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Abstract: Solid-state defects acting as single photon sources

and quantum bits are leading contenders in quantum

technologies. Despite great efforts, not all the properties

and behaviours of the presently known solid-state defect

quantum bits are understood. Furthermore, various quan-

tum technologies require novel solutions, thus new solid-

state defect quantum bits should be explored to this end.

These issues call to develop ab initio methods which

accurately yield the key parameters of solid-state defect

quantum bits and vastly accelerate the identification of

novel ones for a target quantum technology applica-

tion. In this review, we describe recent developments

in the field including the calculation of excited states

with quantum mechanical forces, treatment of spatially

extended wavefunctions in supercell models, methods

for temperature-dependent Herzberg–Teller fluorescence

spectrum and photo-ionisation thresholds, accurate calcu-

lation of magneto-optical parameters of defects consisting

of heavy atoms, as well as spin-phonon interaction respon-

sible for temperature dependence of the longitudonal spin

relaxation T1 time and magneto-optical parameters, and

finally the calculation of spin dephasing and spin-echo

times. We highlight breakthroughs including the descrip-

tion of effective-mass like excited states of deep defects and

understanding the leading microscopic effect in the spin-

relaxation of isolated nitrogen-vacancy centre in diamond.
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1 Introduction

Quantum information is physical [1]. Solid-state defect spins

are a conceivable platform to realize the elementary unit

of quantum information, i.e., quantum bits or qubits [2].

Two prototypical representatives are the phosphorus donor

(P-donor) in silicon and the nitrogen-vacancy (NV) centre

in diamond. From electronic structure point of view, these

two defects reside the opposite sides of the spectrum: the

P-donor can be described by the so-called effective mass

state with hydrogen-like Rydberg series of excitation ener-

gies split from the conduction band of silicon, which are

weakly localized wavefunctions, whereas the carbon dan-

gling bonds in NV centre create strongly localized orbitals

with deep levels in the fundamental band gap of diamond.

Kane proposed to apply P-donor spins as a qubit [3]. How-

ever, the read-out of the single spin in a controlled fashion

had been great challenge for relatively long time that could

be realized in a single-electron transistor device operating

at hundreds of millikelvin temperatures [4]. The read-out of

the single spin of diamond NV centre has been realised opti-

cally, i.e., optically detected magnetic resonance (ODMR),

whichwas the first optically read single defect spin in a solid

[5]. In this case, the readout and initialization of the electron

spin of diamond NV centre could be readily carried out

by optical means at room temperature. Recently, the single

electron spin electrical read-out via photo-ionised electrons

and holes has been realised for diamond NV centre which

is a hybrid scheme: photo-excitation is required for creat-

ing spin-dependent photocurrent from a single NV defect

and optical initialisation of the spin, and then the spin-

dependent photocurrent is observed to read the electron

spin state [6, 7]. The coherent manipulation of these elec-

tron spinswere realised electron spin resonance techniques

[8, 9]. The coherent control and readout of single defect

spins define the underlying defects as quantum defects, and

the quantum defect with its host material can be called as a

quantum-coherent material.

Since the discovery and realisation of these quantum

defects an intense research has begun to seek alternative

solid-state defect spins both in the experimental and theo-

retical fronts, which might have favourable properties for
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certain quantum technology applications [10, 11]. Recently,

data mining techniques with machine learning algorithms

have been spread at the theoretical fronts. The data min-

ing can be approached either towards the host materials

[12–14] or to extend this with creating defect structures

and calculating their key qubit parameters [15, 16]. In these

approaches, there are assumptions for selection ofmaterials

and defects that might be too restrictive and might lead

to overlooking important candidates. For instance, it was

assumed that the host materials should have wide band

gap with low density of nuclear spins, at least, for the

defect qubits alike diamond NV centre [10, 12]. However,

certain quantum technology applications such as quantum

communication does not require room temperature oper-

ation, and small-band-gap silicon has become a promising

platform to realize spin-to-photon interface with quantum

memory [11, 17–23]. One of the most promising platforms to

host qubits in two-dimensional (2D) materials is hexagonal

boron nitride (hBN) which has 100% nuclear spin abun-

dance but the coherence times of defect spins can be well

extended with using good control of these nuclear spins

[24–27]. Certainly, the selection criteria can be changed

based on these recent findings. Nevertheless, quantum-

coherent materials can only be interpreted together with

their defect qubits, thus selection of hostmaterials should be

followed by finding defects for which the electron spin can

be initialised and read-out with sufficiently long coherence

times. Calculation of the coherence times for any hypotheti-

cal defects, e.g., Ref. [13], could lead to misleading results in

certain cases where the spin density distribution and so the

strongest hyperfine interaction between the electron spin

andnearest nuclear spins characteristic for the actual defect

would strongly affect its electron spin’s coherence time [24].

The automatically generated defects are often selected from

the thermodynamically most stable ones [15, 16]. It has been

found that this selection may omit very important complex

defects realizing qubits, e.g., G-centre in silicon [28], which is

one of most promising qubit candidates in silicon. Further-

more, it has been shown for diamondNV-centre [29] that the

strongly coupled electron-phonon states are inevitable for

understanding the optical spin-polarisation of its electron

spin. These polaronic states are also usually ignored in these

databases. These examples clearly call for improving the

ab initio magneto-optical spectroscopy methods, in order

to increase the credibility and prediction power of these

databases.

Ab initio methods have significantly contributed to

understanding and control of diamondNVqubits and explo-

ration of alternative quantum defects which was summa-

rized in a recent review paper [30]. In that review paper,

the diamond NV qubit is thoroughly described including

the electronic structure and polaronic solutions and spectra

within Jahn–Teller theories, and the desiderata of the target

of computations and the developed computational meth-

ods are summarized in detail which are not perpetuated

here. We assume that the readers are aware of the basic

description of diamond NV-like qubits and the previously

implemented methods to compute their magneto-optical

properties which are the basis of further developments.

For instance, new findings have been reported for the

very basic property of this qubit such as the spin-lattice

relaxation (T1) time [31] which apparently demonstrates

that even themost studied diamond NV-centre has been not

fully understood to date. It is an immediate quest to further

advance ab initio methods, in order to accurately calcu-

late the excited states together with quantum mechanical

forces, the electron-phonon coupling and the basicmagnetic

parameters such as the zero-field-splitting between the elec-

tron spin’s levels (ZFS), or understanding the temperature

dependence of these parameters and the spin-lattice relax-

ation (T1) time, and the coherence time (T2) also as a func-

tion of spin bath around the target defect qubit. This paper

provides a comprehensive review about recent years ab

initio developments on solid-state defect spin qubits along

these directions.

We illustrate the advances of computational meth-

ods on various defects in solids: we shall discuss (i) deep

defects such as NV centre, silicon-vacancy centre and

nickel-vacancy centre in diamond, divacancy and vana-

dium centres in silicon carbide, and boron-vacancy in

two-dimensional hexagonal boron nitride; (ii) the shallow

excited states of deep defects such as the neutral silicon-

vacancy centre in diamond and various interstitial defects

in silicon; (iii) and shallow donors in silicon.

2 Computational methods

The ab initio investigation of solid-state defect qubits alike

diamond NV-centre or silicon P-donor requires full and

accurate description of the host material and the embedded

isolated defect. The photostability of the quantum defects

depends on the ionisation threshold energies, therefore

it is critical that the crystalline bands and the resonant

or localized defect states are computed at equal footing.

Green-function methods are principally ideal to represent

the topology of the problem, i.e., the embedded defect in a

perfect solid. However, practical implementations of Green-

function methods suffer from the consistent calculation of

quantum mechanical forces which is required to calcu-

late the ionic coordinates of the given point defect. As the
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geometry of the defect is highly decisive in their magneto-

optical properties, the supercell method is most often

employed to model the quantum defects which methodol-

ogy readily offers the calculation of quantum mechanical

forces based on the Hellman-Feynman theorem [30]. In this

review article, we focus on those method developments

and implementations which work within this formalism

because the supercell formalism guarantees the simultane-

ously accurate calculation of the ionisation threshold and

intra-defect optical transition energies. The ground state

properties are typically calculated by means of Kohn-Sham

density functional theory (KS DFT) [32], which can be a

starting point for the calculation of excited states. A natu-

ral choice for the basis set for supercell formalism is the

plane-wave basis which is combined by pseudopotential

or projector augmentation wave (PAW) methods (see Ref.

[33] and references therein). The computation methods of

the ground state thermodynamic properties of point defects

in solids within this formalism was already described in

detail in the literature (e.g., Ref. [34]) that can be applied

to the specific quantum defects [35]. In short, the quantum

defect’s local properties and associated parameters are com-

puted within plane wave supercell KS DFT methods, and

implementation based on these methods or relied on the

parameters obtained by these methods will be discussed in

the review paper.

3 Method developments and

results

In this section, we collect recent developments on ab initio

calculation of properties of quantum defects. We start with

the treatment of the excited states and geometries, and then

we continue with the discussion of the ionisation threshold

energies with the photo-ionisation spectrum, the supercell

treatment of shallow defect states, the zero-field-splitting

parameters, hyperfine parameters and gyromagnetic ten-

sor, and the spin-lattice relaxation T1 times as well as the

spin coherence T2 times. Although, it is unconventional to

start the discussionwith the excited states prior the descrip-

tion of finite size effects of supercells we decided to do

so because we shall consider the finite size effects of shal-

low excited states in the section of supercell modelling of

defects which requires description about the calculation of

excited states. We shall also show that accurate description

of the excited states is needed to calculate some ground state

related magnetic parameters such as the zero-field splitting

parameter.

3.1 Excited states

3.1.1 Following the topology of the problem: DFT+ CI

multiscale methods

The accurate calculation of the excited states is still under

extensive research. The popular many-body perturbation

method, GW + BSE (see Ref. [36] and references therein),

fails for the highly correlated singlet states of the diamond

NV centre [37, 38]. The highly correlated states may be

recognized of which many-body electronic wavefunction

(Ψ) can be genuinely described by two or more Slater-

determinants with significant weights. This may be quanti-

fied with the function of one-particle density matrix 𝜌̃. This

can be defined as 𝜌̃i j = ⟨Ψ|a†
i
a j|Ψ⟩ with the creation and

annihilation operators of single electrons i and j, respec-

tively. The degree of correlated electronic state (Λ) is then

Λ = Tr
(
𝜌̃− 𝜌̃2

)
= Tr (𝜌̃)− Tr

(
𝜌̃2

)
, (1)

as if and only if theΨ can be described as a single Fock-state

when 𝜌̃ = 𝜌̃2. Those cases are in particular pathological in

which double-excitation Slater-determinants appear with

relatively strong contribution (i.e., a†
i
a†
j
akal|ΨGS⟩ with the

ground state many-body wavefunction ΨGS) which is the

case for the so-called 1A1 state of the diamond NV centre

(see Figure 1) which plays an important role in the optical

spin-polarisation and read-out processes (see Ref. [30] and

references therein).

InKSDFT theory, thesemany-body states cannot be cap-

tured by the known exchange-correlation potentials (Vxc);

however, it provides a very good description for the host

materials and simple defect states, i.e., for which Λ = 0. In

general, the bands of the host crystal can be well described

by KS DFT method whereas the strong Coulomb interaction

between localized defect orbitals confined to a small place,

e.g., around a vacancy, represents a problem for KS DFT

method. The topology of the problem implies a method in

which the Coulomb interaction between the localized defect

orbitals is directly calculated, called configurational inter-

action (CI), which are in contact with the bath of itiner-

ant electrons that can be treated by KS DFT. This can be

considered as a multiscale problem where the interaction

between electrons are calculated with different precisions

in a single system. As we will see below the challenges are

to define the set of orbitals, often called “active space”, for

which the precisemethod should be applied (here, CI) and to

find an interface between the levels of different approaches,

here DFT and CI, which can produce self-consistent results.



362 — A. Gali: Theory of solid-state defect qubits

Figure 1: Defect levels diagramme. (a) Single-particle scheme of the
electronic structure of diamond NV centre. The spin-polarisation between
spin-up and spin-down electrons in the Kohn–Sham density functional
theory results in different levels for spin-up and spin-down orbitals which
are not depicted here but rather their average. VB and CB label valence
band and conduction band, respectively. The fundamental band gap of
diamond is 5.4 eV. (b) Many-body level structure of diamond NV centre.
The blue and red shaded areas show the ionisation bands excited from
the 3A2 and

3E states, respectively. In the bottom row the non-physical
picture is shown which often appears in many scientific papers.

Interfacing different levels of theory in a single system is a

common problem for all the multiscale methods.

By following the above mentioned topology of the

problem, the many-body Hamiltonian may be described as

Ĥ =
A∑
i j

teff
i j
a†
i
a j +

1

2

A∑
ijkl

𝑣eff
ijkl
a†
i
a†
j
alak , (2)

where 𝑣eff is the partially screened Coulomb-interaction(
WR

0

)
and the ijkl KS wavefunctions are within the active

spaceA. Partial screening is computed from all the KSwave-

functions except for the set of KS wavefunctions within A.

The definition of 𝑣eff includes contributions to the Hartree

and exchange correlation energies that are also included in

the KS DFT calculations for the whole solid. Exactly this is

the point where an interface between DFT and CI methods

should be developed which can be considered as a typical

problem for all the related electronic structure embedding

schemes called double counting (dc) error. Therefore, the KS

DFT Hamiltonian ĤKS
i j
, occurring in the first term in Eq. (2),

requires double counting correction tdc
i j
, i.e.,

teff
i j

= ĤKS
i j
− tdc

i j
. (3)

The methodology was first implemented by Bockst-

edte and co-workers within VASP code [39, 40] which was

called DFT + CI-cRPA method [41]. Here, CI refers to the

configurational interaction between the electrons in the

active space whereas constrained random phase approxi-

mation was applied to computeWR
0
[41]. In that implemen-

tation, Heyd–Scuzeria–Ernzerhof (HSE06) [42] functional

was appliedwhich includes a quarter of Fock-exchange (𝛼 =
25%) in the KS potential for the KS orbitals. To calculate tdc

i j
,

a heuristic approach was applied, i.e., the quarter of Fock-

exchange was used for the electrons in the active space.

This approach resulted in a very good agreement between

the computed spectra and the spectra derived from experi-

ments for diamond NV centre and silicon carbide divacancy

centres [41]. Later this treatment was also implemented to

the Quantum Espresso software package [43] and the CI

part of the Hamiltonian was also interfaced with a code

running on quantum computers [44]. The quality of present

quantum computers precludes to achieve accurate results

[44], thus the results achieved by classical computers will

be summarized below. The DFT+ CI multiscale method was

then rephrased to quantum embedding or quantum defect

embedding method but it is essentially the same with the

originally invented CI-cRPAmethod with the caveat that the

latter implementation used a full Hartree–Fock dc correc-

tion (HFDC), i.e., the exchange term was not scaled by the

fraction of the applied hybrid DFT functional [41, 44]. Ma

and co-workers also went beyond RPA (b-RPA) by taking the

exchange-correlation effects into account in the calculation

of WR
0
, and they applied it to diamond NV centre [44]. It

was found that b-RPA screening substantially modifies only

the 1A1 level referenced to the ground state energy with

respect to the results within RPA screening approach (see

Table 1). The origin of this effect is not explained and well

understood. Pfäffle and co-workers implemented a semiem-

pirical DFT+ CImethod [45]: they basically applied HFDC to

the DFT or GW quasi-particle (GWQP) levels in Eq. (3). The

screening was taken from the bulk diamond with an analyt-

ical formula developed for semiconductors which provided

the accuracy of the RPA method [46]. Resta found that the
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Table 1: The calculated electronic structure of diamond NV centre with using different types of DFT+ CI embedding methods. The ground state is 3A2
and all the levels are referenced to it with fixed ionic coordinates of the electronic ground state. The type of DFT functional is given: the DDH
functional provides 𝛼 = 17.8% Fock-exchange for diamond [44]. In HSE06 functional [42] 𝛼 = 25% was applied. The applied approximation for
calculatingWR

0 is either cRPA or goes beyond (b-RPA). Finally, the dc correction is either Hartree–Fock type (HFDC), or scaled with 𝛼 in the DFT
functional (𝛼FDC). The exact dc (EDC) correction is applied together with quasiparticle (QP) levels within self-consistent GW method (see text). The
experimental data are only estimates from PL spectrum and rate modelling of the observed decay rates (see Ref. [30] and references therein).

NV

HSE06 [41] HSE06 [49] DDH [44] DDH [44] GWQP [50] GWQP [50]

Exp.cRPA cRPA cRPA b-RPA cRPA cRPA

𝜶FDC HFDC HFDC HFDC HFDC EDC

1E 0.49 0.49 0.476 0.561 0.375 0.463 ∼0.40
1A1 1.41 1.39 1.376 1.759 1.150 1.270 ∼1.55
3E 2.02 2.06 1.921 2.001 1.324 2.152 ∼2.15

space-dependent dielectric screening only varies within the

range of nearest-neighbour distance of ions in semiconduc-

tors, if the origin is chosen to an ion in the crystal, with a

well-defined function and then it approaches the dielectric

constant of thematerial, 𝜀(0) [46]. Taking the hostmaterial’s

dielectric screening function for a defect might be too inac-

curate, in particular, for defects which contain vacancy as

no ion would “modulate” the dielectric constant of the host

material in the region of vacancy. Therefore, Pfäffle and

co-workers introduced a semi-empirical formula to modify

the dielectric screening function near the vacancy [45] of

diamond NV defect which they called “masked” solution. It

is unclear how the parameter in that formulawas picked up.

With the “masked” solution for the diamond NV centre they

obtained triplet optical transition close to the DFT+ CI-cRPA

solution [41] whereas the energy gap between the singlets

closely follows that of b-RPA screening with HFDC [44]. We

note that this method was further applied to the neutral

and positively charged NV defect in diamond. The optical

spectrum is known for the neutral NV defect in diamond

[47, 48] for which the ZPL energy results in 2.156 eV between
2E ground state and 2A2 excited state. Although, the order

of the many-body levels is consistent with the experimental

data by the semi-empirical DFT + CI method but the calcu-

lated energy gap for 2E ↔2 A2 transition is at 1.65 eV which

is disappointingly low. It is yet unclear what is the origin

behind the discrepancy.

