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Abstract: Solid-state defects acting as single photon sources
and quantum bits are leading contenders in quantum
technologies. Despite great efforts, not all the properties
and behaviours of the presently known solid-state defect
quantum bits are understood. Furthermore, various quan-
tum technologies require novel solutions, thus new solid-
state defect quantum bits should be explored to this end.
These issues call to develop ab initio methods which
accurately yield the key parameters of solid-state defect
quantum bits and vastly accelerate the identification of
novel ones for a target quantum technology applica-
tion. In this review, we describe recent developments
in the field including the calculation of excited states
with quantum mechanical forces, treatment of spatially
extended wavefunctions in supercell models, methods
for temperature-dependent Herzberg—Teller fluorescence
spectrum and photo-ionisation thresholds, accurate calcu-
lation of magneto-optical parameters of defects consisting
of heavy atoms, as well as spin-phonon interaction respon-
sible for temperature dependence of the longitudonal spin
relaxation T, time and magneto-optical parameters, and
finally the calculation of spin dephasing and spin-echo
times. We highlight breakthroughs including the descrip-
tion of effective-mass like excited states of deep defects and
understanding the leading microscopic effect in the spin-
relaxation of isolated nitrogen-vacancy centre in diamond.
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1 Introduction

Quantum information is physical [1]. Solid-state defect spins
are a conceivable platform to realize the elementary unit
of quantum information, i.e., quantum bits or qubits [2].
Two prototypical representatives are the phosphorus donor
(P-donor) in silicon and the nitrogen-vacancy (NV) centre
in diamond. From electronic structure point of view, these
two defects reside the opposite sides of the spectrum: the
P-donor can bhe described by the so-called effective mass
state with hydrogen-like Rydberg series of excitation ener-
gies split from the conduction band of silicon, which are
weakly localized wavefunctions, whereas the carbon dan-
gling bonds in NV centre create strongly localized orbitals
with deep levels in the fundamental band gap of diamond.
Kane proposed to apply P-donor spins as a qubit [3]. How-
ever, the read-out of the single spin in a controlled fashion
had been great challenge for relatively long time that could
be realized in a single-electron transistor device operating
at hundreds of millikelvin temperatures [4]. The read-out of
the single spin of diamond NV centre has been realised opti-
cally, i.e., optically detected magnetic resonance (ODMR),
which was the first optically read single defect spin in a solid
[5]. In this case, the readout and initialization of the electron
spin of diamond NV centre could be readily carried out
by optical means at room temperature. Recently, the single
electron spin electrical read-out via photo-ionised electrons
and holes has been realised for diamond NV centre which
is a hybrid scheme: photo-excitation is required for creat-
ing spin-dependent photocurrent from a single NV defect
and optical initialisation of the spin, and then the spin-
dependent photocurrent is observed to read the electron
spin state [6, 7]. The coherent manipulation of these elec-
tron spins were realised electron spin resonance techniques
[8, 9]. The coherent control and readout of single defect
spins define the underlying defects as quantum defects, and
the quantum defect with its host material can be called as a
quantum-coherent material.

Since the discovery and realisation of these quantum
defects an intense research has begun to seek alternative
solid-state defect spins both in the experimental and theo-
retical fronts, which might have favourable properties for
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certain quantum technology applications [10, 11]. Recently,
data mining techniques with machine learning algorithms
have been spread at the theoretical fronts. The data min-
ing can be approached either towards the host materials
[12-14] or to extend this with creating defect structures
and calculating their key qubit parameters [15, 16]. In these
approaches, there are assumptions for selection of materials
and defects that might be too restrictive and might lead
to overlooking important candidates. For instance, it was
assumed that the host materials should have wide band
gap with low density of nuclear spins, at least, for the
defect qubits alike diamond NV centre [10, 12]. However,
certain quantum technology applications such as quantum
communication does not require room temperature oper-
ation, and small-band-gap silicon has become a promising
platform to realize spin-to-photon interface with quantum
memory [11, 17-23]. One of the most promising platforms to
host qubits in two-dimensional (2D) materials is hexagonal
boron nitride (hBN) which has 100% nuclear spin abun-
dance but the coherence times of defect spins can be well
extended with using good control of these nuclear spins
[24-27]. Certainly, the selection criteria can be changed
based on these recent findings. Nevertheless, quantum-
coherent materials can only be interpreted together with
their defect qubits, thus selection of host materials should be
followed by finding defects for which the electron spin can
be initialised and read-out with sufficiently long coherence
times. Calculation of the coherence times for any hypotheti-
cal defects, e.g., Ref. [13], could lead to misleading results in
certain cases where the spin density distribution and so the
strongest hyperfine interaction between the electron spin
and nearest nuclear spins characteristic for the actual defect
would strongly affect its electron spin’s coherence time [24].
The automatically generated defects are often selected from
the thermodynamically most stable ones [15, 16]. It has been
found that this selection may omit very important complex
defects realizing qubits, e.g., G-centre in silicon [28], which is
one of most promising qubit candidates in silicon. Further-
more, it has been shown for diamond NV-centre [29] that the
strongly coupled electron-phonon states are inevitable for
understanding the optical spin-polarisation of its electron
spin. These polaronic states are also usually ignored in these
databases. These examples clearly call for improving the
ab initio magneto-optical spectroscopy methods, in order
to increase the credibility and prediction power of these
databases.

Ab initio methods have significantly contributed to
understanding and control of diamond NV qubits and explo-
ration of alternative quantum defects which was summa-
rized in a recent review paper [30]. In that review paper,
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the diamond NV qubit is thoroughly described including
the electronic structure and polaronic solutions and spectra
within Jahn-Teller theories, and the desiderata of the target
of computations and the developed computational meth-
ods are summarized in detail which are not perpetuated
here. We assume that the readers are aware of the basic
description of diamond NV-like qubits and the previously
implemented methods to compute their magneto-optical
properties which are the basis of further developments.

For instance, new findings have been reported for the
very hasic property of this qubit such as the spin-lattice
relaxation (T,) time [31] which apparently demonstrates
that even the most studied diamond NV-centre has been not
fully understood to date. It is an immediate quest to further
advance ab initio methods, in order to accurately calcu-
late the excited states together with quantum mechanical
forces, the electron-phonon coupling and the basic magnetic
parameters such as the zero-field-splitting between the elec-
tron spin’s levels (ZFS), or understanding the temperature
dependence of these parameters and the spin-lattice relax-
ation (T,) time, and the coherence time (T,) also as a func-
tion of spin bath around the target defect qubit. This paper
provides a comprehensive review about recent years ab
initio developments on solid-state defect spin qubits along
these directions.

We illustrate the advances of computational meth-
ods on various defects in solids: we shall discuss (i) deep
defects such as NV centre, silicon-vacancy centre and
nickel-vacancy centre in diamond, divacancy and vana-
dium centres in silicon carbide, and boron-vacancy in
two-dimensional hexagonal boron nitride; (ii) the shallow
excited states of deep defects such as the neutral silicon-
vacancy centre in diamond and various interstitial defects
in silicon; (iii) and shallow donors in silicon.

2 Computational methods

The ab initio investigation of solid-state defect qubits alike
diamond NV-centre or silicon P-donor requires full and
accurate description of the host material and the embedded
isolated defect. The photostability of the quantum defects
depends on the ionisation threshold energies, therefore
it is critical that the crystalline bands and the resonant
or localized defect states are computed at equal footing.
Green-function methods are principally ideal to represent
the topology of the problem, i.e., the embedded defect in a
perfect solid. However, practical implementations of Green-
function methods suffer from the consistent calculation of
quantum mechanical forces which is required to calcu-
late the ionic coordinates of the given point defect. As the
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geometry of the defect is highly decisive in their magneto-
optical properties, the supercell method is most often
employed to model the quantum defects which methodol-
ogy readily offers the calculation of quantum mechanical
forces based on the Hellman-Feynman theorem [30]. In this
review article, we focus on those method developments
and implementations which work within this formalism
because the supercell formalism guarantees the simultane-
ously accurate calculation of the ionisation threshold and
intra-defect optical transition energies. The ground state
properties are typically calculated by means of Kohn-Sham
density functional theory (KS DFT) [32], which can be a
starting point for the calculation of excited states. A natu-
ral choice for the basis set for supercell formalism is the
plane-wave basis which is combined by pseudopotential
or projector augmentation wave (PAW) methods (see Ref.
[33] and references therein). The computation methods of
the ground state thermodynamic properties of point defects
in solids within this formalism was already described in
detail in the literature (e.g., Ref. [34]) that can be applied
to the specific quantum defects [35]. In short, the quantum
defect’slocal properties and associated parameters are com-
puted within plane wave supercell KS DFT methods, and
implementation based on these methods or relied on the
parameters obtained by these methods will be discussed in
the review paper.

