analysis as in 4B, albeit in this defect-rich region, and

excluding the defects themselves (red regions in inset). In

the temperature region between ≈110 K and 130 K, we can

observe the existence of both the metallic and insulating

mode (dashed box shaded in blue). Furthermore, there is a

temperature-dependent shift in the spectralweight between

these two modes (see Figure S7), reminiscent of what was

observed in Ref. [18]. It is less clear if there is any temper-

ature dependence of the metallic and insulating peaks in

Snorm. However, due to uncertain nature of the defects, we

can only hypothesise that external effects, potentially strain,

can lead to inhomogeneous mixed phases.

Recent out-of-planemeasurements of electrical proper-

ties also suggest significant in and out of plane anisotropy.

Such effects may be negligible in bulk and bulk-like samples

but cannot be ignored in thin samples such as the one stud-

ied here. Indeed, a recent transport andDFT+U study lends

support to the importance of dimensionality [24]. The lower

transition temperature is in line with thickness dependence

studies, which found that decreasing the layer number
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Figure 4: Statistical analysis of near-field response on 1T-TaS2. (A) Histogram of Snorm(1T-TaS2) with decreasing temperature showing a clear bimodal

distribution. A sharp transition occurs around T trans = 140 K with no intermediate state. (B) The peak values of Snorm(1T-TaS2) as a function of

temperature, with the metallic (insulating) state marked at 90% (66%) of the normalisation value. (C) Similar to (B), but with red regions as marked in

the inset, in the region of the sample with visible defects. The shaded blue dashed box indicates the temperature region where both phases coexist.

The solid line marks the transition temperature in the clean lower region. Inset: AFM topography as in Figure 3A, but indicating sampled area in upper

left, shaded in red.

decreases the transition temperature of the NCCDW-CCDW

transition [24, 26]. Simulations of the expected near-field sig-

nal contrast between themetallic and insulating states were

performed following Ref. [18, 50]. While a contrast ratio

of S3metallic/S3insulating ≈ 1.36 was observed in measurement,

the simulation reflected a lower contrast with a calculated

ratio ≈1.1 (Figure S4 and inset). A previous study using a

similar theoretical simulation on a moderately thicker sam-

ple also finds an underestimation of the near-field contrast

at a different measurement frequency [18]. This discrep-

ancy may be a further reflection of physical parameters

the calculation is unable to capture, such as a distortion of

the lattice structure, or modification of the band structure

[24, 27].

To summarise, we clearly observe the metal-to-

insulator transition corresponding to the NCCDW-CCDW

transition and the associated hysteresis. By using high

resolution near-field optical measurements, we can min-

imise the extrinsic effects of defects by focusing on a local,

clean area. Encapsulation of the sample from both ambient

and substrate conditions further reduced defects. The

observed sharp transition is in contrast to previous works

where it was either not observed or a more gradual

increase in the resistivity was measured [13, 14, 26, 55].

Furthermore, the study presented here provides an

accurate spatial mapping of the metal-to-insulator

transition of thin-flake 1T-TaS2. The difference in spatial

variation with temperature evolution and the bimodality

of the insulating and metallic states in this work further

highlight the need to consider the role of sample encap-

sulation and sample thickness [18]. Such spatial variation

can account for the broader and less pronounced transition

of the resistivity difference in transport measurements

between the NCCDW and CCDW state in thin samples

[13, 14, 26]. Future work studying thickness dependence

of locally clean samples with nanoscale resolution can

help clarify the role of dimensionality and interlayer

interactions.
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3 Methods

3.1 Device preparation

The device is an all van der Waals stack consisting of a few-layer

1T-TaS2-graphene heterostructure encapsulated by hexagonal boron

nitride (hBN) on the top and bottom. Thin TaS2 is air-sensitive and

is, therefore, exfoliated inside a nitrogen-filled glovebox to prevent

any degradation and oxidation. A thin flake is mechanically exfoliated

using Nitto tape onto a 285 nm SiO2/Si substrate. The hBN and graphene

is mechanically exfoliated onto the 285 nm SiO2/Si substrate using

scotch tape under ambient conditions and loaded into the glovebox for

device assembly. The device is stacked using the dry-pick up technique.

The thin top hBN is picked up using a polydimethylsiloxane (PDMS)

stamp coated with a polymer polycaprolactone (PCL). Next, this top

hBN is used to pick up the graphene, 1T-TaS2 and bottom hBN stack.

The top and bottom layers of hBN protect the 1T-TaS2 from disorders,

defects from both the substrate and environment and also prevent

oxidation and degradation. After picking up the entire stack, the device

is transferred onto a 285 nm SiO2/silicon chip by melting the PCL poly-

mer at 75 ◦C. The stack is then cleaned by immersing the stack in

hot acetone at 75 ◦C for 30 min with a subsequent acetone and IPA

rinse.

3.2 Near-field measurements

All measurements were performed using a home-built cryogenic scat-

tering type scanning near-field optical microscope based on a tapping-

mode atomic force microscope in an ultra-high vacuum environment

on the order of 10−10 Torr. A commercial Arrow™ tip was used, with

tapping frequency near 75 kHz. A CO2 laserwas usedwith incident light

frequency of 900 cm−1, focused onto the AFM tip. The back-scattered

light was collected with pseudo-heterodyne interferometric detection.

The detected signal was demodulated at the third harmonic to obtain

the near-field signal byminimising the background contributions of the

scattered light.
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