In any embedding methods it is a crucial question how

to select the active space orbitals. The in-gap defect states

are per se localized, therefore, they are naturally involved

in the active space. However, defect states resonantwith the

valence band or conduction band may exist which are cou-

pled to the Bloch-states of the hostmaterial, thus they do not

appear as sharp resonances but are rather broadened. In

practice, the coupling strength and the width of broadening

depend on the size of supercell and k-point sampling of the

Brillouin-zone for the given supercell. For instance, it was

found that whereas the lowest energy spectrum of diamond

NV centre may converge relatively well for the minimal

active space taken from the in-gap defect orbitals but this

treatment leads to a serious inaccuracy for the isovalent

silicon carbide divacancy defect for which explicit involve-

ment of the resonant states in the valence band is neces-

sary to achieve converged results [41]. This result clearly

demonstrated that simplified Hubbard-U model with using

only the in-gap defect orbitals (e.g., Ref. [38]) is generally

insufficient for accurate description of the many-body elec-

tronic structure of quantum defects. In practice, an energy

region of about 3 eV around the Fermi-level was used to

pick-up the states for the active space with 512 and 576-atom

supercell models in the original study [41]. In later stud-

ies, the choice of the active space was further investigated

[49, 50]. Muechler and co-workers also implemented the

DFT + CI-cRPA method to the VASP code but they first

constructed Wannier wavefunctions [51] with preserving

the position of the in-gap defect levels which could maxi-

mally localize the defect wavefunctions including those that

are resonant with the host bands, and then the Wannier

orbitals were applied in Eq. (2). With this treatment the

results upon the number of orbitals in the active space

can rapidly converge [49]. Another possibility is to pick-up

the states based on localization of the KS orbitals that can

be simply quantified as LV
(
𝜓KS
i

)
= ∫

V⊆Ω
|||𝜓KS

i

|||2dV , where V
is a chosen volume including the defect, smaller than the

supercell volumeΩ. It was found that LV = 5% is needed to

obtain convergent results for the notorious 3E state which

corresponds to about 40 (30) states in the active space for

216-atom (512-atom) supercell model [50]. The 3E state is

notorious in terms of LV because a1 hole orbital is involved

in this state of which level lies close to the valence band

which leads to exchange-correlation coupling to resonant

states in the valence band. This is not the case for the 1E
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and 1A1 levels with very little contributions from the a1 hole

orbital, so they converge fast in this regard.

Another critical question in the embedding methods

is the treatment of double counting correction which has

been briefly considered above. In Hartree–Fock methods,

the double counting correction can be readily derived and

it is applied routinely in quantum chemistry. However, DFT

is applied to calculate the electronic structure of the ground

state in the supercell modeling of defects, and there is no

theoretical rationale to apply HFDC in this case. By apply-

ing hybrid DFT functionals, Fock-exchange is employed to

KS orbitals. By assuming a tiny contribution of the semilo-

cal exchange-correlation in dc correction, one may apply

𝛼FDC meaning that the corresponding fraction of the Fock-

exchange for the active space orbitals is employed. This

heuristic treatmentmay follow the idea of theDFT+U treat-

ment in which U is an orbital-dependent on-site correction,

and that is scaled by𝛼whenhybridDFT is applied [52]. How-

ever, hybrid DFT is still a functional of the electron density

and not the many-body wavefunction, thus this heuristic

treatment strictly cannot be justified.

Recently, Sheng and co-workers derived the dc correc-

tion for KS DFT with using the Green-function approach

[50] which might be motivated by the success of interfacing

KS DFT and dynamical mean field theory (DMFT) with the

same approach [53]. They assumed that the non-diagonal

terms of the self-energy coupling the active space and the

environment is negligible, and static approximation is used

for the G0 andW0. This results in

tdc = Vxc +WR
0
𝜌A − iGR

0
W0, (4)

where 𝜌A is the density matrix of the electrons within the

active space, and G0 and W0 are computed at the quasi-

particle energies (𝜖QP) of these electrons [50]. The exact

dc correction is called here EDC in which the quasipar-

ticle (QP) levels are solved self-consistently with calcu-

lating
∑

xc self-energy within GW method as 𝜖
QP

i
= 𝜖KS

i
+

⟨𝜓KS
i

|∑xc

(
𝜖
QP

i

)
− Vxc|𝜓KS

i
⟩. This makes the 𝜖QP results

almost independent from the applied DFT functional within

0.1 eV, it was either the semilocal Perdew–Burke–Ernzerhof

(PBE) [54] or the dielectric-dependent hybrid (DDH) [55]

functional. The results are summarized for diamond NV

centre in Table 1 where they applied both HFDC and EDC

corrections. They reported extremely lowenergy for 3E state

with HFDC which was not explained in detail [50]. The EDC

results are quite comparable to the genuine CI-cRPA result

with the heuristic 𝛼FDC correction, nevertheless, the good

agreement might be specific to diamond NV centre.

Sheng and co-workers applied the EDC method also

to the neutral silicon-vacancy (SiV) defect and their sis-

ter group-IV vacancy defects in diamond [50]. The ground

state of the defect is 3A2g which is a similar wavefunction

to that of diamond NV centre. However, the excited state

of the neutral SiV defect is highly complex with leaving

a hole in each double degenerate orbital which results in

three triplet states (3A2u,
3Eu,

3A1u). These triplet states are

highly correlated and they are also coupled by phonons via

product Jahn–Teller interaction [56, 57]. According to that

study, the product Jahn–Teller interaction leads to a strong

ionic relaxation upon excitation (≈0.3 eV), so the vertical

excitation energy of the optically allowed 3Eu state should

lie at around 1.6 eV above the ground state level. The EDC

calculation yielded disappointedly high energy for 3Eu at

2.161 eV when LV = 5% was applied [50]. We note that the

calculated excitation energies for the triplet excited states

do not converge monotonously with decreasing the value of

LV and their values are close to the desired energies with

setting LV = 20%. It is unclear yet what is the origin of this

behaviour.

Despite the remaining issues with the DFT + CI multi-

scale methods, this approach is very promising to calculate

the highly correlated defect states within supercell formal-

ism. The very important next step is to derive the quantum

mechanical forces which is then can be used to reoptimise

the geometry of the ground state and the excited states. This

is required to calculate the characteristic zero-phonon-line

energies and Debye–Waller factors of the defects which are

key parameters of quantumemitters. The big challenge here

is that the original derivation of the EDC method assumed

that the off-diagonal term of the self-energy coupling the

active space and the environment can be neglected but once

the forces are considered one has to take into account the

change of the character of the underlying KS wavefunction

self-consistently with the self-energy through the coupling

between the active space and the environment. In general, it

is a known problem in quantum chemistry CI methods that

the final results may depend on the initial single particle

wavefunctions if restricted active space is applied and the

underlying single particle wavefunctions are fixed at the

electronic ground state manifold. The DFT + CI multiscale

methods face to the same problem, principally.

3.1.2 Density matrix renormalization groupmethods: an

alternative multiscale method

Density matrix renormalization group (DMRG) was orig-

inally developed to describe one-dimensional quantum

models in solid-state physics with local interactions. The
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underlying mathematical framework, however, is not

restricted to models studied in condensed matter physics or

applications to molecular clusters but among many others,

it can be also used to study nuclear shell models, parti-

cles in confined potential, or problems in the relativistic

domain. The success of these developments relies on the

efficient factorization of interactions and the optimization

of the DMRG network topologies based on concepts of quan-

tum information theory leading to tremendous reduction in

computational costs (see Ref. [58] and references therein).

In particular, the factorization for themany-bodywavefunc-

tionΨ with L spatial orbitals reads as

|Ψ⟩ = ∑
(n)

C(n)
L∏
i=1

(
a†
i↑

)ni↑(
a†
i↓

)ni↓ |0⟩ (5)

with

C(n) =
L∏
i=1

A
(ni↑ni↓)

i
, (6)

where now the spin state (𝜎) is explicitly written by arrows

and n = (n1↑n1↓n2↑n2↓ … nL↑nL↓) where ni𝜎 ∈ {0, 1}. The
components of the state specific C tensor increase expo-

nentially with system size L scaling as 22L which becomes

untractable for few hundreds of electrons. However, the

dimension of the matrix product states Ai can be optimized

in DMRG approach, ADMRG
i

, truncated to a fixed manageable

bond dimension,M, that is, dim
(
ADMRG
i

) ≤ [M,M], i.e.,M ×
M tensor. IncreasingM, the precision of the approximation

is well-controlled approaching variationally the exact solu-

tion. In the DMRG protocol, the matrix product state matri-

ces are locally optimized and truncated by minimizing the

discarded entanglement between the left and right neigh-

bouring blocks of the matrix product state chain, obtained

from the reduced densitymatrix of the block. The algorithm

iterates through the matrix product state chain in a sequen-

tial order back and forth until reaching convergence.

In short, application of DMRG method on electron-

nuclei systems can be considered as a special wavefunc-

tion method that can be used to accurately calculate the

static correlation between electrons. Barcza and co-workers

extended this method to interface with DFT calculations of

quantum defects [58]. In this post-DFTmethod, the Coulomb

integrals of theKS orbitals are directly taken from the super-

cell DFT calculation in the electronic ground state manifold

which is post-processed by DMRG algorithms. Despite the

advantage of DMRGmethod, hundreds of KS orbitals cannot

be directly treated owing to the computational costs. There-

fore, an optimal selection of orbitals with tractable size is

needed which is responsible for the strong static correla-

tions. This was carried by the complete active space (CAS)

self-consistent field method which is well-known in quan-

tum chemistry (see Ref. [58] and references therein). The

CAS method classifies the set of orbitals to three categories;

that is, the so-called core and virtual orbitals are frozen to

the mean field level and filled with two and zero electrons,

respectively. The third class comprises of the so-called active

space orbitalswhich are populatedwith the rest of electrons

minimizing the energy. Accordingly, the virtual orbitals does

not play any role in the corresponding CAS Hamiltonian,

whereas the core electrons affect the electrons of the active

space through the Coulomb interactions, that is, the Hamil-

tonian of the active space reads

ĤCAS = Enuc + Ecore +
∑
i j

tCAS
i j

a†
i
a j

+ 1

2

∑
ijkl

Vijkla
†
i
a†
j
akal. (7)

The one-electron integrals of the CAS space, tCAS
i j

,

describe not only the kinetic energy of the electrons in the

active space and their attraction to nuclei but also their

interaction with the core electrons. Describing the electrons

in the active space with the DMRG method, which treats

exactly the electron exchange, the one-electron interactions

are written as

tCAS
i j

= ti j +
1

2

∑
c

(2Viccj − Vicjc) (8)

to treat the Coulombic effects of the frozen electrons on the

active space orbitals. In other words, this is a multiscale

method where the interface between the active space and

the environment can bewellmanagedwithinHartree–Fock

level. Here, the summation runs only on the indices of the

core orbitals (c). Finally, the additional energy contribution

of the core electrons is summed up in term Ecore, that is

Ecore = 2
∑
c

tcc +
∑
cc′

(
2Vcc′c′c − Vcc′cc′

)
. (9)

In practice, the active space is restricted to the most

important orbitals featuring strong correlation as was dis-

cussed for DFT + CI methods. Even though the method has

limitations to provide correct description of dynamic cor-

relations using the relatively small active space, it captures

static correlations with high accuracy providing valuable

insights into the low-lying energy spectrum and the essen-

tial structure and symmetry properties of the corresponding

electronic eigenstates. Note also that, contrary to DFT + CI

methods, the CAS Hamiltonian in Eq. (7) does not include

the KS energies explicitly but only the KS orbitals by con-

struction. Also, the absolute energies of the states computed

from the CASHamiltonian are not trivially comparable with
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counterparts obtained on the DFT level of theory due to

the different description of the exchange and correlation

effects.

The methodology was first applied to the negatively

charged boron-vacancy defect in hexagonal boron nitride

(hBN) [59]. Previous ab initio calculations predicted this

defect in hBN as a qubit [60] of which ODMR signal was con-

firmed in experiment [61] and has become a leading quan-

tum defect in two-dimensional (2D) materials. This defect

consists of three nitrogen dangling bonds which introduce

four closeby levels in the fundamental band gap. Since

the vacancy lobes are closely spaced with strong Coulomb

interaction they form highly correlated states. The order

of the many-body levels and the nature of the states were

determined by DMRGmethod [62]. In the calculations about

50 KS orbitals were used in the active space selected by

localization criterion. It was shown that the flake model

with about 80 B and N atoms with hydrogen termination

of the edge of the flake provides the same electronic struc-

ture as the periodic supercell model at DMRG level [58].

This makes it realistic to calculate the electronic structure

of defects within the flake model by means of traditional

quantum chemistrywavefunctionmethods [63, 64].We note

that the validity of the flake (molecular cluster) model could

be specific to (planar) defects in hBN andmay be not applied

in general for defects in other 2D materials.

DMRGmethod was also applied to magnesium-vacancy

(MgV) centre in diamond [65].MgV centrewas created byMg

implantation to diamond which has a unique photostability

[66] which makes it an interesting quantum emitter. The

PL signal was associated with the negatively charged MgV

defect which has a similar electronic structure to that of SiV

centre [65] with a caveat that the resonant a2u level lies very

close to the top of the valence band and the two degenerate

eu and eg levels lie in the fundamental band gap. These

states are localized on the vacancy lobeswhich create highly

correlated many-body states. In particular, the neutral MgV

has overwhelmly complicated electronic structure which

needs wavefunction method such as DMRG.

Beside the optimization of the selection of the active

space orbitals, a critical issue to take the dynamical cor-

relation effects into account. The present Hartree–Fock

treatment of the core orbitals [58] could be insufficient for

many materials to achieve accurate electronic structure.

In order to achieve an extremely accurate total energy of

crystals, a coupled-cluster-single-double with perturbative

triple [CCSD(T)]wavefunction approach is required [67]. It is

likely that accurate low-energy excitation spectrum around

the Fermi-level may be achieved at much lower complex-

ity of wavefunction approaches than CCSD(T). One possible

route of development is the implementation of more com-

plex levels of wavefunction approaches than Hartree–Fock

core and full CI active space model in the DMRG multi-

scale method, in order to converge towards highly accurate

low-energy excitation spectrum. Another important issue,

similarly to the DFT + CI methods, is to compute quantum

mechanical forces acting on ions. The concept of the force

calculation does exist for DMRG method that was already

implemented for quantum chemistry codes (see Ref. [68]

and references therein).

3.1.3 Spin-flipping time-dependent density functional

theory and BSE methods

Time-dependent DFT (TDDFT) based on KS-DFT in the ker-

nel [69, 70] can be principally applied to calculate the low

energy excitation spectrum of quantum defects [71, 72]. In

order to achieve accurate results, the proper choice of the

DFT functional is essential [71]. Unlike the present imple-

mentations of GW + BSE and post-DFT multiscale methods,

TDDFT framework and implementations exist to calculate

the quantum mechanical forces acting on ions in the elec-

tronic excited state. In a pioneer work it was shown (see

Supplementary Materials in Ref. [73]) that the observed

Stokes-shift of NV centre can be well reproduced by TDDFT

calculation when the NV centre is embedded in the core

of 1.4-nm sized nanodiamond. The optimized geometry by

TDDFT method well reproduced the optimized geometry by

the ΔSCF method [74] for diamond NV centre. This issue

has been recently investigated for the supercell model of

diamond NV centre and silicon carbide divacancy centres

[75]. It was found that the optimized geometries, the adia-

batic potential energy surfaces (APES) of the 3E state and

the zero-phonon-line (ZPL) energies are very close to each

other as obtained ΔSCF method and TDDFT method based
on DDH functional (see Figure 4 in Ref. [75]). The reason

behind this good agreement is that Λ ≈ 0 for 3E so it is a

very good approximation to describe 3E state as promotion

a single electron from a1 in-gap defect level to the e in-gap

defect level in the spin minority channel which is exactly

constructed byΔSCF method.
In the recent years, spin-flipping TDDFT (sf-TDDFT) the-

ory has been developed and applied to molecules [76, 77]

which is based on the Casida equations [70] but the original

equations are modified in order to calculate the states and

energies associated withΔms = ±1 spin transition. In prin-
cipally, the supercell implementation of the sf-TDDFT can be

applied to diamond NV centre to obtain the singlet 1A1 and
1E states with geometry optimization in these states that has

not yet been achieved by other means. In the DFT+ CI-cRPA
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calculations [41], it was already recognized for diamond NV

centre that the 1E state contains Slater-determinants asso-

ciated with symmetry breaking solutions, thus 1E state is

dynamically distorted from the C3𝑣 high symmetry geome-

try unlike the 1A1 state which stays in C3𝑣 symmetry. Insights

from group theory, ΔSCF and DFT + CI-cRPA calculations

with electron-phonon Hamiltonian models made it possible

to construct the absorption and emission spectra between

the 1A1 and
1E states for NV centre [29]. Nevertheless, the

construction of the absorption spectrumwas not accurate as

principally it could not use the true APES of 1E and 1A1 states.

As a consequence, the sharp resonance in the absorption

band at 170 meV above the diamond phonon bands was

missing in the constructed absorption spectrum.

In a seminal work by Jin and co-workers [78], the sin-

glet states of diamond NV centre were directly calculated

by sf-TDDT including quantum mechanical forces. The ab

initio APES could be calculated both for the 1E and 1A1.

Although, the sf-TDDFT excitation does not involve the dou-

ble excitation electronic configurations in 1E and 1A1 states

but their contributions may influence their energy levels –

higher than that by a DFT + CI method [50, 78] – but

not significantly their optimized geometries. The previously

developed model Hamiltonians based onΔSCF calculations
[29] have been confirmed by sf-TDDFT calculations [78]: the
1E state is strongly anharmonic whereas the 1A1 state shows

an almost perfect parabolic APES but the effective phonon

frequencies are higher than that for 3A2 ground state. On

the other hand, the 1A1 state shows a slight anharmonicity

due to its phonon coupling to the 1E state by the symmetry

breaking e phonons. Taking this correction into account,

the calculated absorption spectrum shows a perfect agree-

ment with the observed absorption spectrum including the

sharp vibration resonance at 170 meV [78]. It was found

that the e phonons dominantly contribute to the absorption

spectrum, in stark contrast to the optical spectra between

the triplet states of the defect. The luminescence spectrum

between singlets was not calculated in this study [78] which

is a Herzberg–Teller optical transition [29], and the highly

accurate calculation of the shape of the phonon sideband

would need to solve the multi-mode Jahn–Teller problem

[79].

Spin-flip BSE (sf-BSE) method can be basically also

applied to calculate Λ ≫ 0 states. Here the original idea

is that |ΨGS⟩ of the system could be a close shell sin-

glet but the low-energy singlet excited state might be a

a†
i
a†
j
akal|ΨGS⟩ type. This may be addressed by a high-spin

reference state, e.g., a†
i
a j|ΨGS⟩ type of S = 1 shelving state,

by flipping the spin state by ms = −1 to reach |ΨGS⟩ (nega-
tive excitation energy) or by raising with ms = +1 to reach

the excited state of a†
i
a†
j
akal|ΨGS⟩ type (positive excitation

energy). The sf-BSE spectrum can be calculated by ignor-

ing the exchange terms in the BSE kernel. This methodol-

ogy was first applied to atoms and molecules [80]. Parallel

to this effort, Barker and Strubbe applied this method to

diamond NV centre [81] with using PBE DFT functional as

implemented in the Octopus code [82, 83]. By choosing S = 1

reference state raises the issue of spin-polarization within

KS-DFT approach which naturally results in spin contami-

nation error and an “artificial” gap between the occupied

an unoccupied GWQP levels. Barker and Strubbe rather

took the KS DFT energy levels instead of the GWQP levels

in the BSE kernel as a workaround because PBE KS levels

do not show this problem owing to the semilocal nature

of the PBE functional. They picked up the 3A2 state as a

reference state which is the ground state of diamond NV

centre. The computed spectrum basically agreed with the

previous GW + BSE result [37], i.e., the 1A1 level lies too

low in the spectrum [81]. In order to calculate the 1A1 level

correctly with sf-BSE method, the 3E reference state may be

chosen which can access both single and double excitation

Slater-determinants with respect to 3A2 ground state. Even

though sf-BSEmaywork out for the singlet states accurately,

the calculation of quantum mechanical forces should be

implemented within GW + BSE and GW + sf-BSE methods

to calculate the ZPL and Debye–Waller factor of the optical

excitation spectrum of the defect qubits.