3 Method developments and
results

In this section, we collect recent developments on ab initio
calculation of properties of quantum defects. We start with
the treatment of the excited states and geometries, and then
we continue with the discussion of the ionisation threshold
energies with the photo-ionisation spectrum, the supercell
treatment of shallow defect states, the zero-field-splitting
parameters, hyperfine parameters and gyromagnetic ten-
sor, and the spin-lattice relaxation T; times as well as the
spin coherence T, times. Although, it is unconventional to
start the discussion with the excited states prior the descrip-
tion of finite size effects of supercells we decided to do
so because we shall consider the finite size effects of shal-
low excited states in the section of supercell modelling of
defects which requires description about the calculation of
excited states. We shall also show that accurate description
of the excited states is needed to calculate some ground state
related magnetic parameters such as the zero-field splitting
parameter.
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3.1 Excited states

3.1.1 Following the topology of the problem: DFT + CI
multiscale methods

The accurate calculation of the excited states is still under
extensive research. The popular many-body perturbation
method, GW + BSE (see Ref. [36] and references therein),
fails for the highly correlated singlet states of the diamond
NV centre [37, 38]. The highly correlated states may be
recognized of which many-body electronic wavefunction
(W) can be genuinely described by two or more Slater-
determinants with significant weights. This may be quanti-
fied with the function of one-particle density matrix p. This
can be defined as p;; = (‘P|ajaj|‘1‘) with the creation and
annihilation operators of single electrons i and j, respec-
tively. The degree of correlated electronic state (A) is then

A=Tr(p—p*) =Tr(p) - Tr(7*), @

asifand only if the W can be described as a single Fock-state
when p = p% Those cases are in particular pathological in
which double-excitation Slater-determinants appear with
relatively strong contribution (i.e., a:a; a,q;|Wss) with the
ground state many-body wavefunction W) which is the
case for the so-called 'A; state of the diamond NV centre
(see Figure 1) which plays an important role in the optical
spin-polarisation and read-out processes (see Ref. [30] and
references therein).

In KS DFT theory, these many-body states cannot be cap-
tured by the known exchange-correlation potentials (V,.);
however, it provides a very good description for the host
materials and simple defect states, i.e., for which A = 0.In
general, the bands of the host crystal can be well described
by KS DFT method whereas the strong Coulomb interaction
between localized defect orbitals confined to a small place,
e.g., around a vacancy, represents a problem for KS DFT
method. The topology of the problem implies a method in
which the Coulomb interaction between the localized defect
orbitals is directly calculated, called configurational inter-
action (CI), which are in contact with the bath of itiner-
ant electrons that can be treated by KS DFT. This can be
considered as a multiscale problem where the interaction
between electrons are calculated with different precisions
in a single system. As we will see below the challenges are
to define the set of orbitals, often called “active space”, for
which the precise method should be applied (here, CI) and to
find an interface between the levels of different approaches,
here DFT and CI, which can produce self-consistent results.
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Figure 1: Defect levels diagramme. (a) Single-particle scheme of the
electronic structure of diamond NV centre. The spin-polarisation between
spin-up and spin-down electrons in the Kohn-Sham density functional
theory results in different levels for spin-up and spin-down orbitals which
are not depicted here but rather their average. VB and CB label valence
band and conduction band, respectively. The fundamental band gap of
diamond is 5.4 eV. (b) Many-body level structure of diamond NV centre.
The blue and red shaded areas show the ionisation bands excited from
the 3A, and 3F states, respectively. In the bottom row the non-physical
picture is shown which often appears in many scientific papers.

Interfacing different levels of theory in a single system is a
common problem for all the multiscale methods.

By following the above mentioned topology of the
problem, the many-body Hamiltonian may be described as

A
T eff .t T
2 a;a;+ - Zvyklal a; 4y, 2
ij ijkl

where v is the partially screened Coulomb-interaction
(Wé2 ) and the ijkl KS wavefunctions are within the active
space A. Partial screening is computed from all the KS wave-
functions except for the set of KS wavefunctions within A.
The definition of v*% includes contributions to the Hartree
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and exchange correlation energies that are also included in
the KS DFT calculations for the whole solid. Exactly this is
the point where an interface between DFT and CI methods
should be developed which can be considered as a typical
problem for all the related electronic structure embedding
schemes called double counting (dc) error. Therefore, the KS
DFT Hamiltonian Flg.s, occurring in the first term in Eq. (2),

requires double counting correction tg.c, ie,
eff _ fyKS _ (dc
ty = Hi]. t- 3

The methodology was first implemented by Bockst-
edte and co-workers within VASP code [39, 40] which was
called DFT + CI-cRPA method [41]. Here, CI refers to the
configurational interaction between the electrons in the
active space whereas constrained random phase approxi-
mation was applied to compute W(’f [41]. In that implemen-
tation, Heyd-Scuzeria—Ernzerhof (HSE06) [42] functional
was applied which includes a quarter of Fock-exchange (a =
25%) in the KS potential for the KS orbitals. To calculate tg.c,
a heuristic approach was applied, i.e., the quarter of Fock-
exchange was used for the electrons in the active space.
This approach resulted in a very good agreement between
the computed spectra and the spectra derived from experi-
ments for diamond NV centre and silicon carbide divacancy
centres [41]. Later this treatment was also implemented to
the Quantum Espresso software package [43] and the CI
part of the Hamiltonian was also interfaced with a code
running on quantum computers [44]. The quality of present
quantum computers precludes to achieve accurate results
[44], thus the results achieved by classical computers will
be summarized below. The DFT + CI multiscale method was
then rephrased to quantum embedding or quantum defect
embedding method but it is essentially the same with the
originally invented CI-cRPA method with the caveat that the
latter implementation used a full Hartree—Fock dc correc-
tion (HFDC), i.e., the exchange term was not scaled by the
fraction of the applied hybrid DFT functional [41, 44]. Ma
and co-workers also went beyond RPA (b-RPA) by taking the
exchange-correlation effects into account in the calculation
of W(’f, and they applied it to diamond NV centre [44]. It
was found that b-RPA screening substantially modifies only
the 14, level referenced to the ground state energy with
respect to the results within RPA screening approach (see
Table 1). The origin of this effect is not explained and well
understood. Pfaffle and co-workers implemented a semiem-
pirical DFT + CI method [45]: they basically applied HFDC to
the DFT or GW quasi-particle (GWQP) levels in Eq. (3). The
screening was taken from the bulk diamond with an analyt-
ical formula developed for semiconductors which provided
the accuracy of the RPA method [46]. Resta found that the
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Table 1: The calculated electronic structure of diamond NV centre with using different types of DFT + CI embedding methods. The ground state is 3A,
and all the levels are referenced to it with fixed ionic coordinates of the electronic ground state. The type of DFT functional is given: the DDH
functional provides a = 17.8% Fock-exchange for diamond [44]. In HSE06 functional [42] @ = 25% was applied. The applied approximation for
calculating W[’j is either cRPA or goes beyond (b-RPA). Finally, the dc correction is either Hartree-Fock type (HFDC), or scaled with « in the DFT
functional (aFDC). The exact dc (EDC) correction is applied together with quasiparticle (QP) levels within self-consistent GW method (see text). The
experimental data are only estimates from PL spectrum and rate modelling of the observed decay rates (see Ref. [30] and references therein).