3.1.4 Temperature broadening of optical excitation

spectrum with BSE method

The many-body perturbation theory of electron-phonon

coupled optical transition with non-equlibrium Green-

functions has been developed in Ref. [84] which was fur-

ther derived in Ref. [85]. They considered the adiabatic

limit for the dipole matrix elements, while they retained

dynamical effects only in transition energies [85]. In terms of

the phonon-dependent optical dipole transitionmoments, it

goes beyond the Huang–Rhys theory. The central equation

is

IBSE(𝜔, T) ∝
∑
𝜆,𝜈

𝜕2|Π𝜆|2
𝜕x2

𝜈

f <
𝜆

[
𝛿(𝜔− E𝜆 −𝜔𝜈)

nB(𝜔𝜈, T)

2𝜔𝜈

+ 𝛿(𝜔− E𝜆 +𝜔𝜈)
1+ nB(𝜔𝜈, T)

2𝜔𝜈

]
, (10)

whereΠ𝜆 are the exciton (𝜆) dipole matrix elements within

BSE theory, and f <
𝜆
are their occupations with E𝜆 energy; x𝜈

is the normal coordinate of phonon𝜇with the energy of𝜔𝜈 .

Here, f <
𝜆
is non-vanishing only if the excitons are composed

by transitions between bands occupied by excited electrons
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and holes, and the two Dirac 𝛿 in the square bracket corre-

spond to the cases where an exciton recombines with the

creation [𝛿(𝜔− E𝜆 +𝜔𝜈)] or annihilation [𝛿(𝜔− E𝜆 −𝜔𝜈)]

of a phonon; nB is the Bose–Einstein occupation function for

phonon 𝜈 at temperature T . The no-phonon optical transi-

tion is given by

IBSE
0

=
∑
𝜆

|Π𝜆|2 f <𝜆 𝛿(𝜔− E𝜆). (11)

In the usual implementation of BSE, it does not take into

account the polaron shift. In other words, the no-phonon or

zero-phonon line energy is calculated at the fix coordinate

of the ground state from which the GW + BSE calcula-

tion starts. The theory was first applied to bulk hexagonal

boron nitride which has indirect band gap, so IBSE
0

= 0 (see

Ref. [85]). Libbi and co-workers implemented the theory

and applied it to the negatively charged boron-vacancy in

hexagonal boron nitride [86]; the importance of defect was

already mentioned in this review paper.

The observed fluorescence comes from a first-order

forbidden transition between the 3E′′ excited state and 3A′
2

ground state [62] which becomes only allowed by partici-

pation of phonons. It was suggested based on ΔSCF HSE06
calculations that symmetry distorting Jahn–Teller distor-

tions could lead to optical transitions. While it was noted

based on the comparison DFT HSE06 and DMRG methods

that HSE06ΔSCF method has a limitation in describing the
APES of 3E′′ excited state, still theHuang–Rhys fluorescence

spectrum was calculated with relatively good agreement

with the overall fluorescence energy but the calculated

phonon sideband seemed to be too wide when compared to

experimental data (see Ref. [62] and references therein). The

in-plane Jahn–Teller distortion resulted in about 193 meV

energy gain compared to that of the high D3h configuration.

Further symmetry reduction and energy gain of 13 meV

were also observed by HSE06 ΔSCF calculations by out-of-
plane phonon modes [62]. The out-of-plane phonon modes

are transformed as A′′
2
and E′′.

Libbi and co-workers rather applied G0W0 method on

PBE DFT calculations [86]. Then they calculated the non-

equlibrium BSE optical spectrum based on Eq. (10). Because

of the forbidden nature of the optical transition, the equi-

librium BSE results in exactly zero optical dipole moment

for the lowest energy transition in agreement with the pre-

vious HSE06 DFT result [62]. However, it becomes visible by

applying non-equilibrium BSE method (IBSE
0

) at room tem-

perature. The non-equilibrium BSE spectrum appears via

f <
𝜆
in IBSE

0
through the thermalisation of electrons and holes.

The pseudo-equilibrium occupations equal to

fnk =
1

e
𝜖nk−𝜇el
kBT + 1

, f nk =
1

e
− 𝜖nk−𝜇ho

kBT + 1
(12)

for electrons and holes, respectively. Here 𝜖nk is the quasi-

particle energy of the state {nk} and 𝜇el (𝜇ho) the chemical

potential for electrons (holes). The chemical potential was

set for the electrons in such a way that a whole electron

is promoted to the excited state manifold as usual in ΔSCF
procedurewhich guarantees a neutral excitation. The chem-

ical potential of the holes is tuned in such a way that the

number of holes coincides with that of the electrons excited

to the empty states. The non-equilibrium (NEQ) occupations

induce a renormalization of the quasi-particle energy levels.

It is calculated as

𝜖NEQ = 𝜖
G0W0

EQ
+

(
𝜖COHSEX
NEQ

− 𝜖COHSEX
EQ

)
, (13)

where the first term is the quasi-particle energy determined

at the G0W0 level of theory using the equilibrium occupa-

tions, while the second and the third terms represent the

quasi-particle energy at the COHSEX level of theory calcu-

lated using the non-equilibrium and equilibrium occupa-

tions, respectively.

The calculated IBSE(𝜔, T) spectrum indicates that the

phonons associated with the in-plane Jahn–Teller distor-

tion has a very small optical dipole transition moments but

the out-of-plane phonons significantly amplify the optical

dipole transitionmoments [86]. As a consequence, the shape

of the PL spectrum is governed by the out-of-plane phonons

and not the in-plane phonons.We note that the combination

of the 3E′′ electronic state with A′′
2
and E′′ phonons results

in Ẽ′ polaronic state which has allowed optical transition

towards A′
2
ground state for each polarization of the emit-

ted light. The overall width and shape of the calculated

fluorescence spectrum agreed well with the experimental

spectrum (see Ref. [86] and references therein) but the

calculated spectrum is shifted to lower energy (of about

150 meV). The origin of the discrepancy was not explained

in Ref. [86] whether it comes from the G0W0 approach or

the neglect of polaron shift. Nevertheless, the methodology

demonstrated its strength in analysing the Herzberg–Teller

type optical transitions which is also dominant in the

fluorescence spectrum of the singlet states in diamond

NV centre [29].

3.2 Photo-ionisation thresholds: many-body
and temperature effects

Photo-ionisation threshold energies and cross-sections are

key properties for such quantum defects for which the

qubits are initialised and read out optically. Photo-

ionisation may promote an electron from the filled in-gap



A. Gali: Theory of solid-state defect qubits — 369

state to the conduction band (positive ionisation) or an

electron from the valence band to the empty in-gap state

(negative ionisation). For a given defect in semiconductors

and insulators, both process may occur depending on the

illumination wavelength. Similar to the neutral photo-

excitation processes, phonons may assist the photo-

ionisation processes with yielding temperature-dependent

photo-ionisation thresholds. Ab initio simulations using the

usual Born-Oppenheimer approximation with separating

the problem of motion of ions and electrons will result in

the low-temperature photo-ionisation thresholds that may

be not accurate at elevated temperatures.

Photo-ionisation may occur by simply single photon

absorption which basially goes the same way as neu-

tral photo-excitation just the initial |Ψi⟩ or the final state|Ψ f ⟩ is the host band in the photo-ionisation process, i.e.,⟨Ψi|er̂|Ψ f ⟩ which is a one-body operator. Another possi-

bility is the Auger-process for such defects that have mul-

tiple levels occupied by electrons such as the diamond

NV centre (see Figure 1). In semiconductors, the Auger-

process is considered to be important for the cases when

the number of carriers is high in the band edges of the

host material. However, in wide band gap materials, the

Auger-process can well compete and be even dominating

one when compared to other non-radiative processes such

as the electron-phonon coupling because the large energy

spacing between the defect level and the band edges leads

to too slow multi-phonon processes. The critical matrix ele-

ment is ⟨𝜙i𝜙 j|𝑣̂eff|𝜙k𝜙l⟩where 𝑣̂eff is the screened Coulomb
interaction appeared also in Eq. (2) where the many-body

Ψ wavefunctions are now expressed by the appropriate

single-particle wavefunctions 𝜙s (see Ref. [30] and refer-

ences therein). The Auger-process is described by this two-

body operator.

Another important consideration about describing the

photo-ionisation is to distinguish the observablemany-body

picture and the auxiliary single-particle picture or band

structure (see Figure 1). The band structure diagramme is

an effective single particle picture including the localised

defect states inside the band gap. In other words, band

structure virtually plots the single-particle levels of which

single-particle wavefunctions build up the many-body

Slater-determinant solution. In the case of shallow donor

state such as phosphorus donor (P-donor) in Si, the defect

level is occupied by a single electron in the band gap, and

that electron has a relatively weak exchange-correlation

interaction towards the valence band states. Thus, the sin-

gle electron orbital represents well the many-body total

energy with respect to the total energy of the system when

the electron is promoted to a higher energy effective mass

state. As a consequence, the occupied donor defect level

with respect to the conduction band minimum (CBM) can

be considered as the photo-ionisation energy (when the

relaxation of the ions upon photo-ionisation is neglected

or minor). However, if the donor level is occupied by two

electrons, e.g., sulfur donor in Si, then the two electrons

have considerable Coloumb interactionwith each other. As a

consequence, once an electron is removed from the doubly

occupied donor level then we break the Coulomb repulsion

between the two electrons and their contribution to the total

energy of the system before ionisation which is missing for

the single electron left in the donor level after ionisation.

Therefore, the difference betwen the doubly occupied donor

level and singly occupied donor level does not correspond

to the many-body total energy difference of the neutral and

singly ionised sulfur defects. For deep defects with multi-

ple electrons localised on the defect this effect is severe:

it results in a strong Coulomb and exchange interactions

among the localised electrons. Therefore, the many-body
3A2 level, of which state is ΨGS Slater-determinant for the

diamond NV centre, should not be drawn to the band struc-

ture of perfect diamond as 3A2 state already contains all

the diamond bands. The false level diagramme with mix-

ing the single particle and the many-body pictures will

lead to a false impression about the ionisation energies.

For instance, if the 3A2 level is drawn at the position of

the ionisation energy (about 2.65 eV at room temperature

[87, 88]) w.r.t. CBM then the 3E level is usually drawn above

the 3A2 level with the ZPL energy at 1.945 eV. According to

this false consideration, the ionisation energy of 3E level

w.r.t. CBM would be that of the 3A2 minus the ZPL energy

which yields about 0.7 eV. The problem with this considera-

tion is that it completely neglects the exchange-correlation

effects between the electrons or other words themany-body

effects as will be explained below.

In the example of diamond NV(−)→ NV(0) ionisation

process, if we start from the ground state 3A2 electronic

configuration of NV(−) (Figure 2(b)) then a single electron

from the e level is promoted to the CBM which results in

the 2E ground state of NV(0). Starting the ionisation from
3E state of NV(−), we first have to consider the 3E state

which can be well described as a hole is left in the a1 level

and the double degenerate e level is occupied by three elec-

trons (see left panel in Figure 2(b)). Two ionisation processes

are viable at this point: (i) direct process with an electron

promoted from the e level to the conduction band which

may leave the defect [89]; (ii) Auger-process occurs after

absorption of the second photon where the promoted elec-

tron in the conduction band recombines with the a1 hole,

and the energy gain of this process is used to simultaneously
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Figure 2: Photo-excitation and ionisation of diamond NV centre. (a) Calculated cross section as a function of photon energy [89]. Solid blue:
photo-ionisation from the excited state 3E, 𝜎ph; dark red: stimulated emission, 𝜎st; orange: intradefect absorption, 𝜎 intra; dashed blue: photo-ionisation
from the singlet state 1E. Photo-ionisation thresholds from 3E and 1E are indicated (estimated error bar 0.1 eV), together with the experimental values
of the ZPL energy for NV(−) and NV(0). (b) Kohn–Sham (single particle) states of the NV(−). The dashed arrows show the excitation processes from the
3A2 ground state (left panel) and

3E excited state (right panel), where both the stimulated emission and photo-ionisation processes are depicted for the
latter. 4A2 shelving state of NV(0) is left after completing the ionisation whereas stimulated emission brings the system back to 3A2 ground state of
NV(−). (c) Photo-ionisation via Auger-process after the second photon was absorped. 2E ground state of NV(0) is left after completing the ionisation.

promote another electron from the e level to a high energy

state in the conduction band which finalizes the ionisation

process (see Refs. [90, 91] and Figure 2(c)). According to

the Slater–Condon rules [92, 93], only one spin orbital can

change in the many-body wavefunction upon direct ionisa-

tion process described by one-body operator, therefore 3E of

NV(−) arrives at themetastable 4A2 of NV(0) plus an electron
in the conduction band by photo-excitation. Since the shelv-

ing 4A2 level lies above the ground state
2E level of NV(0) the

ionisation threshold energy of this process starting from 3E

of NV(−) will be higher by about 0.48 eV according to HSE06
calculations [89] then the ionisation threshold energy start-

ing from the 3A2 ground state level minus the ZPL energy of

the 3E ↔3 A2 optical transition, which finally yields about

1.2 eV ionisation threshold energy [89]. In the alternative

Auger-process, the two-body operator nature of the process

makes it possible to arrive at the 2E ground state of NV(0)

from 3ENV(−). If the electron is excited to high energy above
the CBM then phonons can very quickly (within picosec-

onds) cool it down to the CBM which is might be bound

by the weakly attractive potential of NV(0) towards the

CBM electrons which makes this process viable with about

1 nanosecond rate [90]. In the two-photon absorption pro-

cess of NV(−), the typical excitation energy is about 4.66 eV
(green light at 532-nmwavelength)which subsequently goes

through the 3E level with phonon cooling upon absorption

of the first photon and probably a phonon cooling process

after absorbing the secondphoton as explained above. From

energetics point of view, it is feasible to arrive at 2E ground

state of NV(0) from the 3A2 ground state of NV(−). A recent

experimental study concludes that the two-photon absorp-

tion based charge conversion of NV(−)→NV(0) can be well

explained by a dominating Auger-process. In the rate mod-

elling, a single-photon optical transition should also occur

from the shelving 1E state to a higher lying state [91]. A

strong and broad transition around 2.58 eV from 1E to 1E′

has been observed in numerical simulations providing a

possible candidate for such a mechanism [41]. 1E′ can decay

to the triplet excited states via an inter-system crossing

[30, 94].

Nevertheless, such spin-to-charge-conversion (SCC)

protocols exist for diamond NV centre which apply
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low-power excitation to avoid two-photon absorption

processes but dual wavelengths of excitation in which the

green illumination is used for the optical cycle between
3A2 and 3E states whereas longer-wavelength-than-ZPL

illumination is applied to ionise it from the 3E level towards

the conduction band [95, 96]. In this case, direct ionisation

may occur from the 3E level. In the seminal work of

Razinkovas and co-workers [89], the absolute ionisation

cross section from the 3E state together with the induced

emission was calculated for NV centre as a function of the

excitation energy (Figure 2(a)). The calculated ratio of the

photo-ionisation cross section and the cross section for

stimulated emission is greater than 2 for the energy around

1.2 eV and 1.93 eV photo-excitation energies, which agree

well with the applied photo-ionisation energies in the SCC

experiments [95, 96].

We note that understanding the reionisation process,

NV(0)→NV(−), is critical for stabilising the diamond NV(−)
qubit state. Typically, the reionisation automatically occurs

by the applied green illumination to drive NV(−) by two-
photon absorption process which is also subsequential pro-

cess going through the 2A2 excited state: the first photon

absorption brings 2E to 2A2 and the second photon is then

absorbed in the 2A2 excited state. The 2A2 state consists of

a hole left in the a1 level and two electrons in the e level.

The photo-excitation of the 2A2 excited state of NV(0) may

also occur by either direct process (promoting an electron

from the valence band to the empty a1 defect level in the

gap) or Auger-process (occupying the in-gap a1 hole by an

electron from the in-gap e level and then promoting an

electron from the valence band to the empty e defect level

in the gap). Both processes leave a hole in the valence band.

In the direct process, the system arrives at the ground state

of NV(−) because of the alluded Slater–Condon principle

[91]. On the other hand, the Auger-process enables to arrive

at the 1A1 and
1E singlet states of NV(−) too, beside the

3A2 ground state. The energy cost of these processes varies

with thefinal state. The calculated adiabatic acceptor charge

transition level of the NV defect is at about 2.75 eV from

the conduction band edge [97, 98], whereas the calculated

energy gap between the 3A2 ground state and 1A1 state is

at about 1.6 eV (see Ref. [30] and references therein). The

total energy cost to convert the NV(0) ground state to the
1A1 NV(−) excited state is then about 4.3 eV which coincides
with twice the ZPL energy of NV(0) [91]. This means that a

special excited state of 1A1 of NV(−) binding a hole resonant
with the valence band maximum (VBM) develops. This hole

is Coulombically bound which is a special bound exciton

state or Rydberg state which has been observed for the

SiV defect [11] and has been recently implied and modelled

for the 3A2 plus bound hole system for the NV(−) defect
[99, 100]. The bound hole is weakly localised with following

the effective mass theory. By even taking into account the

possible relaxation energy of the ions caused by the change

in the electronic states, we may claim that a green laser

excitation can reach the 1A1 plus bound hole state of NV(−)
by two-photon excitation of NV(0). Scattering rather to 1E

and 3A2 states of NV(−) via Auger-process leaves a hole

deep in the valence band at around 1.2 eV and 1.6 eV from

the VBM, respectively. According to the calculations [91], a

resonant a1 state broadened by the diamond bands occurs

in this energy region which is originated from the dangling

bond orbitals of the carbon and nitrogen atoms near the

vacant site. The resonant state is weakly localized unlike the

usual diamond bands that are completely delocalized. This

should lead to a larger direct and Auger-ionization rates of

NV(0) than those of NV(−) because no such a high-energy

resonant state sharing the same spin state with that of the

ground state exists in the conduction band, critical in the

photo-ionisation of NV(−). Interestingly, the Auger-process
should lead to a preferential occupation of thems = 0 state

via spin-selective intersystem crossings between the 1E state

and the 3A2 spin states; however, direct ionisation would

result in 1/3:2/3 relative population of the ms = 0:ms = ±1
states of 3A2 [91]. The ab initio calculation of the rates of the

direct and Auger-processes requires an accurate computa-

tion of the excited states of NV(0) which has not yet been

solved as we briefly discussed it in Section 3.1.

The afore-mentioned ab initio calculations are based on

the global energy minimum of the APES in the appropriate

electronic structures and charge states which correspond

to the zero kelvin solution. However, the photo-ionisation

tresholds of diamond NV centre are often observed at room

temperature. Principally, the effective ionisation threshold

energies may change as a function of temperature. A very

characteristic example is the silicon carbide (SiC) divacancy

defects. In particular, four divacancy configurations with

similar electronic structures occur in the so-called 4H poly-

type of SiC [101–103], some of themwell observable at room

temperature [104, 105]. We note that 4H SiC exhibits a band

gap of about 3.3 eV that can host visible and near-infrared

colour centres acting as qubits [11, 106, 107]. The neutral

divacancy defects in 4H SiC have isovalent electronic struc-

ture to diamond NV centre as depicted in Figure 1 but the

energy gaps between the levels are about twice as smaller,

thus they produce near-inrared emission. It was found that

upon photo-excitation of the defect it falls to a “dark” shelv-

ing state due to two-photon absorption or other complex

processes. This shelving state has been finally identified as

the negative charge state of the defect [108–110]. Close to
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cryogenic temperatures, a shorter wavelength laser beam

was applied to drive the divacancy back to the neutral qubit

state by promoting an electron from the e level to the CBM

[110]. It was later found that at elevated temperature the

quenching of the fluorescence of 4H SiC divacancy (V2)

defects does not occur and they remain optically stable [111].