HSEO06 [41] HSEO06 [49] DDH [44] DDH [44] GWQP [50] GWQP [50]
NV cRPA cRPA cRPA b-RPA cRPA cRPA Exp.
aFDC HFDC HFDC HFDC HFDC EDC
'F 0.49 0.49 0.476 0.561 0.375 0.463 ~0.40
A, 1.41 1.39 1.376 1.759 1.150 1.270 ~1.55
3F 2.02 2.06 1.921 2.001 1.324 2.152 ~2.15

space-dependent dielectric screening only varies within the
range of nearest-neighbour distance of ions in semiconduc-
tors, if the origin is chosen to an ion in the crystal, with a
well-defined function and then it approaches the dielectric
constant of the material, £(0) [46]. Taking the host material’s
dielectric screening function for a defect might be too inac-
curate, in particular, for defects which contain vacancy as
no ion would “modulate” the dielectric constant of the host
material in the region of vacancy. Therefore, Pféffle and
co-workers introduced a semi-empirical formula to modify
the dielectric screening function near the vacancy [45] of
diamond NV defect which they called “masked” solution. It
isunclear how the parameter in that formula was picked up.
With the “masked” solution for the diamond NV centre they
obtained triplet optical transition close to the DFT + CI-cRPA
solution [41] whereas the energy gap between the singlets
closely follows that of b-RPA screening with HFDC [44]. We
note that this method was further applied to the neutral
and positively charged NV defect in diamond. The optical
spectrum is known for the neutral NV defect in diamond
[47, 48] for which the ZPL energy results in 2.156 eV between
2E ground state and 24, excited state. Although, the order
of the many-body levels is consistent with the experimental
data by the semi-empirical DFT + CI method but the calcu-
lated energy gap for 2E «? A, transition is at 1.65 eV which
is disappointingly low. It is yet unclear what is the origin
behind the discrepancy.

In any embedding methods it is a crucial question how
to select the active space orbitals. The in-gap defect states
are per se localized, therefore, they are naturally involved
in the active space. However, defect states resonant with the
valence band or conduction band may exist which are cou-
pled to the Bloch-states of the host material, thus they do not
appear as sharp resonances but are rather broadened. In
practice, the coupling strength and the width of broadening
depend on the size of supercell and k-point sampling of the

Brillouin-zone for the given supercell. For instance, it was
found that whereas the lowest energy spectrum of diamond
NV centre may converge relatively well for the minimal
active space taken from the in-gap defect orbitals but this
treatment leads to a serious inaccuracy for the isovalent
silicon carbide divacancy defect for which explicit involve-
ment of the resonant states in the valence band is neces-
sary to achieve converged results [41]. This result clearly
demonstrated that simplified Hubbard-U model with using
only the in-gap defect orbitals (e.g., Ref. [38]) is generally
insufficient for accurate description of the many-body elec-
tronic structure of quantum defects. In practice, an energy
region of about 3 eV around the Fermi-level was used to
pick-up the states for the active space with 512 and 576-atom
supercell models in the original study [41]. In later stud-
ies, the choice of the active space was further investigated
[49, 50]. Muechler and co-workers also implemented the
DFT + CI-cRPA method to the VASP code but they first
constructed Wannier wavefunctions [51] with preserving
the position of the in-gap defect levels which could maxi-
mally localize the defect wavefunctions including those that
are resonant with the host bands, and then the Wannier
orbitals were applied in Eq. (2). With this treatment the
results upon the number of orbitals in the active space
can rapidly converge [49]. Another possibility is to pick-up
the states based on localization of the KS orbzitals that can
be simply quantified as Ly, (w®) = /Vgg)yjil‘s‘ dV, where V
is a chosen volume including the defect, smaller than the
supercell volume €. It was found that L, = 5% is needed to
obtain convergent results for the notorious °E state which
corresponds to about 40 (30) states in the active space for
216-atom (512-atom) supercell model [50]. The 3E state is
notorious in terms of L, because a; hole orbital is involved
in this state of which level lies close to the valence band
which leads to exchange-correlation coupling to resonant
states in the valence band. This is not the case for the 'E
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and A, levels with very little contributions from the a, hole
orbital, so they converge fast in this regard.

Another critical question in the embedding methods
is the treatment of double counting correction which has
been briefly considered above. In Hartree—Fock methods,
the double counting correction can be readily derived and
it is applied routinely in quantum chemistry. However, DFT
is applied to calculate the electronic structure of the ground
state in the supercell modeling of defects, and there is no
theoretical rationale to apply HFDC in this case. By apply-
ing hybrid DFT functionals, Fock-exchange is employed to
KS orbitals. By assuming a tiny contribution of the semilo-
cal exchange-correlation in dc correction, one may apply
aFDC meaning that the corresponding fraction of the Fock-
exchange for the active space orbitals is employed. This
heuristic treatment may follow the idea of the DFT + U treat-
ment in which U is an orbital-dependent on-site correction,
and that is scaled by « when hybrid DFT is applied [52]. How-
ever, hybrid DFT is still a functional of the electron density
and not the many-body wavefunction, thus this heuristic
treatment strictly cannot be justified.

Recently, Sheng and co-workers derived the dc correc-
tion for KS DFT with using the Green-function approach
[50] which might be motivated by the success of interfacing
KS DFT and dynamical mean field theory (DMFT) with the
same approach [53]. They assumed that the non-diagonal
terms of the self-energy coupling the active space and the
environment is negligible, and static approximation is used
for the G, and W, This results in

th = Vo + WEp, — iGEW, @

where p, is the density matrix of the electrons within the
active space, and G, and W, are computed at the quasi-
particle energies () of these electrons [50]. The exact
dc correction is called here EDC in which the quasipar-
ticle (QP) levels are solved self-consistently with calcu-
lating ¥, self-energy within GW method as e?P =€+
(y/iK5|ZXC<e?P> — Vi lw®). This makes the €% results
almost independent from the applied DFT functional within
0.1eV, it was either the semilocal Perdew-Burke—Ernzerhof
(PBE) [54] or the dielectric-dependent hybrid (DDH) [55]
functional. The results are summarized for diamond NV
centre in Table 1 where they applied both HFDC and EDC
corrections. They reported extremely low energy for 3E state
with HFDC which was not explained in detail [50]. The EDC
results are quite comparable to the genuine CI-cRPA result
with the heuristic aFDC correction, nevertheless, the good
agreement might be specific to diamond NV centre.
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Sheng and co-workers applied the EDC method also
to the neutral silicon-vacancy (SiV) defect and their sis-
ter group-IV vacancy defects in diamond [50]. The ground
state of the defect is 34, ¢ Which is a similar wavefunction
to that of diamond NV centre. However, the excited state
of the neutral SiV defect is highly complex with leaving
a hole in each double degenerate orbital which results in
three triplet states (A,,, 3E,, *A;,). These triplet states are
highly correlated and they are also coupled by phonons via
product Jahn-Teller interaction [56, 57]. According to that
study, the product Jahn-Teller interaction leads to a strong
ionic relaxation upon excitation (=0.3 eV), so the vertical
excitation energy of the optically allowed 3E, state should
lie at around 1.6 eV above the ground state level. The EDC
calculation yielded disappointedly high energy for 3E, at
2.161 eV when L, = 5% was applied [50]. We note that the
calculated excitation energies for the triplet excited states
do not converge monotonously with decreasing the value of
Ly, and their values are close to the desired energies with
setting L, = 20%. It is unclear yet what is the origin of this
behaviour.

Despite the remaining issues with the DFT + CI multi-
scale methods, this approach is very promising to calculate
the highly correlated defect states within supercell formal-
ism. The very important next step is to derive the quantum
mechanical forces which is then can be used to reoptimise
the geometry of the ground state and the excited states. This
is required to calculate the characteristic zero-phonon-line
energies and Debye—Waller factors of the defects which are
key parameters of quantum emitters. The big challenge here
is that the original derivation of the EDC method assumed
that the off-diagonal term of the self-energy coupling the
active space and the environment can be neglected but once
the forces are considered one has to take into account the
change of the character of the underlying KS wavefunction
self-consistently with the self-energy through the coupling
between the active space and the environment. In general, it
is a known problem in quantum chemistry CI methods that
the final results may depend on the initial single particle
wavefunctions if restricted active space is applied and the
underlying single particle wavefunctions are fixed at the
electronic ground state manifold. The DFT + CI multiscale
methods face to the same problem, principally.

3.1.2 Density matrix renormalization group methods: an
alternative multiscale method

Density matrix renormalization group (DMRG) was orig-
inally developed to describe one-dimensional quantum
models in solid-state physics with local interactions. The
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underlying mathematical framework, however, is not
restricted to models studied in condensed matter physics or
applications to molecular clusters but among many others,
it can be also used to study nuclear shell models, parti-
cles in confined potential, or problems in the relativistic
domain. The success of these developments relies on the
efficient factorization of interactions and the optimization
of the DMRG network topologies based on concepts of quan-
tum information theory leading to tremendous reduction in
computational costs (see Ref. [58] and references therein).
In particular, the factorization for the many-body wavefunc-
tion ¥ with L spatial orbitals reads as

= S T (a)" ()10 ©

n) i=1

with
L
c® =TT ar™, (6)

where now the spin state (o) is explicitly written by arrows
and n = (nynynyny ... nyng) where n;,; € {0,1}. The
components of the state specific C tensor increase expo-
nentially with system size L scaling as 22¢ which becomes
untractable for few hundreds of electrons. However, the
dimension of the matrix product states A; can be optimized
in DMRG approach, AP, truncated to a fixed manageable
bond dimension, M, that is, dim(A?MRG) < [M,M],ie, M Xx
M tensor. Increasing M, the precision of the approximation
is well-controlled approaching variationally the exact solu-
tion. In the DMRG protocol, the matrix product state matri-
ces are locally optimized and truncated by minimizing the
discarded entanglement between the left and right neigh-
bouring blocks of the matrix product state chain, obtained
from the reduced density matrix of the block. The algorithm
iterates through the matrix product state chain in a sequen-
tial order back and forth until reaching convergence.

In short, application of DMRG method on electron-
nuclei systems can be considered as a special wavefunc-
tion method that can be used to accurately calculate the
static correlation between electrons. Barcza and co-workers
extended this method to interface with DFT calculations of
quantum defects [58]. In this post-DFT method, the Coulomb
integrals of the KS orbitals are directly taken from the super-
cell DFT calculation in the electronic ground state manifold
which is post-processed by DMRG algorithms. Despite the
advantage of DMRG method, hundreds of KS orbitals cannot
be directly treated owing to the computational costs. There-
fore, an optimal selection of orbitals with tractable size is
needed which is responsible for the strong static correla-
tions. This was carried by the complete active space (CAS)
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self-consistent field method which is well-known in quan-
tum chemistry (see Ref. [58] and references therein). The
CAS method classifies the set of orbitals to three categories;
that is, the so-called core and virtual orbitals are frozen to
the mean field level and filled with two and zero electrons,
respectively. The third class comprises of the so-called active
space orbitals which are populated with the rest of electrons
minimizing the energy. Accordingly, the virtual orbitals does
not play any role in the corresponding CAS Hamiltonian,
whereas the core electrons affect the electrons of the active
space through the Coulomb interactions, that is, the Hamil-
tonian of the active space reads

HCAS EnuC 4 peore 4 ZtCAS T

Z Ik,a a .akal. (7)

l]kl

The one-electron integrals of the CAS space, tf].AS,
describe not only the kinetic energy of the electrons in the
active space and their attraction to nuclei but also their
interaction with the core electrons. Describing the electrons
in the active space with the DMRG method, which treats
exactly the electron exchange, the one-electron interactions
are written as

tg'AS = tij +3 2(2 icj lL‘]C (8)
to treat the Coulombic effects of the frozen electrons on the
active space orbitals. In other words, this is a multiscale
method where the interface between the active space and
the environment can be well managed within Hartree—Fock
level. Here, the summation runs only on the indices of the
core orbitals (¢). Finally, the additional energy contribution
of the core electrons is summed up in term E°®, that is

ECre = 221‘“ +0(2

cc’

cc’ cc cc/ cc! ) (9)

In practice, the active space is restricted to the most
important orbitals featuring strong correlation as was dis-
cussed for DFT + CI methods. Even though the method has
limitations to provide correct description of dynamic cor-
relations using the relatively small active space, it captures
static correlations with high accuracy providing valuable
insights into the low-lying energy spectrum and the essen-
tial structure and symmetry properties of the corresponding
electronic eigenstates. Note also that, contrary to DFT + CI
methods, the CAS Hamiltonian in Eq. (7) does not include
the KS energies explicitly but only the KS orbitals by con-
struction. Also, the absolute energies of the states computed
from the CAS Hamiltonian are not trivially comparable with
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counterparts obtained on the DFT level of theory due to
the different description of the exchange and correlation
effects.

The methodology was first applied to the negatively
charged boron-vacancy defect in hexagonal boron nitride
(hBN) [59]. Previous ab initio calculations predicted this
defect in hBN as a qubit [60] of which ODMR signal was con-
firmed in experiment [61] and has become a leading quan-
tum defect in two-dimensional (2D) materials. This defect
consists of three nitrogen dangling bonds which introduce
four closeby levels in the fundamental band gap. Since
the vacancy lobes are closely spaced with strong Coulomb
interaction they form highly correlated states. The order
of the many-body levels and the nature of the states were
determined by DMRG method [62]. In the calculations about
50 KS orbitals were used in the active space selected by
localization criterion. It was shown that the flake model
with about 80 B and N atoms with hydrogen termination
of the edge of the flake provides the same electronic struc-
ture as the periodic supercell model at DMRG level [58].
This makes it realistic to calculate the electronic structure
of defects within the flake model by means of traditional
quantum chemistry wavefunction methods [63, 64]. We note
that the validity of the flake (molecular cluster) model could
be specific to (planar) defects in hBN and may be not applied
in general for defects in other 2D materials.

DMRG method was also applied to magnesium-vacancy
(MgV) centre in diamond [65]. MgV centre was created by Mg
implantation to diamond which has a unique photostability
[66] which makes it an interesting quantum emitter. The
PL signal was associated with the negatively charged MgV
defect which has a similar electronic structure to that of SiV
centre [65] with a caveat that the resonant a,, level lies very
close to the top of the valence band and the two degenerate
e, and e, levels lie in the fundamental band gap. These
states are localized on the vacancy lobes which create highly
correlated many-body states. In particular, the neutral MgV
has overwhelmly complicated electronic structure which
needs wavefunction method such as DMRG.

Beside the optimization of the selection of the active
space orbitals, a critical issue to take the dynamical cor-
relation effects into account. The present Hartree—Fock
treatment of the core orbitals [58] could be insufficient for
many materials to achieve accurate electronic structure.
In order to achieve an extremely accurate total energy of
crystals, a coupled-cluster-single-double with perturbative
triple [CCSD(T)] wavefunction approach is required [67]. It is
likely that accurate low-energy excitation spectrum around
the Fermi-level may be achieved at much lower complex-
ity of wavefunction approaches than CCSD(T). One possible
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route of development is the implementation of more com-
plex levels of wavefunction approaches than Hartree—Fock
core and full CI active space model in the DMRG multi-
scale method, in order to converge towards highly accurate
low-energy excitation spectrum. Another important issue,
similarly to the DFT + CI methods, is to compute quantum
mechanical forces acting on ions. The concept of the force
calculation does exist for DMRG method that was already
implemented for quantum chemistry codes (see Ref. [68]
and references therein).