This can be interpreted as the photo-ionisation threshold

energy associatedwith the V2(−)→V2(0) process is decreas-

ing upon raising the temperature.

Themodelling of temperature-dependent photo-ionisa-

tion processes requires the following considerations: (i) the

CBM and VBM of the host material may shift with temper-

ature, (ii) the formation enthalpy so the charge transition

level of the defect with respect to the band edges may

shift with temperature via the vibration entropy, and (iii)

the phonon assisted ionisation process may be activated

by raising the temperature. The first effect is basically the

temperature-dependent electron-phonon renormalization

of the bands. This can be computed by the many-body per-

turbation theory on the electron-phonon coupling [112–114]

that was applied to 4H SiC [115]. The usual case is that the

CBM and VBM shifts down and up with raising the temper-

ature, respectively, leading to an effective decrease of the

fundamental band gap. It was found by ab initio calculations

that the CBMof 4H SiC shifts down by about 5meV from zero

kelvin to room temperature [115]. In other materials with

low Debye-temperature, this effect could be significantly

enhanced. The second effect assumes an ab initio treatment

of the thermodynamic properties of solid-state defects that

was thouroughly discussed in Ref. [34]. Here, the key effect

is the vibration entropy correction to the formation energy

of the defect,

Fq(T) =
∑
i

{
1

2
ℏ𝜔i + kBT ln

[
1− exp

(
−ℏ𝜔i

kBT

)]}
, (14)

where ℏ and kB are the reduced Planck constant and

Boltzmann constant, respectively, and 𝜔i is the frequency

of the ith phonon mode in charge state q of the defect at

the given T temperature. The first term in Eq. (14) is the

zero-point energy. The actual values of Fq(T) could differ

for a given defect in various charge states (ΔF(T) = F−(T)−
F0(T)) which results in a shift of charge transition level, here

with respect to CBM,
(
ECBM−∕0

)
. This correction may increase

or decrease the effective photo-ionisation threshold. The

total correction is then,

ECBM−∕0 (corr) = ECBM−∕0 −ΔECBM(T)+ΔF(T). (15)

The value of ECBM−∕0 (corr) corresponds to the ionisation

threshold energy without involvement of phonons in the

photo-ionisation process [111]. By raising the temperature

the phonon excited states are occupied and may contribute

to the ionisation process which may be considered as

an phonon-assisted optical transition between the neutral

defect binding an electron in the CBM and the negatively

charged defect where we neglect the interaction of the

CBM elecron with the rest of the electrons. This effect may

strongly contribute to the reduction of the photo-ionisation

threshold at elevated temperatures. The effect is analo-

gous with the appearance of the phonon bands at lower

energies than ZPL energy in the absorption spectrum of

the defect at elevated temperatures. The phonon-assisted

optical spectrum can be calculated within Franck–Condon

approximation at ab initio level for defective supercell mod-

els (see Refs. [30, 116] and references therein). The calculated

temperature-dependent ionisation threshold energies for

the divacancy centres in 4H SiC based on this theory were

reported in Ref. [111]. Although, the very long wavelength

acoustic phonons were not calculated in that study for

the vibration entropy and the Franck–Condon theory that

shed doubts on the convergence of the results, neverthe-

less, the equal or similar contributions of the temperature-

dependent vibration entropy andFranck–Condon terms are

demonstrated, and it provided explanation about the photo-

stability of 4H SiC divacancy qubits at room temperature

[111].

3.3 Supercell modelling of defects:
extrapolation to dilute limits

In the supercell modelling of point defects the goal is to

describe isolated point defects. In practice, the size of the

supercell is limited up to about 10,000 atoms for KS DFT

calculations due to computational resources. By applying

accurate hybrid KS DFT functionals the size of the supercell

is further reduced to about 1000 atoms. This size of the

supercell suffices to obtain accurate results for deep defects

because the defect induced wavefunctions and strain fields

decay relatively fast from the core of the defect. However,

shallow states with weakly localised character of defect

wavefunctions such as the case of P-donor in Si, require

extrapolation to dilute limits. For deep defects, certain prop-

erties also call for special treatments in the supercell formal-

ism that we non-exhaustively list here: charge correction

for charged defective supercells, acoustic phonon couplings

to electron orbitals and spins, excitation and ionisation

towards electronic bands of the host.
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3.3.1 Charge correction schemes: a recent breakthrough

In our previous review paper [30], the charge correction

for charged defective supercells was thouroughly discussed.

To sketch here the problem and the possible solution we

note that the introduced defect charge is neutralized by a

compensating jellium charge in the supercell. The charge

of the defect and the jellium background charge interact

with their periodic images that goes with the leading point

charge Coulomb interaction ofwhich energy scaleswithL−1,

whereL is the edge of the simple cubic supercell. This theory

already gives a hint about the expected scaling property in

the correction of the total energy to the isolated defect or

dilute limit. Indeed, the total energy of the charged defective

supercells converges notoriously slow with the supercell

size as indicated by the simple theory above. By applying

charge corrections to the total energy, the convergence can

be well accelerated. In the previous years (see Refs. [30,

34, 117] and references therein), many a posteriori schemes

have been developed for the correction of the total energy

of charged defective supercells in 3D and 2D models. In

those schemes, the possible change in the character of the

wavefunction due to the charge correction was not taken

into account thatmight lead to qualitativelywrong results in

notorious cases. This problem is in particular severe for slab

models of crystal surfaces with negative electron affinities.

Recently, a self-consistent potential charge correction (SCPC)

method was developed to heal this issue which goes beyond

the previous a posteriori total energy corrections of the

charged defects, and they derive the KS potential associated

with the charge correction and self-consistently solve the

constructed KS DFT equations [117].

The SCPCmethod yield the corrective potential (Vcor) in

an iterative manner: (i) the distribution of the extra charge

in the supercell (𝛿𝜌) is determined, (ii) the corresponding

periodic electrostatic potential (Vper) is calculated, (iii) the

potential for the same but isolated charge distribution (V iso)

is determined by using open (Dirichlet) boundary condi-

tions, and finally, (iv) Vper and V iso are used to determine

the corrective potentialVcor, which is added to the total elec-

tronic potential. It should be noted that SCPC always aligns

the final potential, considering the difference between the

electrostatic potentials of the charged and the reference

system far away from the defect position (ΔV).
The method was originally built in the VASP code but

an interface has been developed to Quantum Espresso code

too. The SCPC method was applied to diamond slab model

with NV centre where the (100) diamond surface was termi-

nated by hydrogen. It was shown that without SCPC method

the negative charge of the defect artificially pull down the

bands of the surface states, so-called image states, which

results in a false electronic structure even in large supercells

[117]. Here, the self-consistent correction of the potential is

essential. We note that the self-consistent correction is not a

must for many defects in 3D solids and a posteriori charge

correction schemes can provide qualitatively good results.

Despite the self-consistent nature of the correction, the SCPC

method does show supercell size dependence which comes

from the fact that the character of the underlying (localized)

defect wavefunctions may change with supercell size due to

the defect-induced strain fields and other factors, so super-

cell size scaling is still necessary with this method but con-

verges faster than the a posteriori total energy correction

schemes [117].

3.3.2 Embedding of long wavelength phonons in the

finite size of the supercell

The long-wavelength acoustic phonons could contribute

to the phonon sideband of the optical spectra of defects.

Audrius Alkauskas and co-workers developed an embed-

ding method to include the electron-phonon coupling in

the optical transition [116] that they applied to the optical

transition between the triplet states of diamond NV centre

[79, 116] which has been also implemented in the sf-TDDFT

study for the absorption spectrum of the singlet states

[78]. Similar treatment is advisable for the temperature-

dependent photo-ionisation spectrum [111].

3.3.3 Reconstruction of the deep-energy valence and

high-energy conduction bands

Accurate absorption cross section calculation of excitation

from/to deep levels to/from solid-state bands within super-

cell formalism requires special attention due to band fold-

ing in the Brillouin-zone [118]. This was recognized by

Razinkovas and co-workers when they studied the absorp-

tion cross section for the photo-ionisation of diamond NV

centre [89]: they found minigaps in the conduction band

which affected the calculated absorption cross section at

the given high energy excitation. They used the following

technique to circumvent this problem: (i) they identified the

folded band in the Brillouin-zone of the primitive diamond

cell as described in Ref. [118], (ii) then they averaged out

the calculated absorption cross section values closest to the

corresponding k-space within the energy region of about

0.08 eV. The resulted photo-ionisation absorption spectrum

is then converged well.
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3.3.4 Treatment of spatially extended defect

wavefunctions: beyond effective mass theory

KS DFT calculation of the properties of shallow donors in Si

is computationally very challenging because of the spatial

extension of the donor wavefunction. Accurate calculation

requires hybrid HSE06 functional, e.g., Ref. [119], which

becomes extremely difficult to carry out for sufficiently

large supercell sizes. As was done for the total energy cor-

rection of charged defective supercells (see Refs. [30, 34, 117]

and references therein), one can apply a strategy by study-

ing theoretically and numerically the scaling of the given

property as a function of the supercell size, and then extrap-

olate the result to the dilute (isolated defect) limit. In many

cases, the exact scaling properties are unknown or they

are too much complex because different effects (electron

density and charge distribution, strain field distribution)

are intertwinned and they often depend on the local elec-

tron density distribution of the defect that might change by

increasing the size of the supercell.

In practice, numerical KS DFT investigations could lead

to converged results which requires sufficiently large num-

ber of sampling points for defining the scaling law, i.e.,

ideally up to supercell size with about 10,000 atoms. This

is prohibited by the accurate HSE06 functional so a typical

strategy is to calculate the scaling by the affordable PBE

functional and for a limited range of supercell sizes to com-

pare the scaling with HSE06 and PBE functionals to verify

the scaling function.

Swift and co-workers studied the shallow group-V

dopants of Si by supercell KS DFT calculations [119]. These

dopant introduces a singly occupied electron the state split

from the CBM. In semiconductor physics, these states are

described by the so-called effective mass theory from Kohn

and Luttinger which treats the dopant potential as a posi-

tively charged Coulomb potential which binds an electron

of which state can be described the linear combination of

the CBM valleys. The solution of this system results in a

Rydberg or hydrogenic series of excitation energies until it

converges to the ionisation level. The ionisation or binding

energy of the electron (Eb) can be defined as the lowest

energy level 𝜖donor (1s like envelop function) with respect

to CBM of the perfect crystal (𝜖CBM). The validity of this

approximation from many-body electron-phonon point of

view was briefly discussed in Section 3.2. It is known in

experiments (see Ref. [119] and references therein) that the

ionisation energies of various group-V dopants in Si differ.

Therefore, a so-called “central cell correction” was intro-

duced to the effective mass theory which assumes that the

1s ground state wavefunction has the largest overlap with

the dopant ion’s attractive potential whichwill pull down its

energy level with respect to the purely hydrogenic solution

(enlarging the donor ionisation energy). As the potential

of the dopant ion is characteristic to the dopant within

short range around the dopant ion, thus the “central cell

correction” will be dopant dependent. The central cell cor-

rection is merely semiempirical correction to the effective

mass theory of shallow donors and acceptors, where the

acceptor levels aremeasuredwith respect to VBM. InKSDFT

calculations, the ionisation energies can be calculated at ab

initio level free from any assumptions on the nature of the

potential induced by the dopants. It can be estimated from

the effective mass theory that the 1s donor wavefunction in

Si will decay at around 55 Å from the position of the dopant

which would require a supercell of about 64,000 atoms to

accommodate the donor wavefunction without significant

overlap. This definitely calls to apply a scaling procedure

even for PBE DFT functional.

Swift and co-workers [119] applied scaling method for

calculating Eb of arsenic (As) and bismuth (Bi) donors in

Si by PBE and HSE06 functionals. The calculations were

carried for supercells from 64 to 2744 atoms at PBE level and

for supercells from 64 to 1000 atoms at HSE06 level. They

calculated Eb at a given size of the supercell as

Eb = 𝜖CBM − 𝜖donor + eΔV , (16)

where ΔV potential alignment between the defective and

perfect supercells appears the charge correction of defects

in Section 3.3.1. Interestingly, the ΔV does not show a clear

monotonous decay with increasing size of the supercell

whichwas not explained [119]. The scaling of theHSE06 data

was carried out as

bHSE06 = bfit
PBE

− 1

2
bfit
PBE,𝛿ex

+ 1

2
bfit
HSE06,𝛿ex

, (17)

where bfit
PBE

is the slope fit to the PBE binding energies,

bfit
PBE,𝛿ex

is the slope fit to the PBE exchange splitting, and

bfit
HSE06,𝛿ex

is the slope fit to the HSE06 exchange splitting. The

exchange splitting was defined as the difference between

the spin-up and spin-down eigenvalues of the donor state.

Subtracting half of the exchange splitting from the bind-

ing energy yields a spin-averaged value which is cor-

rected between the PBE and HSE06 results with assum-

ing that the supercell-size dependence obtained in PBE for

the spin-averaged case applies also to the HSE06 values.

They obtained 54 meV and 67 meV binding energies for

As and Bi donors, respectively, in very good agreement

with the experimental data at 53.9 meV and 70.9 meV,

respectively [119].
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The neutral donor defects introduce S = 1∕2 spin that

can interactwith the nuclear spins of the dopant or the prox-

imate 29Si I = 1∕2 nuclear spins which is called hyperfine

interaction. Actually, the interplay between the electron and

nuclear spins could represent qubit states in these systems,

therefore, understanding this interaction as a function of

electric field and strain is highly important (see Ref. [120]

and references therein). This hyperfine interaction can be

generally written as

Hhyp = ŜAÎ, (18)

where A is the hyperfine tensor and Ŝ, Î are the electron

spin, nuclear spin vector operators, respectively. The Fermi-

contact and the dipole-dipole terms of the hyperfine tensor

can be respectively written as

A(n)
ab

= 2𝜇0

3
ge𝜇Bgn𝜇n

ns(R)

S
+ 𝜇0

4𝜋
ge𝜇Bgn𝜇n

1

S

× ∫
3rarb − r2𝛿ab

r5
ns(r)d

3r, (19)

where ns(r) is the electron spin density, r is the vector

between the electron spin and nuclear spin at R, gn is the

nuclear g-factor, and 𝜇n is the nuclear magneton for a given

nucleus n. For the ground state 1s donor wavefunction,

the Fermi-contact term predominates which depends on

the localization of the donor wavefunction at place of the

dopant. Swift and co-workers found that (i) PBE produces

too low hyperfine constants for shallow donors in Si, (ii)

reliable values are obtain for supercell size of 512 atoms

or larger number of atoms, and (iii) in that size range the

hyperfine constant for the dopant atom scales as L−1. The

final HSE06 values are 132.5 MHz and 1262 MHz for As and

Bi spins, respectively, compared to the experimental data at

198.3 MHz and 1475 MHz, respectively [119]. They also found

that the electric field gradient, Vzz, around the dopant atom,

so the quadrupole interaction strength CQ = 3eQatomVzz∕4h
is vanishingly small (1 MHz), where h and e are the Planck-

constant and the charge of the electron, and Qatom is the

nuclear electric quadrupole moment of the dopant atom.

Furthermore, they also studied the strain dependence of the

contact hyperfine tensor of the Bi dopant, which generally

reads [120] as

A∕A0 = 1+ K

3
(𝜀xx + 𝜀yy + 𝜀zz)+

L

2

[
(𝜀yy − 𝜀zz)

2

+ (𝜀xx − 𝜀zz)
2 + (𝜀xx − 𝜀yy)

2
]

+ N
(
𝜀2
yz
+ 𝜀2

xz
+ 𝜀2

xy

)
, (20)

where A0 is the value in the absence of strain, K coupling is

responsible for the hydrostatic strain, L coupling andN cou-

pling describes the uniaxial and shear strain effects, respec-

tively. Swift and co-workers only focused to the hydrostatic

strain in their ab initio study: they found that K scales

the same in HSE06 and PBE functionals in relatively small

supercells, thus the error in PBE in the difference of abso-

lute values of hyperfine constants as a function of strain is

cancelled. As a consequence, the PBE scaling can be applied

for larger supercell for extrapolation to the dilute limit. They

obtained K = 20.2 which is close to the experimental data at

K = 19.1 (see Refs. [119, 120]).

In the afore-mentioned examples, the defect wavefunc-

tion is spatially extended in the electronic ground state.

Perhaps, it is not a common knowledge among scien-

tists coming from the quantum optics field that similarly

extendedwavefunctions could exist in the electronic excited

states. Again, the best example is the most studied small

band gap material, silicon. As silicon has a band gap of

1.215 eV at cryogenic temperatures, there is a little room to

introducemultiple levels by deep defects. Defectsmay intro-

duce only a single occupied deep level in the fundamental

band gap of Si where the electron could be promoted from

the in-gap defect level to CBM. In this case, the defect can be

described as a positively charged centre which Coulombi-

cally binds an electron split fromCBM. This definitely shows

a similarity to the shallow donor states in Si. For example,

the photoluminescence C-centre in Si shows a sharp ZPL

at 789 meV for which photoluminescence excitation (PLE)

measurements revealed a hydrogenic or Rydberg series of

excited states [121]. Later it was shown that this type of PLE

features is common for other deep optical centres of Si that

was called “pseudo-donor” model [122, 123]. Recently, the

pseudo-donormodel of C-centre in Si has been confirmed by

HSE06 calculations [124]. The neutral CiOi defect associated

with this optical centre indeed produces a deep level in the

fundamental band gap (see Figure 3), and the calculated

ZPL energy at 750 meV by ΔSCF method agreed well with

the experiment. In this calculation, 512-atom supercell was

employed with the same correction in the total energy of

the excited state of the defect (56 meV) as for the positively

charged defect. The reasoning behind this method was the

following. The excited state involves a spatially extended

wavefunction. The scaling property of the total energy of the

excited state was assumed to go similarly to that of the pos-

itively charged defect within the accuracy of about 50 meV

because the extended electron occupying the state split from

CBM could behave similarly to all the crystalline valence

bands of the system which leaves a positively charged core;

in other words, the pseudo-donor electron does not “shield”
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(a) (b)

Figure 3: C-centre in silicon. (a) The atomic structure of the CiOi defect complex, consisting of neighbouring carbon (Ci − Si1) and oxygen (Oi − Si2)
split-interstitial defects associated with C-centre in Si. (b) Kohn–Sham level structure of the CiOi(0) defect ground state (

1A′) and singlet (1A′′) excited
state in the spin-polarised HSE06 calculation. VBM, CBM and C label the valence band maximum, the conduction band minimum, and the dangling
bond orbital of the carbon atom, respectively.

the positively charged core. There is a further note here

about the accuracy ofΔSCFmethod. In a 216-atom supercell,

the results fromΔSCF method and GW+ BSE method were

compared. It was found that GW + BSE confirmed the com-

position of the exciton as the deep hole state and an electon

state split from CBM and the vertical excitation energies

were within 11 meV. Thus, ΔSCF method can be applied

for the bound exciton excitation too which is important to

calculate the Stokes-shift upon excitation as no quantum

mechanical force calculation has been yet implemented to

GW + BSE methods. For the case of shallow donors in Si,

the geometry change upon ionisation was neglected. How-

ever, this cannot be neglected for the fluorescence spectrum

of deep defects. Indeed, the sharp features in the phonon

sideband of the PL spectrum could be well reproduced by

applying the Franck–Condon theory [124]. According to the

calculations, C-centre is a potential building block of quan-

tum repeaters in the telecom L-band [124].