3.1.3 Spin-flipping time-dependent density functional
theory and BSE methods

Time-dependent DFT (TDDFT) based on KS-DFT in the ker-
nel [69, 70] can be principally applied to calculate the low
energy excitation spectrum of quantum defects [71, 72]. In
order to achieve accurate results, the proper choice of the
DFT functional is essential [71]. Unlike the present imple-
mentations of GW + BSE and post-DFT multiscale methods,
TDDFT framework and implementations exist to calculate
the quantum mechanical forces acting on ions in the elec-
tronic excited state. In a pioneer work it was shown (see
Supplementary Materials in Ref. [73]) that the observed
Stokes-shift of NV centre can be well reproduced by TDDFT
calculation when the NV centre is embedded in the core
of 1.4-nm sized nanodiamond. The optimized geometry by
TDDFT method well reproduced the optimized geometry by
the ASCF method [74] for diamond NV centre. This issue
has been recently investigated for the supercell model of
diamond NV centre and silicon carbide divacancy centres
[75]. It was found that the optimized geometries, the adia-
batic potential energy surfaces (APES) of the 3E state and
the zero-phonon-line (ZPL) energies are very close to each
other as obtained ASCF method and TDDFT method based
on DDH functional (see Figure 4 in Ref. [75]). The reason
behind this good agreement is that A ~ 0 for 3E so it is a
very good approximation to describe 3E state as promotion
a single electron from a, in-gap defect level to the e in-gap
defect level in the spin minority channel which is exactly
constructed by ASCF method.

In the recent years, spin-flipping TDDFT (sf-TDDFT) the-
ory has been developed and applied to molecules [76, 77]
which is based on the Casida equations [70] but the original
equations are modified in order to calculate the states and
energies associated with Amg = +1 spin transition. In prin-
cipally, the supercell implementation of the sf-TDDFT can be
applied to diamond NV centre to obtain the singlet 'A; and
LE states with geometry optimization in these states that has
not yet been achieved by other means. In the DFT + CI-cRPA
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calculations [41], it was already recognized for diamond NV
centre that the 'E state contains Slater-determinants asso-
ciated with symmetry breaking solutions, thus 'E state is
dynamically distorted from the Cs, high symmetry geome-
try unlike the 'A, state which stays in Cy, symmetry. Insights
from group theory, ASCF and DFT + CI-cRPA calculations
with electron-phonon Hamiltonian models made it possible
to construct the absorption and emission spectra between
the A, and 'E states for NV centre [29]. Nevertheless, the
construction of the absorption spectrum was not accurate as
principally it could not use the true APES of 'E and !4, states.
As a consequence, the sharp resonance in the absorption
band at 170 meV above the diamond phonon bands was
missing in the constructed absorption spectrum.

In a seminal work by Jin and co-workers [78], the sin-
glet states of diamond NV centre were directly calculated
by sf-TDDT including quantum mechanical forces. The ab
initio APES could be calculated both for the E and '4,.
Although, the sf-TDDFT excitation does not involve the dou-
ble excitation electronic configurations in 'E and 4, states
but their contributions may influence their energy levels —
higher than that by a DFT + CI method [50, 78] — but
not significantly their optimized geometries. The previously
developed model Hamiltonians based on ASCF calculations
[29] have been confirmed by sf-TDDFT calculations [78]: the
IE state is strongly anharmonic whereas the 14, state shows
an almost perfect parabolic APES but the effective phonon
frequencies are higher than that for 34, ground state. On
the other hand, the 4, state shows a slight anharmonicity
due to its phonon coupling to the !E state by the symmetry
breaking e phonons. Taking this correction into account,
the calculated absorption spectrum shows a perfect agree-
ment with the observed absorption spectrum including the
sharp vibration resonance at 170 meV [78]. It was found
that the e phonons dominantly contribute to the absorption
spectrum, in stark contrast to the optical spectra between
the triplet states of the defect. The luminescence spectrum
between singlets was not calculated in this study [78] which
is a Herzberg—Teller optical transition [29], and the highly
accurate calculation of the shape of the phonon sideband
would need to solve the multi-mode Jahn-Teller problem
[79].

Spin-flip BSE (sf-BSE) method can be basically also
applied to calculate A > 0 states. Here the original idea
is that |Wsg) of the system could be a close shell sin-
glet but the low-energy singlet excited state might be a
ajajakall‘PGs) type. This may be addressed by a high-spin
reference state, e.g., aja j|‘PGS) type of S = 1 shelving state,
by flipping the spin state by m; = —1 to reach |W) (nega-
tive excitation energy) or by raising with m, = +1 to reach
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the excited state of a?a;akallll’cs) type (positive excitation
energy). The sf-BSE spectrum can be calculated by ignor-
ing the exchange terms in the BSE kernel. This methodol-
ogy was first applied to atoms and molecules [80]. Parallel
to this effort, Barker and Strubbe applied this method to
diamond NV centre [81] with using PBE DFT functional as
implemented in the Octopus code [82, 83]. By choosing § = 1
reference state raises the issue of spin-polarization within
KS-DFT approach which naturally results in spin contami-
nation error and an “artificial” gap between the occupied
an unoccupied GWQP levels. Barker and Strubbe rather
took the KS DFT energy levels instead of the GWQP levels
in the BSE kernel as a workaround because PBE KS levels
do not show this problem owing to the semilocal nature
of the PBE functional. They picked up the 34, state as a
reference state which is the ground state of diamond NV
centre. The computed spectrum basically agreed with the
previous GW + BSE result [37], i.e., the 1A1 level lies too
low in the spectrum [81]. In order to calculate the 1A1 level
correctly with sf-BSE method, the 3E reference state may be
chosen which can access both single and double excitation
Slater-determinants with respect to 34, ground state. Even
though sf-BSE may work out for the singlet states accurately,
the calculation of quantum mechanical forces should be
implemented within GW + BSE and GW + sf-BSE methods
to calculate the ZPL and Debye—Waller factor of the optical
excitation spectrum of the defect qubits.

3.1.4 Temperature broadening of optical excitation
spectrum with BSE method

The many-body perturbation theory of electron-phonon
coupled optical transition with non-equlibrium Green-
functions has been developed in Ref. [84] which was fur-
ther derived in Ref. [85]. They considered the adiabatic
limit for the dipole matrix elements, while they retained
dynamical effects only in transition energies [85]. In terms of
the phonon-dependent optical dipole transition moments, it
goes beyond the Huang—Rhys theory. The central equation
is

nB(CUw )]
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where IT, are the exciton (4) dipole matrix elements within
BSE theory, and f;" are their occupations with E, energy; x,
is the normal coordinate of phonon y with the energy of @, .
Here, ff is non-vanishing only if the excitons are composed
by transitions between bands occupied by excited electrons
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and holes, and the two Dirac 6 in the square bracket corre-
spond to the cases where an exciton recombines with the
creation [6(w — E; + w, )] or annihilation [6(w — E; — ®,)]
of a phonon; ng is the Bose—Einstein occupation function for
phonon v at temperature T. The no-phonon optical transi-
tion is given by

I3 = NI, P £ 8( — E)). an
A

In the usual implementation of BSE, it does not take into
account the polaron shift. In other words, the no-phonon or
zero-phonon line energy is calculated at the fix coordinate
of the ground state from which the GW + BSE calcula-
tion starts. The theory was first applied to bulk hexagonal
boron nitride which has indirect band gap, so I55F = 0 (see
Ref. [85]). Libbi and co-workers implemented the theory
and applied it to the negatively charged boron-vacancy in
hexagonal boron nitride [86]; the importance of defect was
already mentioned in this review paper.

The observed fluorescence comes from a first-order
forbidden transition between the 3E’” excited state and *A}
ground state [62] which becomes only allowed by partici-
pation of phonons. It was suggested based on ASCF HSE06
calculations that symmetry distorting Jahn-Teller distor-
tions could lead to optical transitions. While it was noted
based on the comparison DFT HSE06 and DMRG methods
that HSE06 ASCF method has a limitation in describing the
APES of 3E’’ excited state, still the Huang-Rhys fluorescence
spectrum was calculated with relatively good agreement
with the overall fluorescence energy but the calculated
phonon sideband seemed to be too wide when compared to
experimental data (see Ref. [62] and references therein). The
in-plane Jahn-Teller distortion resulted in about 193 meV
energy gain compared to that of the high Dy, configuration.
Further symmetry reduction and energy gain of 13 meV
were also observed by HSE06 ASCF calculations by out-of-
plane phonon modes [62]. The out-of-plane phonon modes
are transformed as A/’ and E”’.