Another deep optical centre in Si, the W-centre, has

been recently isolated as a single quantum emitter with ZPL

wavelength close to the telecom region at 1218 nm (1.018 eV)

(see Ref. [20] and references therein). The defect contains a

complex of three self-interstitial silicon atoms. Themost sta-

ble configuration, so called I3-V configuration with C3 sym-

metry, has been recently identified by HSE06 calculations

where the relative stability changes with respect to PBE cal-

culations [20],whichwe call here I3 for the sake of simplicity.

The electronic structure of the neutral I3 is very interesting:

it shows a single resonant a level at 73 meV below VBM (see

Figure 4). At first glance, this defect may be considered as

electrically and optically inactive. However, after ionisation,

the unoccupied defect level emerges inside the band-gap,

and the (+∕0) charge transition level is at 55 meV above

VBM after applying charge correction in the total energy of

the positively charged defect. As the stability of the positive

charge state is confirmed, the positively charged defect may

Coulombically bind an electron with the state split from

CBM, alas, the neutral excitation of I3 is a bound excitonwith

a strongly localized hole on the defect and a loosely bound

electron [20]. The pseudo-donor nature of the defect was

confirmed byHSE06ΔSCF calculation in 512-atom supercell.

The estimation of the ZPL energy was based on the full

geometry relaxation of the electronic ground and excited

states with scaling of supercell sizes,

EZPL(L) = A∕L+ B∕L3 + C, (21)

where L is the side of the simple cubic supercell, A,B, C

are fitting constants, where C value corresponds to the

dilute limit. Lwas varied between the supercells of 216-atom

and 8000-atom for PBE calculations and up to 1000-atom for

HSE06 calculations. It was found that the 216-atom super-

cell results do not fit to the trend and should be ignored.

The idea of the formula in Eq. (21) is that the excited state

requires charge correction. Since too few data points could

be calculated at HSE06 level, it was assumed that the PBE

results well reproduce the electrostatics of the problem, and

the A and B fit results can be used for HSE06 data points.

This procedure finally yields C = 1.102± 0.003 eV which is

within 0.1 eV when compared to experimental data.

The pseudo-donor or bound exciton excitation can

occur in wide band gap semiconductors too. A very nice

example is the so-called DI centre in 4H SiC [125, 126]. The

optical activity of the defect is identified as the silicon anti-

site [127, 128] which is an isovalent centre with producing a

deep donor level in the fundemental band gap. The defect

can be positively charged and then it can Coulombically

bind an electron from CBM with producing Rydberg series

of excited states [125]. It can be expected that similar bound

exciton excited states may be found in diamond.

Indeed, a recent study has identified Rydberg series in

the optical spectrumof the diamond neutral silicon-vacancy
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(a) (b)

Figure 4: W-centre in silicon. (a) The atomic structure of the tri-interstitial (I3) complex associated with W-centre in Si. (b) Kohn–Sham level structure
of the I3(0) defect ground state (

1A) and (1A) excited state in the spin-polarised HSE06 calculation. VBM and CBM label the valence band maximum and
the conduction band minimum, respectively.

[SiV(0)] defect in a joint experimental and theoretical study

[11]. Interestingly, optical spin-polarisation and ODMR sig-

nals could be also observed through their bound exciton

states [11] which makes the analysis of these states highly

important as this defect can be isolated in diamond as a

near-infrared single photon emitter [129].

The electronic structure of SiV(0) in diamond was

already briefly described in Section 3.1.1 thatwe extendhere

before we proceed to the discussion of the bound exciton

states. In SiV(0) defect, Si atom sits in the inversion centre of

diamond so the defect can be rather described as a V2 defect

with six carbon danglings bonds whereas the “dopant” Si

ion resides in the empty space of V2 with the farthest dis-

tance from these six carbon atoms (see Figure 5). The six

carbon dangling bonds create a double degenerate eu level

resonant with the valence band and a double degenerate

in-gap eg level occupied by two eletrons. This forms the

(a) (b)

Figure 5: Extension of effective mass state in diamond SiV(0) defect. (a)
Geometry of the SiV(0) defect in diamond as optimized by HSE06 in the
ground state. The dashed circles represent the missing C atoms, i.e.,
adjacent vacant sites or V2. (b) The Bohr-diameter of the heavy-hole for
the n= 1 or 1s effective mass state. Apparantly, the dangling bond
orbitals in V2 are confined to the same space as the 1s effective mass
state.

3A2g ground state. The usual optical activity is associated

with promoting an electron from the eu level to the eg level

for which the optically allowed 3Eu →
3A2g transition yields

the ZPL energy at 1.311 eV (see Figure 6(c)). This energy is

much smaller than the ionisation threshold energy at 1.53 eV

which corresponds to the neutral to the negative charge

transition (see Ref. [11] and references therein). It is impor-

tant to notice the selection rules of optical centrewith inver-

sion symmetry that the optical transition is only allowed by

changing the parity of the participating wavefunctions.

By increasing the excitation energy above the ZPL at

1.311 eV but below the ionisation threshold energy at 1.53 eV,

one can excite the hole from the VBM which results in a

SiV(−) defect plus a loosely bound hole, i.e., a bound exciton
state of SiV(0). Generally, analysing the hole bound exciton

spectrum has an increasing complexity over that of elec-

tron bound exciton spectrum because of the orbital degen-

eracy of VBM at the Γ-point which results in an effective

spin–orbit interaction. A detailed description is beyond the

scope of the present review paper.We rather defer the read-

ers to the supplemental material of Ref. [11] which is now

very briefly summarized here. The three-fold degenerate

VBM of diamond sligthly splits due to the defect potential

resulting in a1g and eg bands, where a1g band lies above

eg band. The VBM splitting also affected by the spin–orbit

coupling which has similar energy as the crystal field split-

ting induced by the defect potential [11]. The spin–orbit

coupling creates light-hole, heavy-hole and a split-off hole in

the VBM, where the heavy-hole has the shortest Bohr-radius

effective mass state orbitals [11]. According to the theory

from Thiering and Gali [11], the 1s, 2s, … effective mass

states will transform as A1g , whereas 2p, 3p, … effective

mass states will transform as A2u and Eu, and 3d, 4d, …
effective mass states will transform as A1g and Eg . As a con-

sequence, only the p-type effective mass states can be opti-

cally excited from theA2g ground state. The lowest energy 1s

effective mass state may be observed with the contribution
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of u-type of phonons as phonon-assisted optical transition.

Since the translation motion of Si ion in the void of V2
transformswith u odd-parity [130] the 1s, 2s,… aswell as 3d,

4d, … effective mass states could be optically excited

via the A2u quasi-local phonon mode of the Si ion which

is about 43.4 meV according the PBE calculations [11].

Indeed, the 1s effective mass state was not observable in

the PLE spectrum but well detectable in the optical spin-

polarisation spectrummediated by the Si-ion vibrations [11]

(see Figure 6(a)).

By applying Rydberg scaling to the experimental data

(Figure 6(b)), one can find that the expected binding energy

(a)

(b) (c)

Figure 6: Experimental signals and effective mass theory for the excited
state of diamond SiV(0) defect. (a) Experimental photoluminescence
excitation (PLE) and optical spin-polarisation (OSP) spectra from Ref. [11].
The OSP can be observed in the spin-polarisation of the ground state
towards thems = 0 electron spin state in the electron paramagnetic
resonance spectrum. (b) Scaling of the peak positions extracted from PLE
in (a). The fit uses Rydberg scaling En = EI − Ey/n

2 associated with the
effective mass states, where n refers to the principal quantum number.
Due to similar fine structures of 2p and 3p states, we fit different fine
structure transitions (wiggles in the PLE and OSP curves) separately
corresponding to the different coloured curves. The fitted ionization
energy (EI ) and Rydberg energy (Ey ) are 1.53 eV and 0.4 eV, respectively.
The horizontal dashed line indicates the fitted ionization energy. States
with “s”-like character are taken from spin-polarisation measurements,
and are shown with triangles.Δ1 andΔ2 are energy deviations for 1s and
2s states compared to the fitted Rydberg scaling that involve both central
cell correction and the localized phonon energy. (c) Proposed bound
exciton model for the higher-lying excited states showing orbital ground
and excited states and BE states at higher energies in the hole picture.
The lower levels closer to the valence band maximum for electrons
require higher excitation energy.

of the 1s level is aboutΔ1 − 0.04 = 0.19 eV deeper when the

experimental data is corrected with the phonon energy of

the Si ion vibration.

An important observation is that the central cell cor-

rection makes the 1s level shallower (i.e., its binding energy

becomes smaller) than the value of the effective mass the-

ory, in stark contrast to the case of shallow donor and

acceptor dopants in semiconductors. The central cell correc-

tion energy can reach hundreds of meV for deep defects in

diamond.

The qualitative explanation behind this observation

can be drawn from Figure 5: the majority of the 1s effective

mass state are localized in the core region of the defect in

which the localized orbitals are confined. As a consequence,

the electron cloud of the localized orbitals will shield the

effective attractive potential of the defect and repel the

1s effective mass state which finally shifts its energy level

closer to the ionisation threshold energy. The quantative

prediction of the 1s energy level calls for ab initio calcula-

tions. Unlike the case of the deep defects in Si with bound

exciton excited states, the relatively short Bohr-diameter of

the VBM hole 1s state makes it possible to embed the excited

statewavefunction in a few-thousand atom supercell, viable

at KS DFT level. From a remote distance, the SiV(−) + hole

system looks completely neutral which is the case of a giant

supercell by completely embeding the 1s wavefunction. In

smaller sizes of supercells, the systems looks like a nega-

tively charged defect as the holewavefunction is completely

delocalized within the applied supercells, and a total energy

correction should be applied similar to the SiV(−) defect.
However, the total energy correction for the SiV(−) + hole

system should not be exactly the samewith the SiV(−) defect
as the size of the supercell is increased because the bound

hole provides a screening towards the SiV(−) defect core.
Thiering and Gali suggested the following formula [11],

Ecorr
n=1 =

A

L
exp

(
−D

L

)
+ B

L3
+ C, (22)

where D is the screening length which effectively screens

themonopole charge inducedby the defect, the s-type spher-

ical potential. The quadropole term Bmay also incorporate

the strain field effects too, and C is the value of the dilute

limit. It is a critical issue how large could be the screening

length. This can be illustrated by numerical modelling of

a hydrogen atom in the simple cubic supercell with lattice

constants (L) which can be calculated at Hartree–Fock level

within VASP with using a soft PAW potential. The results are

shown in Figure 7(d). One can clearly see that the Coulombic

scaling (−1∕L) deviates at sufficiently large supercells. At

sufficiently large supercell size (L > 4 Å), the total energy
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of the system converges exponentially to a constant energy.

The dilute limit (C) is found by

EH (L) =
A

L
exp

(
−DH

L

)
+ C, (23)

where the Coulomb interaction (A∕L) is screened by

exp
(
−DH

L

)
. We note that the repulsive 1∕L3 term is missing

because only a single proton appears in the system. Using

this fitting procedure, DH = 1.90 Å = 3.56 ⋅ a0 was found,

where a0 = 0.53Å is the Bohr-radius of the isolated free

hydrogen atom for n = 11s state.

One can conclude from the results of this simple model

that the screening length is multiple times longer than the

Bohr-radius of the effective mass state. This result could

explain the need of simplified computational approaches

on silicon defects described above because the Bohr-radius

itself is already too long to be accommodated by 10,000 atom

supercell, so the screening radius cannot be computed at ab

initio level. In those cases, Eq. (21) was applied [20] which

overcorrects because of the neglect of the screening effect.

In diamond, the Bohr-radius of the effectivemass hole states

is short enough to observe the deviation from the formula

in Eq. (21) due to the screening effect in few thousand atom

supercell calculations. Thiering and Gali in Ref. [11] applied

PBE functional to yield the 1s total energy by ΔSCF method
including 8000-atom supercells, and the resulting screening

length was fixed in the fit to HSE06 ΔSCF energies as a

function of the supercell size where the maximum size was

1000-atom supercell (Figure 7(b)). The scalings of the charge

transition level (Figure 7(a)) and the excitation energy of

the 1s state show similarities in the range of small supercell

size but a clear deviation can be observed for supercell

size with >1000 atoms. That deviation is essential to obtain

the accurate value, in good agreement with the experi-

mental data. Certainly, the highly localized orbitals and the

corresponding excitation energy converges much faster

with the size of the supercell as demonstrated in (Figure 7(c))

which also holds for the crystal field splitting and spin–orbit

coupling parameters too [11].

These recent findings cannot be found in the textbooks

about semiconductor physics and can be considered as an

extension of effectivemass theory towards the excited states

of deep defects.

The bound exciton states may be formed not just

upon optical excitation but by capturing carriers by the

deep defects. The capture rate can be, in particular, effec-

tive if the defect Coulombically attract the carriers. In

the previous example, it can be imagined that the SiV(−)
defect in its ground state captures a hole from VBM, which

turns SiV(−) to SiV(0) plus a bound hole excited state,

and that will decay either radiatively or non-radiatively

to the ground state of SiV(0). This effect was first con-

sidered in the electroluminescence of single NV defect in

diamond (see Supplemental Material in Ref. [99]). In this

case, the negatively charged NV defect binds a hole, cre-

ating NV(−) plus bound hole from the VBM. That was

calculated by HSE06 ΔSCF method without studying the

convergence of the excitation energy [99]. In a later study

[100], the interaction of two individual NV defects was

investigated when the photo-ionisation of one NV leads to

the emission of holes toward the neighbour NV(−) defect
which can capture that hole. According to the interpre-

tation of the measurements, a giant 𝜎h ≈ 3 × 10−3 μm2

hole capture rate was derived for NV(−). This was ratio-
nalised by involving the formation of a bound exciton state

featuring an electron localized at the NV(−) plus a bound
hole fromVBM. Flick in Ref. [100] calculated the total energy

of this bound exciton excited state by following the recipe

in Ref. [11] with a little modification of Eq. (22) to apply the

screening effect also on the quadrupole term. It was found

that the binding energy of the exciton is about 40 meV for

the 1s state [100]. That is definitely a stable state at room

temperature.

3.4 Computation of zero-field splitting for
high-spin defects and the g-tensor for
defects with heavy ions

The computation of magneto-optic parameters of defect

qubits such as zero-field splitting (ZFS) or g-tensor is of high

importance not only because that they act as a fingerprint

for identification of defect qubits with unknown micro-

scopic structure but they can govern the type of interaction

with external magnetic, electric, and strain fields as well

as temperature. The importance of interaction between the

hyperfine tensorwith the strain fieldwas already illustrated

in Section 3.3.4. Here, we briefly list the advance in the

calculation of ZFS and g-tensor for defect qubits.

The high-spin (S ≥ 1) defects with axial or lower sym-

metry may experience the electron spin-electron spin

dipole-dipole interaction that may be expressed as

HSS = −𝜇0g
2
e
𝜇2
B

4𝜋

∑
i > j

3
(
Ŝiri j

)(
ri jŜ j

)
−

(
ŜiŜ j

)
r2
i j|||ri j|||5≡ ∑

i > j

ŜiDi jŜ j,

(24)

where rij = ri − r j. The 3 × 3D-tensor can be diagonalized

to find the spectrum and spin eigenstates. The D tensor

is associated with the two-particle spin density matrix,
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(a) (b)

(c) (d)

(e)

Figure 7: Excitation processes of SiV(0). (a) Charge transition level of SiV between neutral and negative charge states by means of HSE06 and PBE
functionals. In the dilute L→+∞ limit, the HSE06 results (1.55 eV) agree with the experimental data at 1.53 eV. (b) n= 1 1s bound exciton excitation by
means of HSE06 and PBE functionals. Here we can see that the HSE06 limit at L→+∞ with screening included can explain the experimentally data at
1.39 eV. (c) Scaling of the eg ↔ eu excitation process by means of HSE06 functional. (d) Total energy of the hydrogen atom in a Hartree–Fock Γ-point
calculation in a simple cubic supercell as a function of the size of the supercell. (e) Schematic of the hydrogen atom in vacuum. The electron is
effectively closed into a L3 box. However, it is effectively not a box as it warps around its edges due to the interaction with its periodic images. From a
sufficiently large L ≳ 4Å distance, the H-atom in the supercell can be interpreted as a free non-interacting H-atom. By adding the atomic energy of the
employed soft PAW potential for H ion, which causes an artificial constant shift in the absolute total energy.

n2(r1, r2), which can be approximated by using the Slater-

determinant of the KS wave functions 𝜙 of the considered

system, so that n2(r1, r2) ≈
|||Φi j(r1, r2)

|||2, where Φi j(r1, r2) =
1√
2

(
𝜙i(r1)𝜙 j(r2)− 𝜙 j(r1)𝜙i(r2)

)
and then

Dab =
1

2

𝜇0

4𝜋

g2
e
𝜇2
B

S(2S − 1)

occupied∑
i > j

𝜒i j

× ∫ |||Φi j(r1, r2)
|||2 r2𝛿ab − 3rarb

r5
d3r1d

3r2, (25)

where ra,b =
(
r1 − r2

)
a,b

and 𝜒 ij is either 1 or −1 for KS i, j
states of the same or different spin channels, respectively.

Note that in DFT the spin-polarised KS states are not spin

restricted. Consequently, not only the unpaired KS states but

also the rest of the occupied states can contribute to the spin

density and the ZFS [131]. However, there is no guarantee in

spin-polarised KS DFT methods that the final solution will

be the eigenstate of the spin operator, and the discrepancy

in it is called spin contamination. In practice, spin contami-

nation may be small with using (semi)local DFT functionals
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but could be significant with hybrid DFT functionals. This

may result in a significant error in the approximation of the

two-particle spin density matrix. Biktagirov and co-workers

suggested a workaround for this problem [132] which is

illustrated for the S = 1 case. The idea is that if there is a spin

contamination in the electronic structure then the ms = 0

spin configuration with spin-polarised DFT should produce

non-zero contribution to the D-tensor, called Dms=S−1. The

bare D-tensor with ms = S spin-polarised DFT results in

Dms=S. Finally, the corrected D-tensor, D̃, is

D̃ = S

2
(D− D). (26)

Each of these ms = S − 1 configurations can be

obtained by changing the occupation of one of the half-filled

KS orbitals from spin up to spin down and subsequently

performing the self-consistent field calculation. It was found

that for divacancy defects in 4H SiC that the calculated

D-constants are at around 1.6 GHz but D̃ = 1.3 GHz are

obtained after correction, close to the experimental data

(see Ref. [132] and references therein).

The ZFS may have other contribution for S ≥ 1 systems

than electron spin-electron spin dipole-dipole (DSS) inter-

action as given in Eq. (25). As an example, we mention

here the neutral nickel-vacancy (NiV) defect in diamond

which has the same structure as SiV(0) defect discussed

above in this review paper. NiV(0) has also 3A2g ground

state similar to that of SiV(0) with six carbon dangling bonds

which constitute of the ground state electron wavefuntion.

The calculated DSS = 967 MHz = 0.004 meV which is typi-

cal for the third neighbour distance of dangling bonds in

diamond (see Table 2 below). However, this value is very

far from the observed D = 170 GHz = 0.703 meV (see Ref.

[133] and references therein). As 3A2g is an orbital singlet,

thus first-order spin–orbit interaction does not enter here.

However, second-order spin–orbit interaction between the

ground state triplet and excited state singlet states may play

Table 2: Spin–orbit and spin-spin contributions to the ZFS (in MHz) of the
NV centre and a set of group-IV–vacancy defects in diamond (compared
to available experimental data). All the defects have S = 1 ground state
with orbital singlet A2-type many-body wavefunction. The geometry and
electronic structure of group-IV–vacancy defects are akin to those of
SiV(0). See Ref. [132] and references therein.

Defect DSO DSS DSO+SS Experiment

NV(−) 6 2722 2728 2878
SiV(0) 480 570 1050 929
GeV(0) 1469 630 2099 2248
SnV(0) 10,763 630 11,393
PbV(0) 144,860 660 145,520

a role which can be selective towards the ms = 0 state of

the triplet, and it results in an effective energy shift of the

ms = 0 level and opening the gap between the ms = 0 and

ms = ±1 levels. To illustrate this using the first-order pertur-
bation theory, we consider the interaction of the 3A2g and
1A1g state that are linked by the parallel component of the

spin–orbit operator (ĤSO), 𝜆z, where

ĤSO =
∑
i

𝜆⊥

(
L̂i,xŜi,x + L̂i,yŜi,y

)
+ 𝜆zL̂i,zŜi,z. (27)

The energy gap between 3A2g and 1A1g is Θ before

applying ĤSO and the spin–orbit coupling between|3A2g ,ms = 0⟩ and 1A1g through 𝜆z is 𝜆0. In that case, the

first-order perturbation theory yields that |3A2g ,ms = 0⟩
level shifts downwards by 𝜆2

0
∕Θ. This means that

DSO =
𝜆2
0

Θ (28)

and it will be dominant over DSS. According to HSE06 calcu-

lations (see details in Ref. [133]), Θ ≈ 0.68 eV and 𝜆0 = 23.2

meV which results in DSO = 0.79 meV. This is much closer to

the experimental data at 0.703 meV.

One can go beyond the first-order perturbation the-

ory and consider the change in the wavefunction due to

spin–orbit interaction (second-order perturbation),

||Ψ⟩(1) = |3A2g ,ms = 0)⟩+ 𝜆0
Θ |1A1g⟩, (29)

whichmay result in amore accurate result than that by first-

order perturbation theory.

In general, the problem can be rephrased by consid-

ering the total energy of the system as a function of the

spin quantisation direction, Etot(n⃗𝜎). In a uniaxialrt: case,

themagnetic anisotropy energy is then defined as difference

between Etot(n⃗𝜎) obtained with ⃖⃗n𝜎) parallel (z) and per-

pendicular (⊥) to the anisotropy direction, ESO = Etot(z)−
Etot(⊥), and then the corresponding D-constant can be eval-

uated as DSO = ESO∕S2 for integer S and DSO = ESO∕(S2 −
1∕4) for half-integer S. For the case of NiV(0) with S = 1,

ESO should be calculated self-consistently. Etot(z) = Etot(↑↑)

calculation can be carried out with the usual ms = +1 set-
ting for the KS orbitals together with the scalar-relativistic

spin–orbit interaction. Etot(⊥) calculation is a bit tricky. The

two spins should be individually rotated by 90◦ about the

x-axis. Then the total energy of the system should be calcu-

lated by scalar-relativistic spin–orbit interaction. This total

energy is not identical to Etot(⊥) because the rotated-spins

system is not the exact ms = 0 eigenstate but a mixture of

ms = ±1 and ms = 0, so we label it by Etot(→→). The final

expression [133] is

DSO = 3
(
Etot(↑↑)− Etot(→→)

)
. (30)
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The self-consistent HSE06 DSO = 0.73 meV which is

0.06 meV deeper than the first-order perturbation theory

value at 0.79meV, and it brings the result closer to the exper-

imental data at 0.703 meV. This shows that self-consistent

spin–orbit calculation needed for obtaining accurate ZFS

for defects consisting of heavy ions. It is interesting to note

that self-consistent spin–orbit PBE calculations results in

DSO = 1.35 meV which is significantly larger than the HSE06

and experimental values. We note that Θ ≈ 0.25 eV with

PBE which explains the too large DSO with PBE as first-order

perturbation theory showed that DSO scales inversely

between the gap of the triplet and singlet levels [133].

These results clearly demonstrate [133] that the energy

gap between triplet (high-spin) and singlet (low-spin) levels

are highly critical in obtaining an accurate ZFS for defects

which consist of heavy ions.

The disasvantage of the self-consistent spin–orbit cal-

culations is that it can principally work for sufficiently large

spin–orbit energies, usually created by heavy atoms, so that

it does not fall below the numerical noise. For defects with

light atoms, one has to rely on the first-order perturbation

theory which was previously sketched for a special case

(diamond NiV defect) as an introduction to the problem.

Biktagirov and co-workers [134] implemented the per-

turbation theory based method to the GIPAW-tree of the

QuantumEspresso package. They apply collinear spin polar-

isation approximation with direction a = x, y, z. Then the

SO coupling in directiona
(
ĤSO
a

)
and b

(
ĤSO
b

)
contributes to

the total energy of the system in second-order perturbation

theory as

ESO
ab

=
∑
o,s,s′

Re
⟨
Ψs

o

|||ĤSO
a
Gs

′
(𝜖e)Ĥ

SO
b

|||Ψs
o

⟩
. (31)

Here the sum runs over the spin channels s and s′ and

the occupied states o ∈ s. Thereby, |Ψs
o
⟩ are the correspond-

ing unperturbed KS wave functions (obtained without SO

coupling), and Gs
′
(𝜖e) is the Green’s function of the empty

states e ∈ s′. In their implementation, explicit summation

over empty states is avoided by calculating Gs
′
(𝜖e) by pro-

jecting the empty states onto the valence bands. By this,

the approach becomes faster, numerically more stable, and

almost unaffected by the gap issues quoted above for the

(semi)local DFT functionals. On the other hand, the method

is not so intuitive as the majority of the interaction comes

from the closest high-spin low-spin energy states which can-

not be directly analysed by this method.

Biktagirov and co-workers applied their method to dia-

mond NV centre and group-IV–vacancy defects [134]. The

results are listed in Table 2. As can be seen the defect

with the lightest atom exhibits the smallest DSO whereas it

increases orders of magnitude with going to heavier atoms.

In the group-IV–vacancy defects DSS increases slightly as

the heavier atoms push the neighbour carbon atoms far-

ther from each other but the vast contribution comes from

DSO except for SiV(0) and partially for GV(0) where the

two contributions are similar. We note that PbV(0) shows

about DSO = 145 GHz for which self-consistent DSO calcula-

tion would result in a lower value.

Although, the calculated DSO is only 6 MHz for diamond

NV centre but it couples directly to the electric field unlike

DSS which couples to the electric field only indirectly via

changing the electron cloud so the spin density (e.g., Ref.

[135]). As a consequence, the field applied along the defect’s

symmetry axis, theDSO part dominantly drives the predicted

Stark coefficient, 0.034 GHz Å/V, into the experimentally

observed confidence interval of 0.035± 0.002 GHz Å/V (see

Ref. [134]). The simulation was carried in a (111) diamond

slab where the electric field was switched on during the

calculations of DSS and DSO.

Previously, we discussed the spin level structure in the

absense of external magnetic field. Nevertheless, it is highly

important to understand the coupling of defect spins to

external magnetic fields. The external magnetic fields could

be intentionally turned on for manipulation of the qubits

on one hand, and on the other hand, randomly distributed

electron or nuclear spins proximate to the defect qubits

could influence their longitudonal relaxation and coher-

ence times. Here, we discuss the issue of a constant macro-

scopic external magnetic field interacting with the defect’s

electron spin which can be generally described as

Ĥ = −B𝝁̂ = B𝜇BgS̃, (32)

where 𝝁̂ is the magnetic dipole momentum operator, 𝜇B is

the Bohr-magneton of the electron, g is the g-factor, and S̃

is a phenomenological pseudo-spin, which is set to the net

electron spin of the system, i.e., S̃ = 1∕2 for the Kramers-
doublet defect’s electron spin. Eq. (32) has the form of the

Zeeman formula for the free electron but ge = 2.0023 free

electron scalar value is substituted by g. Unlike the free

electron case, the defect’s electron spin feels the potential

of ions which is less symmetric than spherical, the defect’s

electron may have an effective angular momentum with

this condition, e.g., localized on the d-orbital, which can be

also influenced by the electron-phonon coupling. All of these

effects are packed into a single tensor g.

This issue is illustrated on the neutral vanadium defect

substituting the Si-site in 4H SiC which has become a very

promising spin-to-photon interface with a quantum mem-

ory and optical emission at the telecom wavelength (see

Refs. [136, 137] and references therein). The d-orbital of the

vanadium ion splits due to the C3𝑣 symmetric crystal field of
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4H SiC and then a double degenerate e-orbital occurs in the

gap localized on the d-orbital of vanadium, occupied by a

single electron. Because of the double degenerate d-orbital,

one can expect an effective spin–orbit coupling between

the orbital and the electron spin, where the low symmetry

crystal field will reduce the effective angular momentum

of the orbital called Stevens reduction factor (r) (e.g., see

the origin of this effect in more detail for group-IV–vacancy

defects in Ref. [138]). However, it is also known that this

is an E⊗ e Jahn–Teller system [139, 140] which can also

effectively reduce the angular momentum of the electron

orbit so the effective spin–orbit splitting known as Ham

reduction factor (p). As a consequence, 𝝁̂ in Eq. (32) can be

written as

𝝁̂ = −(𝜇B prL̂+ 𝜇BgeŜ) = −𝜇BgS̃, (33)

where the contributions of L̂ and Ŝ are separated, so it gives

an opportunity to unravel the microscopic origin of g. Csóré

and Gali carried out ab initio calculations [141] to determine

the r and p factors, so then g can be obtained as

g‖ = 2
(
geSz + Leff

z

)
= 2𝜇z

𝜇B

, (34)

g⊥ = 𝜇+ + 𝜇− + i(𝜇− − 𝜇+)

𝜇B

, (35)

where expectation values of the ladder magnetic dipole

moment operators are used (𝜇±) to express g⊥. In Eq. (34)

Sz and Leff
z

are expectation values of Ŝz and the effective

angular momentum operator, L̂eff
z

= prL̂z, respectively.

We note that the d-orbitals may require a special atten-

tion for accurate calculation, and indeed, HSE06 DFT func-

tional overlocalises the d state that should be corrected

[142]. For the heavy-atom defects one may assume that the

vast majority of the spin–orbit coupling, so the effective

angular momentum, comes from the single heavy-atom. In

this case, the analysis of the d-orbitals and the actual DFT

wavefunctions can reveal the deviation of the d-orbitals

from the spherical symmetry (see Table 3), so the r can be

computed. As an example, Ψ1 and Ψ4 as well as Ψ2 and

Ψ3 can be coupled in Eq. (34) where the corresponding

wavefunction coefficients can be extracted for the given

spin–orbit state in the KS DFT calculation. It was found that

the vanadium at one site of 4H SiC feels isotropic environ-

ment with small effective angular momentum which is an

order of magnitude larger in a truly axial-like environment

at the other site of 4H SiC. After solving the Jahn–Teller

Hamiltonian (see Refs. [30, 141]), the typical Ham reduction

factor is at about 0.6 which is significant, so the electron-

phonon coupling effectively reduce the interaction between

the defect’s pseudo-spin and the external magnetic field

Table 3: Kramers doublets formed by d-orbitals and the corresponding
single and double group irreducible representations under C3v
symmetry. We give widespread notations for double group irreducible
representations (irreps) and also the correspondingmj =ml +ms values.

Labels Orbitals
Irreps.

mj

Single Double

Ψ |d+2,+ 1
2
⟩; |d−2,− 1

2
⟩ 2E E 1

2
(Γ) ± 5

2

Ψ |d+2,− 1
2
⟩; |d−2,+ 1

2
⟩ 2E E 3

2
(Γ,) ± 3

2

Ψ |d+1,+ 1
2
⟩; |d−1,− 1

2
⟩ 2E E 3

2
(Γ,) ± 3

2

Ψ |d+1,− 1
2
⟩; |d−1,+ 1

2
⟩ 2E E 1

2
(Γ) ± 1

2

Ψ |d0,+ 1
2
⟩; |d0,− 1

2
⟩ 2A E 1

2
(Γ) ± 1

2

parallel to the symmetry axis of the defect. The final typical

values of g‖ are around 1.9.
For the calculation of g⊥ (Eq. (35)), the ladder magnetic

dipole operator was considered, 𝜇̂± that can couple state|mj⟩ to state |mj ± 1⟩, where mj = ml +ms. However, the

in-gap defect states transform as either E1∕2 (linear com-

bination of Ψ1 and Ψ4) or E3∕2 (linear combination of Ψ2

and Ψ3) with the mj values given in Table 3. Consequently,

𝜇̂± cannot couple neither Ψ1 andΨ4, norΨ2 andΨ3 there-

fore g⊥ = 0 in each case. Deviation from g⊥ = 0 may occur

due to secondary effects.

The same method was applied to the nickel defects

in diamond where the NiV(−) was identified by first prin-

ciples calculations as an excellent qubit candidate anal-

ogous to the group-IV-vacancy qubits in diamond [133]

which has an optical emission at about 1.4 eV and a highly

anisotropic g-tensor. In the literature, the NE4/AB1 EPR cen-

tre with S = 1∕2 spin and relatively isotropic g-tensor with
g‖ = 2.0027(2) and g⊥ = 2.0923(2) was previously associ-

atedwith NiV(−) which is linked to the 1.72-eV optical centre
(see Ref. [143] and references therein). Clearly, the NE4/AB1

centre should be associated with another nickel-related

defect in diamond. Thiering and Gali tentatively assigned

Nis(Ns)3(0) defect to this centre which has an unpaired elec-

tron on the a1 orbital strongly localized on Ni 3d orbitals.

In this case, the g-tensor is modified from the free electron

value because of the orbital moment of the Ni 3d states

as explained above for vanadium defects in 4H SiC. This

justifies to calculate the total orbital moment (⟨L̂x,y,z⟩) of the
defect within the PAW sphere of the ions where the largest

contribution comes from the Ni ion. Because of C3𝑣 sym-

metry ⟨L̂x⟩ = ⟨L̂y⟩ = ⟨L̂⊥⟩. The main components of the g-

tensor can be given as g‖ = ge + 2⟨L̂z⟩ and g⊥ = ge + 2⟨L̂⊥⟩.
Finally, g‖ = 2.0058 and g⊥ = 2.0942 are obatined, in good

agreement with the experimental data.
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3.5 Spin-phonon coupling:
temperature-dependent longitudonal
spin relaxation time and
magneto-optical parameters

3.5.1 Longitudonal spin relaxation time

A key parameter of qubits is the longitudonal spin relax-

ation time which is the characteristic time of flipping the

spin, and it is labeled by T1 in the literature. This sets the

absolute limit of the spin coherence time, i.e., the char-

acteristic quantum information processing operation time

of the qubit. It is of high importance to understand the

underlying microscopic processes. In nuclear spin physics,

the origin of spin flipping was identified as the interaction

between phonons and the spin which is manifested as a

highly temperature-dependent phenomenon; therefore, it

is also often called spin-lattice relaxation time. As T1 often

exponentially decay with elevating the temperature it is

imperative to characterise T1 as a function of temperature,

in order to explore the applicability of qubits as sensor

probes in biology which requires ambient conditions. Our

review paper only focusses to the recent advances on defect

qubits, in particular, on S ≥ 1 defect qubits.

Spin flipping processes require such interaction Hamil-

ton operator which contains spin shift operators. It can be

easily recognized that the spin-spin dipole-dipole interac-

tion in Eq. (24) contains single and double spin shift opera-

tors, e.g., ŜxŜz and ŜxŜx , respectively. Therefore, if the defect

qubit’s spin interact with other spin species then it causes

a spin flip of the defect qubit. The strength of dipole-dipole

interaction goes with inverse cube of the distance between

the spins. This interaction is weakly dependent from tem-

perature and it highlights that the longitudonal spin relax-

ation time is not necessarily a spin-phonon interaction. In

practice, this type of T1 process becomes only important at

elevated temperatures for diamondNV centre if the concen-

tration of defect spins is relatively high, e.g., 4–8 particle per

million (ppm) in diamond [62].

Ivády applied the cluster-correlation expansion (CCE)

[144, 145] tomodel the interaction of the central diamondNV

centre’s electron spin with other electron spins such as the

environmental NV centres, nitrogen donor spins (labelled

as P1 EPR centre), and the 13C nuclear spins also as a func-

tion of the external magnetic field and strain [62]. The CCE

approach will be shortly discussed in the next chapter.

We note that another study only restricted this inves-

tigation to the bath of 13C nuclear spins but taking only the

dipolar interactions into account with far 13C nuclear sites

[146]. However, the bath of 13C with Fermi-contact hyperfine

terms cannot be ignored for accurate simulations which

calls for ab initio simulations.

Ivády calculated the hyperfine tensors for 13C isotopes

by HSE06 DFTmethod in a 1728-atom simple cubic supercell

[62]. Since the hyperfine tensors should be determined at

large distances from the defect site this required a special

approach in order to avoid finite size effect problems. Ivády

utilised a real space grid combined with the PAW method

to calculate hyperfine tensors. The Fermi contact term,

dipole-dipole interaction within the PAW sphere, and core

polarisation corrections are calculated within the PAW

formalism from the convergent spin density. The dipolar

hyperfine contribution from spin density localized outside

the PAW sphere is calculated by using a uniform real

space grid. This procedure enabled to obtain hyperfine cou-

pling tensors excluding effects from periodic replicas of

the spin density due to the periodic boundary condition.

Additionally, hyperfine tensors for atomic sites outside the

boundaries of the supercell were calculated by neglecting

Fermi contact interactions with achieving a smooth transi-

tion in the hyperfine constants at the boundary of the two

approaches.

Ivády used the extended Lindbladian equation in order

to simulate the spin dynamics of the central spin and its

relaxation rate 1/T1 in materials where the electron spin

density cannot be ignored beside the nuclear spin bath [62].

In this model the total spin relaxation rate (1/T tot
1
) is

1

T tot
1

= 1

TP1
1

+ 1

TNV−basal
1

+ 1

T
NV−par
1

+ 1

T13C
1

, (36)

where “NV-basal” and “NV-par” label such NV centres in the

environment which have other and parallel symmetry axis

with that of the central NV centre. Finally, it was found that

the environmental NV centres have a dominant effect on

the spin relaxation rate [62]. At special setting of the mag-

netic fields, either ground state level anticrossing (GSLAC) or

excited state level anticrossing (ESLAC), the relaxation rate

is accelerated because the P1 centres and the nuclear spins

can easily induce spin flip-flop processes that were other-

wise protected by the energy gap between the electron spin

levels of the NV centre. At GSLAC, the spin-polarisation of

the electron spin and the coupled nuclear spin also changes

that can be observed by the change of the PL intensity as the

external magnetic field is swept around the GSLAC region

[147]. This modelling also rationalised the photo-electric

read-out process of the single 14N nuclear spin of the NV

centre at ESLAC condition [148].