Libbi and co-workers rather applied G,W, method on
PBE DFT calculations [86]. Then they calculated the non-
equlibrium BSE optical spectrum based on Eq. (10). Because
of the forbidden nature of the optical transition, the equi-
librium BSE results in exactly zero optical dipole moment
for the lowest energy transition in agreement with the pre-
vious HSE06 DFT result [62]. However, it becomes visible by
applying non-equilibrium BSE method (I£°F) at room tem-
perature. The non-equilibrium BSE spectrum appears via
[ in I through the thermalisation of electrons and holes.
The pseudo-equilibrium occupations equal to
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for electrons and holes, respectively. Here € is the quasi-
particle energy of the state {nk} and p, (143,,) the chemical
potential for electrons (holes). The chemical potential was
set for the electrons in such a way that a whole electron
is promoted to the excited state manifold as usual in ASCF
procedure which guarantees a neutral excitation. The chem-
ical potential of the holes is tuned in such a way that the
number of holes coincides with that of the electrons excited
to the empty states. The non-equilibrium (NEQ) occupations
induce arenormalization of the quasi-particle energy levels.
It is calculated as

COHSEX

e = €§5W0 + ( eson COHSEX)’ (13)

— e
where the first term is the quasi-particle energy determined
at the GyW,, level of theory using the equilibrium occupa-
tions, while the second and the third terms represent the
quasi-particle energy at the COHSEX level of theory calcu-
lated using the non-equilibrium and equilibrium occupa-
tions, respectively.

The calculated I®SE(w, T) spectrum indicates that the
phonons associated with the in-plane Jahn-Teller distor-
tion has a very small optical dipole transition moments but
the out-of-plane phonons significantly amplify the optical
dipole transition moments [86]. As a consequence, the shape
of the PL spectrum is governed by the out-of-plane phonons
and not the in-plane phonons. We note that the combination
of the 3E” electronic state with A’ and E’” phonons results
in E’ polaronic state which has allowed optical transition
towards A) ground state for each polarization of the emit-
ted light. The overall width and shape of the calculated
fluorescence spectrum agreed well with the experimental
spectrum (see Ref. [86] and references therein) but the
calculated spectrum is shifted to lower energy (of about
150 meV). The origin of the discrepancy was not explained
in Ref. [86] whether it comes from the G,W, approach or
the neglect of polaron shift. Nevertheless, the methodology
demonstrated its strength in analysing the Herzberg—Teller
type optical transitions which is also dominant in the
fluorescence spectrum of the singlet states in diamond
NV centre [29].

3.2 Photo-ionisation thresholds: many-body
and temperature effects

Photo-ionisation threshold energies and cross-sections are
key properties for such quantum defects for which the
qubits are initialised and read out optically. Photo-
ionisation may promote an electron from the filled in-gap
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state to the conduction band (positive ionisation) or an
electron from the valence band to the empty in-gap state
(negative ionisation). For a given defect in semiconductors
and insulators, both process may occur depending on the
illumination wavelength. Similar to the neutral photo-
excitation processes, phonons may assist the photo-
ionisation processes with yielding temperature-dependent
photo-ionisation thresholds. Ab initio simulations using the
usual Born-Oppenheimer approximation with separating
the problem of motion of ions and electrons will result in
the low-temperature photo-ionisation thresholds that may
be not accurate at elevated temperatures.

Photo-ionisation may occur by simply single photon
absorption which basially goes the same way as neu-
tral photo-excitation just the initial |¥;) or the final state
| f) is the host band in the photo-ionisation process, i.e.,
(W;leP|'¥'s) which is a one-body operator. Another possi-
bility is the Auger-process for such defects that have mul-
tiple levels occupied by electrons such as the diamond
NV centre (see Figure 1). In semiconductors, the Auger-
process is considered to be important for the cases when
the number of carriers is high in the band edges of the
host material. However, in wide band gap materials, the
Auger-process can well compete and be even dominating
one when compared to other non-radiative processes such
as the electron-phonon coupling because the large energy
spacing between the defect level and the band edges leads
to too slow multi-phonon processes. The critical matrix ele-
ment is (¢p;¢p ;| 0°T| by b;) where DT is the screened Coulomb
interaction appeared also in Eq. (2) where the many-body
Y wavefunctions are now expressed by the appropriate
single-particle wavefunctions ¢s (see Ref. [30] and refer-
ences therein). The Auger-process is described by this two-
body operator.

Another important consideration about describing the
photo-ionisation is to distinguish the observable many-body
picture and the auxiliary single-particle picture or band
structure (see Figure 1). The band structure diagramme is
an effective single particle picture including the localised
defect states inside the band gap. In other words, band
structure virtually plots the single-particle levels of which
single-particle wavefunctions build up the many-body
Slater-determinant solution. In the case of shallow donor
state such as phosphorus donor (P-donor) in Si, the defect
level is occupied by a single electron in the band gap, and
that electron has a relatively weak exchange-correlation
interaction towards the valence band states. Thus, the sin-
gle electron orbital represents well the many-body total
energy with respect to the total energy of the system when
the electron is promoted to a higher energy effective mass
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state. As a consequence, the occupied donor defect level
with respect to the conduction band minimum (CBM) can
be considered as the photo-ionisation energy (when the
relaxation of the ions upon photo-ionisation is neglected
or minor). However, if the donor level is occupied by two
electrons, e.g., sulfur donor in Si, then the two electrons
have considerable Coloumb interaction with each other. As a
consequence, once an electron is removed from the doubly
occupied donor level then we break the Coulomb repulsion
between the two electrons and their contribution to the total
energy of the system before ionisation which is missing for
the single electron left in the donor level after ionisation.
Therefore, the difference betwen the doubly occupied donor
level and singly occupied donor level does not correspond
to the many-body total energy difference of the neutral and
singly ionised sulfur defects. For deep defects with multi-
ple electrons localised on the defect this effect is severe:
it results in a strong Coulomb and exchange interactions
among the localised electrons. Therefore, the many-body
34, level, of which state is W g Slater-determinant for the
diamond NV centre, should not be drawn to the band struc-
ture of perfect diamond as %A, state already contains all
the diamond bands. The false level diagramme with mix-
ing the single particle and the many-body pictures will
lead to a false impression about the ionisation energies.
For instance, if the 3A, level is drawn at the position of
the ionisation energy (about 2.65 eV at room temperature
[87, 88]) w.r.t. CBM then the °E level is usually drawn above
the 34, level with the ZPL energy at 1.945 eV. According to
this false consideration, the ionisation energy of 3E level
w.rt. CBM would be that of the 34, minus the ZPL energy
which yields about 0.7 eV. The problem with this considera-
tion is that it completely neglects the exchange-correlation
effects between the electrons or other words the many-body
effects as will be explained below.