TP1
1

time was further investigated in detail [149] in

which they considered the microscopic structure of the P1
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centres in diamond, namely, the strong Jahn-Teller distor-

tion will generate four different symmetry ⟨111⟩ axes in

diamond, and the 14N nitrogen hyperfine tensor to the P1

centre’s electron spin adapts to these orientations. As a con-

sequence, the spin flip-flop processes between the P1 pairs

are reducedwith respect to the case of unrealistic aligned P1

centres [149].With taking themicroscopic structure of the P1

centres into account, the calculated spin relaxation times of

the diamond NV centre exhibits a clear linear dependence

on P1 concentrations on a log scale with a slope of −1.06, in
excellent agreement with some experimental data (see Ref.

[149] and references therein).

This theory was also applied to the divacancy qubit in

4H SiC by considering other divacancy spins (S = 1), neg-

atively charged Si-vacancy spins (S = 3∕2), nitrogen donor

spins (S = 1∕2), as well as 13C and 29Si I = 1∕2 nuclear spins
in the environment, also as a function of the external mag-

netic field [150]. It was found that the cross-relaxation accel-

erate spin flip-flop rates again in the region of GLSAC and

ESLAC magnetic fields for each considered environmental

spins. At zeromagnetic field a simple relation was found for

the interaction between N-donor and the central divacancy

spin,
1

T1
= 𝛽C2, (37)

where 𝛽 = 1.6 × 10−35 Hz/cm−6 and C is the concentration

of the N-donor. It is noted that nitrogen implanted samples

the distribution of nitrogen donor is not homogeneous, and

then the “concentration” should be considered near the

target divacancy spin which was created as a result of the

implantation [150]. The theory was also employed to the

Si-vacancy S = 3∕2 qubit in 4H SiC [151]. In this case,

Bulancea-Lindvall and co-workers considered the interac-

tion the Si-vacancy qubit spin with S = 1∕2 defects, e.g.,

N-donors. Si-vacancy in 4H SiC has minor ZFS, thus at a

given externalmagnetic fieldwith similar Zeeman shifts the

two spin systems can be effectively coupled by dipole-dipole

interaction unlike the case of divacancy with S = 1 spin

and high ZFS (≈1.3 GHz). On the other hand, 29Si nuclear

spins at natural abundance (4.5%) exhibit a considerable

hyperfine splitting when they interact with the Si-vacancy

qubit spin which will supress the cross-relaxation between

the Si-vacancy qubit spin and the S = 1∕2 spins in the envi-
ronment. By isotope purification (reducing the concentra-

tion of 29Si isotopes in 4H SiC), the cross-relaxation so the

spin flip-flop process accelerates and the spin relaxation

time of the Si-vacancy qubit significantly reduces when the

concentration of S = 1∕2 spins are high (≈1015 − 1018 cm−3).

This surprising result was unraveled by these simulations

with using ab initiohyperfine tensors in the parametrisation

of the interaction Hamiltonian.

High quality materials with single defect spins and low

concentration of nuclear spins do not experience spin flip-

flop events with electron spins in the environment, and the

flip-flop processes caused by nuclear spins are only observ-

able at special conditions (e.g., external magnetic field is set

to GSLAC condition). In this case, the spin-phonon coupling

is responsible for T1 and it becomes strongly temperature

dependent. In the case of molecules, vibrations are indeed

responsible behind the spin flipping process. In a recent

review paper [152], the ab initio theory and its application

to molecules have been presented in detail. The formulas

and basic equations apply to defect qubits too which are not

reiterated here in detail.

Regarding the temperature dependence of T1 = 1∕Γ
of defect qubits, the most studied one is the diamond NV

centre [31, 153–155], and the first ab initio results have

been reported for this defect qubit because the theories

could be well tested on the accurately recorded exper-

imental data. In recent studies [31, 156], the ms = ±1
levels of 3A2 ground state was split by a small exter-

nal magnetic field aligned parallel to the symmetry axis

of the defect (≈145 MHz), and they could observe both

single-flip rates (|0⟩ ↔ |± 1⟩, labelled by Ω) and double-

flip rates (|+ 1⟩ ↔ |− 1⟩, labelled by 𝛾) and found that

𝛾 > Ω at any observed temperature (T > 125 K) and 𝛾 ≈
2 Ω at room temperature. In the temperature region

of 125 K and 400 K, the rates increase from ≈1 Hz

to ≈200 Hz. At this temperature region only phenomeno-

logical theory was considered using an empirical model in

which the high-temperature behavior is characterized by a

term that scales with temperature as T5 [153, 154], which

may arise due to Raman scattering of low-energy acoustic

phonons which are weakly coupled to the spin via first-

order interactions. However, insights from ab initio simula-

tions should verify this model including the magnitude of

the double-flip rates.

The spin relaxation rate may be expressed as

Γ = Γ0 + Γ(1)
1
(T)+ Γ(2)

1
(T)+ Γ(1)

2
(T)+… , (38)

where the superscript refers to the order of the spin-phonon

interaction (i.e., terms with superscript 1 or 2 are linear

or quadratic in the atom displacements respectively) and

the subscript refers to the order in perturbation theory.

Γ0 is a sample-dependent constant term arising from spin-

spin interactions that was discussed above. Γ(1)
1
describes

the absorption or emission of a single resonant phonon by

the spin. Because the ZFS energy of the NV ground-state

triplet is small in comparison to typical phonon energies
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in diamond, this process is only relevant at subkelvin tem-

peratures [155]. Γ(1)
2

corresponds to the Raman-scattering

of low-energy acoustic phonons via first-order interactions.

However, we will present below [156] unlike for other spin

systems (e.g., several coordination compounds as recently

shown in Ref. [157]), first-order spin-phonon interactions

provide only negligible contributions to Raman scattering

for the NV centre in diamond. The major effect comes from

Γ(2)
1
(T) so the quadratic displacements of ions.

In order to calculate Γ(2)
1
(T), the spin-phonon matrix

elements should be obtained by exploiting the dependence

of the D-tensor on the normal coordinates (Q) as

⃖⃗D(R) = ⃖⃗D(R = 0)+
∑
i

𝜕⃖⃗D

𝜕Qi

|||||R=0Qi

+ 1

2

∑
i j

𝜕⃖⃗D

𝜕Qi𝜕Qj

||||||R=0QiQj, (39)

where the coefficients in Eq. (39) were extracted from VASP

PBE calculations as implemented by Thiering and Gali [156].

In order to evaluate the second-order derivatives, only the

diagonal terms were considered which satisfy i = j and

distort the C3𝑣 symmetric atomic positions by all degen-

erate ex , ey phonon modes of the supercell by
√
(ΔR)2 =

0.1 Å
√
a.m.u.. The second-order spin-flipping matrix ele-

ments Vll
+0 and Vll

+− then determine the D-tensor accord-

ing to the symmetry-adapted expression in which only the

quadratic terms are expresse here as

⎛⎜⎜⎜⎜⎝

− 1

3

− 1

3

+2

3

⎞⎟⎟⎟⎟⎠
∑
i

3Vii
00
R2
i
+

∑
l

V ll
+−

×
⎡⎢⎢⎣
⎛⎜⎜⎝
1

−1
⎞⎟⎟⎠
(
X2
l
− Y 2

l

)
+

⎛⎜⎜⎝
1

1

⎞⎟⎟⎠2XlYl
⎤⎥⎥⎦

+
∑
l

√
2Vll

+0

⎡⎢⎢⎣
⎛⎜⎜⎝

1

1

⎞⎟⎟⎠
(
X2
l
− Y 2

l

)

+
⎛⎜⎜⎝ 1

1

⎞⎟⎟⎠2XlYl
⎤⎥⎥⎦ (40)

where Ri, Xl and Yl are the dimensionless coordinates (not

normal coordinates) for the phononmodes at energy ℏ𝜔i or

ℏ𝜔l. We note that while the index l only covers the emodes

once, the index i covers all a1, a2, ex , ey modes and thus

runs over the e modes twice. Eq. (40) can be employed to

transform it into the spin-phonon interaction V̂ . By expicitly

writing only the quadratic terms, it reads as

V̂ = ⃖⃖S ⃖⃗D ⃖⃗S

= D
(
Ŝ2
z
− 1

3
S(S + 1)

)
+

∑
i

3Vii
00

(
Ŝ2
z
− 1

3
Ŝ(Ŝ + 1)

)
R̂2
i

+
∑
l

V ll
+−

[(
Ŝ2
x
− Ŝ2

y

)(
X̂2
l
− Ŷ 2

l

)

+
(
ŜxŜ y + Ŝ yŜx

)(
X̂lŶ l + Ŷ lX̂l

)]
+

∑
l

√
2Vll

+0

[(
ŜxŜz + ŜzŜx

)(
X̂2
l
− Ŷ 2

l

)

+
(
Ŝ yŜz + ŜzŜ y

)(
X̂lŶ l + Ŷ lX̂l

)]
, (41)

where ⃖⃖S = (⃖⃗S)† =
(
Ŝx Ŝ y Ŝz

)
. The dimensionless coordi-

nates are expanded in terms of the phonon creation and

annihilation operators: R̂i =
(
b†
i
+ bi

)
∕
√
2 and {X̂, Ŷ}l =(

b†{X,Y}l + b{X,Y}l

)
∕
√
2.

As a next step for defining the equations for the rates,

one can apply RPA for these processes so it is assumed

that the consequtively absorbed phonons are not coherent.

Furthermore, one can further simplify the equations by

considering the fact that the ZFS energy of the diamond NV

centre is much smaller than the typical phonon energies

coupled to the spin. The key matrix elements are the first-

order spin-phonon coupling coefficientsVl
msm

′
s

from thefirst-

order spin-phonon interaction V̂ (1) = ∑
lmsm

′
s
V l
msm

′
s

(
a†
l
+ al

)
and the second-order spin-phonon coupling coefficients

V̂ (2) = ∑
ll′msm

′
s
V ll′

msm
′
s

(
a†
l
+ al

)
(a†

l′
+ al′ ) from Eq. (41). The

equations involve Dirac 𝛿 functions for conserving the

energy in the process. However, finite size DFT supercell

calculations do not produce continuous phonon density of

states, so it is required to use a Gaussian convolution for

Vl
msm

′
s

and Vll′

msm
′
s

which results in first-order F(1)
msm

′
s

(ℏ𝜔) =∑
l|Vl

msm
′
s

|2𝛿(ℏ𝜔− ℏ𝜔l) and second-order F
(2)

msm
′
s

(ℏ𝜔,ℏ𝜔′) =∑
ll′ |Vll′

msm
′
s

|2𝛿(ℏ𝜔− ℏ𝜔l)𝛿
(
ℏ𝜔′ − ℏ𝜔l′

)
spectral functions

in the continuum limit, respectively [156].

Finally, the appropriate spin relaxation rates are

Γ(1)

2(msm
′
s)
(T) = 4𝜋

ℏ

∑
m′′
s

∞

∫
0

d(ℏ𝜔)nB(𝜔)[nB(𝜔)+ 1]

F(1)
msm

′′
s

(ℏ𝜔)F(1)
m′′
s m

′
s

(ℏ𝜔)

(ℏ𝜔)2
(42)
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and

Γ(2)

1(msm
′
s)
(T) = 4𝜋

ℏ

∞

∫
0

∞

∫
0

d(ℏ𝜔)d(ℏ𝜔′)nB(𝜔)

[
nB(𝜔

′)+ 1
]
F(2)
msm

′
s

(ℏ𝜔,ℏ𝜔′)𝛿

(ℏ𝜔′ − ℏ𝜔), (43)

respectively. The temperature dependence enter via the

Bose–Einstein occupation function (nB) of the phonons at

𝜔,𝜔′ energies. In the current implementation [156], ℏ𝜔′ =
ℏ𝜔 constraint was employed in Eq. (43) that also enforces

l = l′ and so Vll
msm

′
s

diagonal matrix elements were consid-

ered in the reported ab initio calculations [156].

The numerical ab initio calculations provided very slow

rates for Γ(1)

2(msm
′
s)
. The basic reason behind this observa-

tion is that ℏ𝜔)2 in the denominator completely suppresses

F(1)
msm

′′
s

because the largest values of F(1)
msm

′′
s

are typical in the

range of 1–10 MHz whereas the relevant phonon frequen-

cies are in the order of 10 THz. This can be rationalised by

noting that the first-order interaction strength is roughly

DΔu∕a, where D is the zero field splitting (2.8 GHz), Δu
is the atomic displacement, and a is the nearest neighbor

distance in diamond. In contrast, contributions to Raman

scattering from second-order interactions scale quadrati-

cally with the second-order interaction strength, approxi-

matelyD(Δu∕a)2. Thus the ratio between the first-order and
second-order contributions is on the order of (D∕ℏ𝜔)2 ∼
10−8, indicating that Raman scattering due to first-order

interactions canbeneglected for the diamondNVcentre and

other S = 1 defects in diamond [31].

The calculated second-order spin-phonon coupling

coefficients are depicted in Figure 8. Twobroadpeaks canbe

observed at certain phonon frequencies that are associated

with the motion of the carbon dangling bonds so the spin

density (see Ref. [156] and references therein). As the fre-

quencies of the effective phonons are much higher than the

thermal energy of the measurement temperature this will

scale as Orbach-process. Ab initio simulation revealed that

two effective phonon frequencies exist, thus Γ = 1∕T1 can
be described as a double Orbach-process, where the higher

effective frequency plays a role at elevated temperatures

[156]. The theory also well describes the double-flip transi-

tion and the appropriate rate equations, and both processes

are double Orbach-processes. The double Orbach-process

parameters could be well fitted to the experimental data

with providing 68.2 meV and 167 meV effective phonon fre-

quencies (gray lines in Figure 9) which agree well with the

features of the calculated spin-phonon spectral functions.

Insights from theory provided a physically well motivated

model for the spin-lattice relaxation times of diamond NV

centre. The calculated rates are depicted in Figure 9. The

agreement between theory and experiment for 𝛾 is very

good whereas a larger discrepancy is observed for Ω. It
was hypothesized that the discrepancy in the predicted Ω
is due to the exclusion of combinations of modes for which

l ≠ l′, as combinations of modes with different symmetries

likely account for significant matrix elements associated

with pairs of different spin operators, which correspond

to the single-quantum transitions. It was also discussed

that F(2)
00
(ℏ𝜔,ℏ𝜔) in Figure 8 plays an important role in

the phonon-assisted decoherence process, also showing a

double Orbach-process character, which has not yet been

recognized in previous works [156]. This will be discussed

in the next chapter.

3.5.2 Temperature shifts of magneto-optical

parameters

Understanding the temperature shifts of magneto-optical

parameters of defect qubits is of high importance in various

aspects. One of the most obvious issues is the temperature

sensing with defect qubits at the nanoscale which requires

temperature characterisation of the basic magnetic param-

eters. Again, the diamondNV centre is themost investigated

defect qubits in this regard (see Ref. [30] and references

therein). As an example, the temperature dependence of

Figure 8: Ab initio calculation of the second-order spin-phonon coupling
coefficients (thin lines) and spectral function (thick lines) for a single
diamond NV centre in a 512-atom supercell. NV spin-phonon dynamics
are characterised by the magnitudes of the matrix elements Ŝz Ŝ+ (blue),
Ŝ2+ (red), and Ŝ

2
z
− 1

3
Ŝ2 (black), which cause single-flip relaxation,

double-flip relaxation, and dephasing respectively. The spectral function
display peaks near the values of 68.2(17) and 167(12) meV extracted from
the fit of the two-phonon Orbach-process model to the experimental
data (gray lines and± 1𝜎 intervals, see text).
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(a) (b)

Figure 9: Comparison between ab initio theory and experiment. (a) Dotted lines show relaxation rates obtained by evaluating Eq. (43) with the ab initio
second-order spin-phonon spectral function shown in Figure 8. Dashed lines show fit of the analytical model (see text) to the experimental data with
sample-dependent constants set to zero. (b) Ratio of the ab initio relaxation rates to the analytical model rates. In the phonon-limited regime (gray
line) the ab initio theory underestimates the experimentally measured relaxation rates by approximately 16% for 𝛾 and a factor of 8 forΩ at room
temperature.

the ZFS of the diamond NV centre was modelled by the

thermal expansion [158] which results in an increase in the

distance between carbon dangling bonds so the decrease

in the ZFS parameter (D-constant). However, the obtained

coupling coefficient was much lower than the experimental

data. Recently, Tang and co-workers pointed out [159] that

the thermal expansion model covers a “third order” effect

as themeasuredmagneto-optical entity 𝜈 will be a statistical

average of the phonon mode distribution as

⟨𝜈⟩ = ⟨𝜈0⟩+∑
i

[(
𝜕𝜈

𝜕Qi

)
0

⟨Qi⟩+ 1

2

(
𝜕2𝜈

𝜕Q2
i

)
0

⟨Q2
i
⟩
]
, (44)

where {Qi} are the normal coordinates of the phonons

wihtin quasi-harmonic approximation. In the Born-

Oppenheimer approximation, the global energy minimum

results in ⟨Qi⟩ = 0 (forces are zero) and it becomes non-zero

because of violating of the harmonic approximation, i.e.,

anharmonicity of the phonons. This can be taken into

account in the thermal expansion of the lattice. However,

the second term is then expected to be dominating. As⟨Q2
i
⟩ = ℏ

Mi𝜔i

(nB(𝜔i)+ 1

2
) with nB Bose–Einstein occupation

function Eq. (44) can be expressed as

⟨𝜈⟩ = 𝜈0(a)+
∑
i

1

2

𝜕2𝜈

𝜕Q2
i

ℏ

Mi𝜔i

(
nB(𝜔i)+

1

2

)
, (45)

where Mi is the mode-specific effective mass and 𝜈0 is cal-

culated at the lattice constant a which corresponds to the

thermal expansion at the given temperature. The spectral

function was defined as

Si(𝜔) =
∑
j

1

Mj

𝜕2𝜈

𝜕Q2
j

𝛿(𝜔−𝜔i). (46)

The second derivative was calculated numerically as

implemented in VASP in a 128-atom face centred cubic

diamond supercell with 3 × 3 Monkhorst–Pack k-point

sampling and DFT PBE functional [159]. The theory was

applied the D-constant, the hyperfine constant Azz and the

quadrupole moment Qzz of the
14N, and the ZPL energy of

the diamond NV centre [159]. It was found that temperature

dependence of the D-constant could be well reproduced

where the dynamical effects play a major role, although,

the termal expansion effect cannot be neglected. The ZPL

energy shifts were well reproduced too by this theory. How-

ever, it is unexpected that the calculated spectral function

for D-constant does not show up a peak at around 70 meV

phonon energy in the study of Tang and co-workers [159],

which is quite visible in the F(2)
00
spectral function in Figure 8

from Thiering and Gali in Ref. [156]. The temperature shift

of Qzz is also well-reproduced (see Ref. [159] and references

therein) and good agreement can be anticipated for Azz in

comparison to the few experimental data points available

to date. All-in-all, this theory seems to be highly promising

with good predictive power after achieving the convergent

parameters in the ab initio simulations.
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3.6 Ab initio theory of coherence of defect
spins in solids

The coherence time of the defect qubits’ spin corresponds

to a decoherence of the transverse nuclear spin magneti-

sation which is generally labelled by T2. It is also called

spin-spin relaxation time as usually the interaction of the

defect qubit’s electron spinwith the nuclear spin bath limits

its value in high quality (small electron spin bath) mate-

rials. These nuclear spins do not precess with the same

frequency in real materials which can lead to a distribution

of resonance frequencies around the ideal. Over time, this

distribution can lead to a dispersion of the tight distribution

of magnetic spin vectors, and loss of signal. This is called

the dephasing time, labelled as T∗
2
, which is associated with

static or slowly varying inhomogeneities in a spin system.

T∗
2
is the characteristic decay time of a free-induction-decay

(FID) measurement, wherein a series of Ramsey sequencies

(𝜋∕2 pulse – 𝜏 – 𝜋∕2 pulse) are performed with vary-

ing free-precession interval 𝜏 , and an exponential decay

is observed. Dephasing from fields that are static over the

measurement duration canbe reversedby application of a𝜋

pulse halfway through the free-precession interval invented

by Erwin L. Hahn [160]. In this protocol, the 𝜋 pulse alters

the direction of spin precession, such that the phase accu-

mulated due to static fields during the second half of the

sequence cancels the phase from the first half. The spin

phase is then refocused which appears as an echo signal

in the spin resonance spectrum, i.e., Hahn-echo signal. The

decay of this echo signal, due to magnetic fields that fluctu-

ate over the course of the measurement sequence, is char-

acterized by the coherence time T2. In practice, T2 exceeds

T∗
2
by orders of magnitude.We further note that the phonon

induced spin relaxation, longitudonal relaxation time T1, as

an incoherent process places hard limits on the maximum

achievable coherence times, where the theoretical limit is

T2 = 2T1.

The calculation of the hard limit of T2 at a given tem-

perature and electon/nuclear spin bath requires the calcu-

lation of T1 as described in the previous chapter. For S = 1

defect qubit’s spin, the |± 1⟩ spin states may split due to the
low-symmetry of the defect or an external small constant

magnetic field. In recent studies [31, 156] it has been found

for the diamond NV centre that the double-flip transition

(𝛾 rate) is even faster than single-flip transition (Ω rate)

induced by phonons. However, 𝛾 was neglected in previous

studies (see Ref. [156] and references therein), thus T2 have

likely been overestimates which should be rewritten as

T (SF)
2,max

= 2

3Ω+ 𝛾
(47)

for a superposition in the {|0⟩, |± 1⟩} single-flip subspace
and

T (DF)
2,max

= 1

Ω+ 𝛾
. (48)

for a superposition in the {|− 1⟩, |+ 1⟩} double-flip sub-

space [161, 162].

If spin-lattice relaxation does not interfere then the

central spin (qubit’s electron spin) and the (nuclear) spin

bath interaction and their dynamics should be simulated

for obtaining the spin dephasing and decoherence times

where the simulations should consider how the qubit’s spin

is controlled and driven for yielding T∗
2
and T2 times. This is

a highly complex process because the qubit’s control starts

with the initialisation of the qubit, i.e., spin-polarisation of

the qubit’s electron spin and the spin-polarisation may be

transferred to the nuclear spin bath depending on the qubit

control protocol. At certain magnetic fields, some nuclear

spin levels could drive into resonance to the electron spin

levels, e.g., GSLAC condition, which can significantly change

the dynamics of the defect qubit’s electron spin coupled to

the spin bath.

For defect qubits, the CCE approach has been success-

fully applied that was originally invented by Yang and Liu

[144, 145]. It was originally applied to calculating the pure

dephasing of the diamond NV centre’s electron spin in the

large detuning regime. However, the central spin flip must

be considered when the energy relaxation of the diamond

NV centre is involved in the nearly-resonant regime, i.e.,

GSLAC condition [146]. Often, this is called generalised CCE

or gCCE approach. To briefly sketch the problem and the

neccessity of approximations, an open system  that con-

sists of a central spin s0 and a number of bath spins si, where

i = {1 … n}. The master equation of the open system  to

obtain the density matrix 𝜌 can be written as

𝜌̇ = − i

ℏ
[H0, 𝜌 ]+ (𝜌 ), (49)

where the Hamiltonian H0 can be written as

H0 = h0 +
n∑
i=1

(hi + h0i), (50)

where h0 is the Hamiltonian of the central spin, hi is the

Hamiltonian of the coupled spin si, andh0i describes the cou-

pling of the central spin and the bath spin si. The last termon

the right-hand side of Eq. (49) accounts for environmental

effects that are not included in  , through the Lindbladian
 thatwe already discussed above. One can define h0 and h0i
such awaywhich include the drivingfields or other external

fields like a constant magnetic field or strain field.

The size of the problem, i.e., the dimension of the

Hilbert space, increases exponentially with n, which makes
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Figure 10: Cluster approximations of a many-spin system  . (a)  consists of a central spin s0 and number of n coupled spins si that couple only to the
central spin s0. (b) First-order cluster approximation of  (CCE1) that comprises n+ 1 cluster systems c0 and ci . c0 includes the central spin s0 only,
while ci for i ≠ 0 includes a pair of spins, s0 and si . (c) Second-order cluster approximation of  (CCE2) that comprises n/2+ 1 cluster systems cI , where
each cluster system contains s0 and two coupled spins sI where 1 ≤ I ≤ n/2. c0 includes solely the central spin s0.

an exact solution unfeasible for large n. To model the

dynamics of  it is divided into a cluster  of overlapping

cluster systems, where is the order of the cluster approx-

imation as illustrated in Figure 10. All of the subsystems

are artificially coupled then together through a modified

Lindbladian superoperator

(bil) =
∑
l

ḃil

Tr
(
C†
il
Cil𝜌ci

)
×

(
Cil𝜌ciC

†
il
− 1

2

(
𝜌ciCilC

†
il
+ C†

il
Cil𝜌ci

))
(51)

added to themaster equation of each subsystem, where and

C0l and Cil are Lindblad operators. We consider C0l and Cil
operators that describe solely spin flip-flop transitions of the

central spin. Here bil are time-dependent rates determined

from the flip-flops occurring in subsystem other than i. The

Lindbladian formalism ensures that all the spin flip-flops

occurring in the different subsystems is carried out in all

subsystems. This way the central qubit replicas evolve iden-

tically in all subsystems. Due to the extended Lindbladian,

spin momentum is conserved no longer in the subsystems

but in the whole cluster approximation. This way the clus-

ter approximation together with the Lindbladian coupling

describes the dynamics of the whole qubit-spin bath system

approximately. Considering the dynamics, themain approx-

imation of the method is the neglect of the intra spin bath

coupling and entanglement that may affect the dynamics

of the central qubit through spin diffusion as well as con-

structive and destructive interference that can give rise to

echo signals and dark states, respectively. These limitations

can, however, be systematically lifted by includingmore and

more environmental spins in the subsystems of the cluster

approximation.

In the CCE approach, the corresponding Hilbert-space

can be significantly truncated that are coupled to each other

in which the density matrix of the central spin can be con-

sistently calculated. As we increase the order of expansion,

the results should converge to the theoretical limit, in good

analog to the CI expansion method for approaching the

accurate correlation energy of the many-electron system.

For instance, Yang and co-workers found for the diamond

NV centre in the nuclear spin bath of remote 13C nuclear

spins [146] that gCCE4 and gCCE5 results agree, thus gCCE4

can considered as absolutely convergent for this particular

system.

Seo and co-workers [163] applied CCE method for dia-

mond NV centre and divacancy qubits in 4H SiC for under-

standing the spin dynamics between the qubit’s electron

spin and the nuclear spin bath with assuming natural abun-

dance of 13C at 1.1% and 29Si at 4.5%. The authors ignored

the Fermi-contact term in the hyperfine interaction between

the electron spin and the nuclear spins. A constantmagnetic

fieldwas applied in the simulation.Wenote that because not

the gCCE method was applied in Ref. [163], therefore, these

simulations could not well describe the spin dynamics for

the magnetic fields at GSLAC and ESLAC conditions of the

systems, which results in a rapid decrease of the coherence

times. This was later done by gCCE method for divacancy

qubits in 4H SiC [164]. Seo and co-workers found that CCE2

level of theory well converges with the afore-mentioned

conditions and the radius of the spin bath at around 50 Å

from the defect qubit’s spin provides convergent results.

At the CCE2 level, the distance between interacting nuclear

spins was set to 8 Åwhich convergedwell [163]. It was found

that ensemble averages over 50 samples are good enough

to produce numerically converged results. For the magnetic

fields above 30mT they found a simple relation between the

T∗
2
times and the concentrations of 13C and 29Si isotopes in

the SiC crystal showing that the 13C and 29Si nuclear spins are

completely decoupled due to the different Zeeman-splitting

for these two species which hinders spin flip-flop processes
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between these types of nuclear spins. As a consequence,

the spin dephasing times of divacancy qubits in 4H SiC are

equal or greater to that of diamond NV centre despite the

larger density of I = 1∕2 nuclear spins in SiC than that in

diamond [163]. This conclusion was earlier achieved in a

similar study applied to the Si-vacancy qubit (S = 3∕2) in 4H
SiC [165] as we quote below. For a given cut-off distance Rc,

the number of total nuclear spins (NC + NSi) surrounding

the Si-vacancy centre in SiC is about 2.6 times as large as that

of the diamond NV centre, due to the larger 29Si abundance.

The reasons for the T∗
2
time of Si-vacancy centres not being

reduced by the same factor are as follows: (i) the C-Si bond

length 1.89 Å in SiC is larger than the C–C bond length 1.54

Å in diamond, which implies the volume density of nuclear

spins is reduced by a factor of (1.89∕1.54)3 = 1.8; and (ii)

about 80% of the nuclear spins in the bath are 29Si, which

have smaller gyromagnetic ratios than 13C (|𝛾C∕𝛾Si| ≈ 1.3)

and, as a result, produce weaker hyperfine fluctuations.

These two factors compensate the larger natural abundance

of the 29Si, and results in similar T∗
2
times of defect qubits in

SiC and NV centres in diamond.

In a subsequent publication, the spin dephasing times

were calculated for hypothetical defect spins with no Fermi-

contact hyperfine interactionwithmoderatemagnetic fields

(0.1–0.5 mT) in 2D materials [166] by applying the same

method. The subject of this study was later extended

to 12,000 materials in which both spin dephasing (free-

induction decay) and spin coherence (Hahn-echo) times

were considered at large constant magnetic fields (e.g., 5 T)

[13]. With these simulation conditions, Seo and co-workers

[166] found for hBN and molybdenum-disuplhide (MoS2)

materials that the spin dephasing time in bulk hBN should

be around 18 μs for natural abundance of 11B and 10B iso-

topes whereas it is about 1.18 ms in MoS2. They attributed

the orders ofmagnitude difference to partially to the variant

of nuclear spin density in the two materials and partially to

the relatively small gyromagnetic constant of Mo isotopes

[166]. By replacing all 11B by 10B should result in >2 factor

improvement in the spin dephasing time in hBN, according

to the model. Kanai and co-workers [13] concluded that SiC

and Si could reachT2 ≈ 5ms beating evendiamond (≈4ms).
They identified various chalgogenides which have very long

intrinsic spin-spin related T2 times at magnetic field of 5 T

such as CeO2 (≈179 ms), CaO (≈77 ms), 𝛼-quartz (≈8.5 ms),
wurtzite ZnO (≈4.2 ms), and MgO (≈1.33 ms). It should be

mentioned that the T∗
2
time can be long in a common 2D

material, WS2 (≈11 ms). These results should be interpreted
with the caveat that the temperature-dependent spin-lattice

relaxation times and other limiting factors are not included

in that study, thus these results might be valid at relatively

low operation temperatures for many materials.

Although, the results on spin dephasing and coherence

times with hypothetical defects are somewhat indicative

for classifying materials, the defect qubit’s spin relaxation

properties may crucially depend on the local environment

induced by the defect in terms of ZFS, strain fields and

spin density distribution. The last entity is in particular

important for materials with dense nuclear spin bath. In

that case, the Fermi-contact term in the hyperfine tensor

is dominant, and such an effect cannot be fully neglected

even in diamond or SiC with relatively dilute nuclear spin

densities.

For S = 1 defects the case of GSLAC or ESLAC condition

was already mentioned where a simple external parameter,

magnitude and direction of the constantmagnetic field,may

drastically change the coherence properties of the defect

qubits, e.g., the interplay between the actual D-constant of

the defect spin and the strength of the constant magnetic

field [62, 147, 148, 164]. Another interesting example is the so-

called clock-transition quantum optics protocol which may

be realized by low-symmetry defect spins, e.g., basal diva-

cancy defects in 4H SiC, where the |+ 1z⟩ and |− 1z⟩ levels
naturally splits (see Refs. [164, 167] and references therein).

Combining the E = 18.4 MHz splitting with a strong longitu-

dinal splitting (D = 1.334 GHz), the ZFS tensor leads to an

avoided crossing of electron spin levels at zero magnetic

field fromwhich a clock transition emerges. The qubit levels

at the clock transition correspond to |+⟩ = (1∕
√
2)(|1z⟩+|− 1z⟩) and |0⟩ = |0z⟩ (e.g., see Ref. [167]). The frequency

of clock transitions is insensitive to magnetic fields to first

order, thus increasing protection from the nuclear bath

induced decoherence. Onizhuk and co-workers proved by

gCCE theory that the clock transition can indeed elongate

the coherence times and the coherence times can be fur-

ther elongated with opening the gap between |+ 1⟩ and|− 1⟩ levels which indeed occurs for the other basal plane
divacancy qubit with E = 82.0 MHz and D = 1.222 GHz ZFS

parameters [164]. In experiments, the fluctuating electric

fields can lead to a serious decoherence for |+⟩ state, so
the charges should be depleted to observe the predicted

improvement in the coherence times that was achieved by

applying an external electric field to the system [164, 168]. In

the simulations, the fully convergent results were achieved

at gCCE4 level.

Another important defect spin is the negatively charged

boron-vacancy (V−
B
) in hBN that was already mentioned

in our review paper. The defect has three nitrogen dan-

gling bonds with large (≈47 MHz) hyperfine coupling to the
electron spin (S = 1) with ZFS in the GHz region both for
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the ground and excited states (see Ref. [27] and references

therein). In other words, the three 14N nuclear spins are

strongly coupled to the electron spin for which the Fermi-

contact term is dominant. This explains a recent observation

[24] that the spin coherence time of V−
B
in hBN is much

shorter at the condition of close to zeromagnetic fields than

that previously anticipated, and it is below 0.1 μs, c.f.,≈18 μs
in Ref. [166] for a hypothetical defect. Ivády and Gali carried

out gCCE simulations on this system at the experimental

external magnetic field of 14 mT24. It was found that gCCE3

level is convergent. The maximum distance between the

defect spin and the nuclear spin should be around 10 Å

whereas the maximum distance between the nuclear spins

should be around 7.5 Å, in order to achieve convergent

results. The simulated spin echo decay curves of the centre

in h11BN and h10BN are fitted with a stretched exponential

function, exp
[
−(t∕T2)n

]
, leading to T2 = 92 ns and T2 = 115

ns for h11BN and h10BN, respectively, with an exponent n ≈
1.35. The dependence of the coherence timewith the isotopic

content exhibits a linear increase with the 10B abundance.

This effect results from the reduced nuclear gyromagnetic

ratio of 10B that weakens the hyperfine interaction and the

boron nuclear spin flip-flop rate, both of which has a posi-

tive impact on the coherence time of the central spin. In a

recent study it has been shown [169] that the long T2 ≈ 27

μs can be retained for V−
B
in hBN at giant external magnetic

fields, e.g., 3 T, which suppresses the strong electron-nuclear

spin couplings.

At moderate external magnetic fields, it is challeng-

ing to observe the Rabi-oscillation of the V−
B
electron spin

because of the intrinsically short coherence times. Ivády

and Gali showed by gCCE simulations [25] that if the

microwave field is tuned at the centre hyperfine peak or

the mI = ±1 hyperfine peaks of the strongly coupled three
14N spins then the Rabi-oscillation of the 4-spin V−

B
becomes

observable, and even 10 MHz detuning significantly sup-

presses the amplitude of the Rabi-oscillation. In experi-

ments [25], one can see a multiple-frequency oscillation, in

which a beat is clearly recognized, and it is superposed on

another slow oscillation. The results could be interpreted

by the results from gCCE simulations: the nearest neigh-

bour 14N nuclear spins are driven by the microwave field

at the given magnetic field (44 mT) and the observed multi-

ple frequencies in Ramsey interference correspond to spin-

rotation frequencies in rotating frame on three hyperfine

levels. The three frequencies in the spectrum can be identi-

fied as the detuning between the microwave field and the

centre hyperfine level, as well as the mI = ±1 levels [25].
The spin bath of the 4-spin V−

B
systemwas further simulated

by taking 127 14N and 127 11B nuclear spins into account in

which the HSE06 hyperfine tensor and electric field gradi-

ent tensors were applied. In the simulations, an effective

spin-polarisation transfer could be observed towards these
14N nuclear spins whereas the spin-polarisation towards 11B

is small. Hence, it was concluded that the neighbour 14N

nuclear spins are responsible for themodulation of the Rabi

oscillation, including the decay of the background beyond

0.2 μs, and rest of the spin bath is responsible for the decay
of the Rabi oscillation [25].

In pulsed electron spin resonancemeasurements, the 4-

spin nature of V−
B
was further confirmed [26]. The measure-

ments were carried out in a W-band (94 GHz) microwave

resonator which brings the electron spin resonance fre-

quencies at around 3.5 T. At this high magnetic fields, the T2
time of V−

B
extends to 15.1 μs observed by electron spin echo

(ESE)measurements [26], in good agreementwith the recent

gCCE3 simulations [169]. The decay curve reveals its oscilla-

tory behavior especially pronounced at the very beginning

of the transient curve. Such oscillations refer to electron

spin echo envelop modulation (ESEEM) and manifest the

presence of coherent coupling of the V−
B
electron spin with

magneticmoments of nuclei available in the hBN lattice. The

observed beating frequencies corresponds to the nuclear

magnetic resonance frequencies (consisting of the combina-

tion of hyperfine and quadrupole interactions) of the three

nearest neighbour 14N nuclear spins. PBE DFT calculations

confirmed that no other 14N near the vacancy could produce

such nuclear spin resonances [26] which makes the 4-spin

V−
B
model consistent. Finally, it was found that the optical

nuclear spin-polarisation at the GSLAC and ESLAC condi-

tions of the external magnetic fields at respective 124 mT

and 74 mT can be efficiently carried out towards the neigh-

bour 14N nuclear spins and it can be coherently driven at

≈5 MHz which is much faster than the appropriate nuclear
spin resonance frequency [27]. To our knowledge, the spin

dephasing and spin-echo simulations for these strongly cou-

pled systems have not yet been reported.

4 Summary

In this paper, we reviewed the recent advances on ab ini-

tio theory on defect qubits. A strong emphasis was put on

the calculation of excited states, photo-ionisation thresh-

olds and optical excitation spectra also as a function of

temperature. A novel theory has been developed on the

effective mass states of the excited states of deep defects.

Major breakthroughs have been presented on the calcula-

tion spin dynamics of the defect qubits which converted the

phenomenological description of the spin relaxation times

to fully ab initio solution.
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