In the example of diamond NV(—) — NV(0) ionisation
process, if we start from the ground state 34, electronic
configuration of NV(—) (Figure 2(b)) then a single electron
from the e level is promoted to the CBM which results in
the 2E ground state of NV(0). Starting the ionisation from
3E state of NV(—), we first have to consider the 3E state
which can be well described as a hole is left in the a, level
and the double degenerate e level is occupied by three elec-
trons (see left panel in Figure 2(b)). Two ionisation processes
are viable at this point: (i) direct process with an electron
promoted from the e level to the conduction band which
may leave the defect [89]; (ii) Auger-process occurs after
absorption of the second photon where the promoted elec-
tron in the conduction band recombines with the a; hole,
and the energy gain of this process is used to simultaneously
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Figure 2: Photo-excitation and ionisation of diamond NV centre. (a) Calculated cross section as a function of photon energy [89]. Solid blue:
photo-ionisation from the excited state 3, o,,,; dark red: stimulated emission, o; orange: intradefect absorption, 6;,,; dashed blue: photo-ionisation
from the singlet state 'E. Photo-ionisation thresholds from 3£ and 'E are indicated (estimated error bar 0.1 eV), together with the experimental values
of the ZPL energy for NV(—) and NV(0). (b) Kohn-Sham (single particle) states of the NV(—). The dashed arrows show the excitation processes from the
34, ground state (left panel) and 3F excited state (right panel), where both the stimulated emission and photo-ionisation processes are depicted for the
latter. %A, shelving state of NV(0) is left after completing the ionisation whereas stimulated emission brings the system back to 3A, ground state of
NV(—). (c) Photo-ionisation via Auger-process after the second photon was absorped. 2£ ground state of NV(0) is left after completing the ionisation.

promote another electron from the e level to a high energy
state in the conduction band which finalizes the ionisation
process (see Refs. [90, 91] and Figure 2(c)). According to
the Slater—Condon rules [92, 93], only one spin orbital can
change in the many-body wavefunction upon direct ionisa-
tion process described by one-body operator, therefore 3E of
NV(-) arrives at the metastable 4A2 of NV(0) plus an electron
in the conduction band by photo-excitation. Since the shelv-
ing A, level lies above the ground state 2E level of NV(0) the
ionisation threshold energy of this process starting from 3E
of NV(—) will be higher by about 0.48 eV according to HSE06
calculations [89] then the ionisation threshold energy start-
ing from the 34, ground state level minus the ZPL energy of
the 3E <3 A, optical transition, which finally yields about
1.2 eV ionisation threshold energy [89]. In the alternative
Auger-process, the two-body operator nature of the process
makes it possible to arrive at the 2E ground state of NV(0)
from 3E NV(-). If the electron is excited to high energy above
the CBM then phonons can very quickly (within picosec-
onds) cool it down to the CBM which is might be bound
by the weakly attractive potential of NV(0) towards the

CBM electrons which makes this process viable with about
1 nanosecond rate [90]. In the two-photon absorption pro-
cess of NV(—), the typical excitation energy is about 4.66 eV
(green light at 532-nm wavelength) which subsequently goes
through the 3E level with phonon cooling upon absorption
of the first photon and probably a phonon cooling process
after absorbing the second photon as explained above. From
energetics point of view, it is feasible to arrive at 2E ground
state of NV(0) from the %A, ground state of NV(—). A recent
experimental study concludes that the two-photon absorp-
tion based charge conversion of NV(—) — NV(0) can be well
explained by a dominating Auger-process. In the rate mod-
elling, a single-photon optical transition should also occur
from the shelving E state to a higher lying state [91]. A
strong and broad transition around 2.58 eV from 'E to 'E’
has been observed in numerical simulations providing a
possible candidate for such a mechanism [41]. 1E’ can decay
to the triplet excited states via an inter-system crossing
[30, 94].

Nevertheless, such spin-to-charge-conversion (SCC)
protocols exist for diamond NV centre which apply
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low-power excitation to avoid two-photon absorption
processes but dual wavelengths of excitation in which the
green illumination is used for the optical cycle between
34, and 3E states whereas longer-wavelength-than-ZPL
illumination is applied to ionise it from the 3E level towards
the conduction band [95, 96]. In this case, direct ionisation
may occur from the 3E level. In the seminal work of
Razinkovas and co-workers [89], the absolute ionisation
cross section from the 3E state together with the induced
emission was calculated for NV centre as a function of the
excitation energy (Figure 2(a)). The calculated ratio of the
photo-ionisation cross section and the cross section for
stimulated emission is greater than 2 for the energy around
1.2 eV and 1.93 eV photo-excitation energies, which agree
well with the applied photo-ionisation energies in the SCC
experiments [95, 96].

We note that understanding the reionisation process,
NV(0) - NV(-), is critical for stabilising the diamond NV(—)
qubit state. Typically, the reionisation automatically occurs
by the applied green illumination to drive NV(—) by two-
photon absorption process which is also subsequential pro-
cess going through the 24, excited state: the first photon
absorption brings 2E to 24, and the second photon is then
absorbed in the 24, excited state. The %4, state consists of
a hole left in the q, level and two electrons in the e level.
The photo-excitation of the 24, excited state of NV(0) may
also occur by either direct process (promoting an electron
from the valence band to the empty a, defect level in the
gap) or Auger-process (occupying the in-gap a; hole by an
electron from the in-gap e level and then promoting an
electron from the valence band to the empty e defect level
in the gap). Both processes leave a hole in the valence band.
In the direct process, the system arrives at the ground state
of NV(—) because of the alluded Slater—Condon principle
[91]. On the other hand, the Auger-process enables to arrive
at the 'A; and 'E singlet states of NV(-) too, beside the
34, ground state. The energy cost of these processes varies
with the final state. The calculated adiabatic acceptor charge
transition level of the NV defect is at about 2.75 eV from
the conduction band edge [97, 98], whereas the calculated
energy gap between the 34, ground state and 'A; state is
at about 1.6 eV (see Ref. [30] and references therein). The
total energy cost to convert the NV(0) ground state to the
1A, NV(-) excited state is then about 4.3 eV which coincides
with twice the ZPL energy of NV(0) [91]. This means that a
special excited state of 14, of NV(—) binding a hole resonant
with the valence band maximum (VBM) develops. This hole
is Coulombically bound which is a special bound exciton
state or Rydberg state which has been observed for the
SiV defect [11] and has been recently implied and modelled
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for the 3A2 plus bound hole system for the NV(—) defect
[99, 100]. The bound hole is weakly localised with following
the effective mass theory. By even taking into account the
possible relaxation energy of the ions caused by the change
in the electronic states, we may claim that a green laser
excitation can reach the 1A1 plus bound hole state of NV(—)
by two-photon excitation of NV(0). Scattering rather to 'E
and 34, states of NV(—) via Auger-process leaves a hole
deep in the valence band at around 1.2 eV and 1.6 eV from
the VBM, respectively. According to the calculations [91], a
resonant a, state broadened by the diamond bands occurs
in this energy region which is originated from the dangling
bond orbitals of the carbon and nitrogen atoms near the
vacant site. The resonant state is weakly localized unlike the
usual diamond bands that are completely delocalized. This
should lead to a larger direct and Auger-ionization rates of
NV(0) than those of NV(—) because no such a high-energy
resonant state sharing the same spin state with that of the
ground state exists in the conduction band, critical in the
photo-ionisation of NV(—). Interestingly, the Auger-process
should lead to a preferential occupation of the m, = 0 state
via spin-selective intersystem crossings between the 'E state
and the 34, spin states; however, direct ionisation would
result in 1/3:2/3 relative population of the m;, = 0:m, = +1
states of °A, [91]. The ab initio calculation of the rates of the
direct and Auger-processes requires an accurate computa-
tion of the excited states of NV(0) which has not yet been
solved as we briefly discussed it in Section 3.1.

The afore-mentioned ab initio calculations are based on
the global energy minimum of the APES in the appropriate
electronic structures and charge states which correspond
to the zero kelvin solution. However, the photo-ionisation
tresholds of diamond NV centre are often observed at room
temperature. Principally, the effective ionisation threshold
energies may change as a function of temperature. A very
characteristic example is the silicon carbide (SiC) divacancy
defects. In particular, four divacancy configurations with
similar electronic structures occur in the so-called 4H poly-
type of SiC [101-103], some of them well observable at room
temperature [104, 105]. We note that 4H SiC exhibits a band
gap of about 3.3 eV that can host visible and near-infrared
colour centres acting as qubits [11, 106, 107]. The neutral
divacancy defects in 4H SiC have isovalent electronic struc-
ture to diamond NV centre as depicted in Figure 1 but the
energy gaps between the levels are about twice as smaller,
thus they produce near-inrared emission. It was found that
upon photo-excitation of the defect it falls to a “dark” shelv-
ing state due to two-photon absorption or other complex
processes. This shelving state has been finally identified as
the negative charge state of the defect [108—110]. Close to
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cryogenic temperatures, a shorter wavelength laser beam
was applied to drive the divacancy back to the neutral qubit
state by promoting an electron from the e level to the CBM
[110]. It was later found that at elevated temperature the
quenching of the fluorescence of 4H SiC divacancy (V2)
defects does not occur and they remain optically stable [111].
This can be interpreted as the photo-ionisation threshold
energy associated with the V2(—) — V2(0) process is decreas-
ing upon raising the temperature.

The modelling of temperature-dependent photo-ionisa-
tion processes requires the following considerations: (i) the
CBM and VBM of the host material may shift with temper-
ature, (ii) the formation enthalpy so the charge transition
level of the defect with respect to the band edges may
shift with temperature via the vibration entropy, and (iii)
the phonon assisted ionisation process may be activated
by raising the temperature. The first effect is basically the
temperature-dependent electron-phonon renormalization
of the bands. This can be computed by the many-body per-
turbation theory on the electron-phonon coupling [112-114]
that was applied to 4H SiC [115]. The usual case is that the
CBM and VBM shifts down and up with raising the temper-
ature, respectively, leading to an effective decrease of the
fundamental band gap. It was found by ab initio calculations
that the CBM of 4H SiC shifts down by about 5 meV from zero
kelvin to room temperature [115]. In other materials with
low Debye-temperature, this effect could be significantly
enhanced. The second effect assumes an ab initio treatment
of the thermodynamic properties of solid-state defects that
was thouroughly discussed in Ref. [34]. Here, the key effect
is the vibration entropy correction to the formation energy
of the defect,

FUT) = Z{Ehwl + kzTln [1 - exp<—zaéf>] }, (14)
B

1

where 7 and kg are the reduced Planck constant and
Boltzmann constant, respectively, and w; is the frequency
of the ith phonon mode in charge state q of the defect at
the given T temperature. The first term in Eq. (14) is the
zero-point energy. The actual values of F/(T) could differ
for a given defect in various charge states (AF(T) = F~(T) —
F°(T)) which results in a shift of charge transition level, here
with respect to CBM, (ESB%[) This correction may increase
or decrease the effective photo-ionisation threshold. The
total correction is then,

E®M(corr) = EE‘%‘ — AEBW(T) + AF(T). s

/
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The value of E®¥(corr) corresponds to the ionisation
threshold energy without involvement of phonons in the
photo-ionisation process [111]. By raising the temperature
the phonon excited states are occupied and may contribute
to the ionisation process which may be considered as
an phonon-assisted optical transition between the neutral
defect binding an electron in the CBM and the negatively
charged defect where we neglect the interaction of the
CBM elecron with the rest of the electrons. This effect may
strongly contribute to the reduction of the photo-ionisation
threshold at elevated temperatures. The effect is analo-
gous with the appearance of the phonon bands at lower
energies than ZPL energy in the absorption spectrum of
the defect at elevated temperatures. The phonon-assisted
optical spectrum can be calculated within Franck—Condon
approximation at ab initio level for defective supercell mod-
els (see Refs. [30,116] and references therein). The calculated
temperature-dependent ionisation threshold energies for
the divacancy centres in 4H SiC based on this theory were
reported in Ref. [111]. Although, the very long wavelength
acoustic phonons were not calculated in that study for
the vibration entropy and the Franck—Condon theory that
shed doubts on the convergence of the results, neverthe-
less, the equal or similar contributions of the temperature-
dependent vibration entropy and Franck—Condon terms are
demonstrated, and it provided explanation about the photo-
stability of 4H SiC divacancy qubits at room temperature
[111].

3.3 Supercell modelling of defects:
extrapolation to dilute limits

In the supercell modelling of point defects the goal is to
describe isolated point defects. In practice, the size of the
supercell is limited up to about 10,000 atoms for KS DFT
calculations due to computational resources. By applying
accurate hybrid KS DFT functionals the size of the supercell
is further reduced to about 1000 atoms. This size of the
supercell suffices to obtain accurate results for deep defects
because the defect induced wavefunctions and strain fields
decay relatively fast from the core of the defect. However,
shallow states with weakly localised character of defect
wavefunctions such as the case of P-donor in Si, require
extrapolation to dilute limits. For deep defects, certain prop-
erties also call for special treatments in the supercell formal-
ism that we non-exhaustively list here: charge correction
for charged defective supercells, acoustic phonon couplings
to electron orbitals and spins, excitation and ionisation
towards electronic bands of the host.
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3.3.1 Charge correction schemes: a recent breakthrough

In our previous review paper [30], the charge correction
for charged defective supercells was thouroughly discussed.
To sketch here the problem and the possible solution we
note that the introduced defect charge is neutralized by a
compensating jellium charge in the supercell. The charge
of the defect and the jellium background charge interact
with their periodic images that goes with the leading point
charge Coulomb interaction of which energy scales with L™,
where L is the edge of the simple cubic supercell. This theory
already gives a hint about the expected scaling property in
the correction of the total energy to the isolated defect or
dilute limit. Indeed, the total energy of the charged defective
supercells converges notoriously slow with the supercell
size as indicated by the simple theory above. By applying
charge corrections to the total energy, the convergence can
be well accelerated. In the previous years (see Refs. [30,
34, 117] and references therein), many a posteriori schemes
have been developed for the correction of the total energy
of charged defective supercells in 3D and 2D models. In
those schemes, the possible change in the character of the
wavefunction due to the charge correction was not taken
into account that might lead to qualitatively wrong results in
notorious cases. This problem is in particular severe for slab
models of crystal surfaces with negative electron affinities.
Recently, a self-consistent potential charge correction (SCPC)
method was developed to heal this issue which goes beyond
the previous a posteriori total energy corrections of the
charged defects, and they derive the KS potential associated
with the charge correction and self-consistently solve the
constructed KS DFT equations [117].

The SCPC method yield the corrective potential (V) in
an iterative manner: (i) the distribution of the extra charge
in the supercell (6p) is determined, (ii) the corresponding
periodic electrostatic potential (V) is calculated, (iii) the
potential for the same but isolated charge distribution (V)
is determined by using open (Dirichlet) boundary condi-
tions, and finally, (iv) V,,, and Vi, are used to determine
the corrective potential V., which is added to the total elec-
tronic potential. It should be noted that SCPC always aligns
the final potential, considering the difference between the
electrostatic potentials of the charged and the reference
system far away from the defect position (AV).

The method was originally built in the VASP code but
an interface has been developed to Quantum Espresso code
too. The SCPC method was applied to diamond slab model
with NV centre where the (100) diamond surface was termi-
nated by hydrogen. It was shown that without SCPC method
the negative charge of the defect artificially pull down the
bands of the surface states, so-called image states, which
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resultsin a false electronic structure even in large supercells
[117]. Here, the self-consistent correction of the potential is
essential. We note that the self-consistent correction is not a
must for many defects in 3D solids and a posteriori charge
correction schemes can provide qualitatively good results.
Despite the self-consistent nature of the correction, the SCPC
method does show supercell size dependence which comes
from the fact that the character of the underlying (localized)
defect wavefunctions may change with supercell size due to
the defect-induced strain fields and other factors, so super-
cell size scaling is still necessary with this method but con-
verges faster than the a posteriori total energy correction
schemes [117].

3.3.2 Embedding of long wavelength phonons in the
finite size of the supercell

The long-wavelength acoustic phonons could contribute
to the phonon sideband of the optical spectra of defects.
Audrius Alkauskas and co-workers developed an embed-
ding method to include the electron-phonon coupling in
the optical transition [116] that they applied to the optical
transition between the triplet states of diamond NV centre
[79, 116] which has been also implemented in the sf-TDDFT
study for the absorption spectrum of the singlet states
[78]. Similar treatment is advisable for the temperature-
dependent photo-ionisation spectrum [111].

3.3.3 Reconstruction of the deep-energy valence and
high-energy conduction bands

Accurate absorption cross section calculation of excitation
from/to deep levels to/from solid-state bands within super-
cell formalism requires special attention due to band fold-
ing in the Brillouin-zone [118]. This was recognized by
Razinkovas and co-workers when they studied the absorp-
tion cross section for the photo-ionisation of diamond NV
centre [89]: they found minigaps in the conduction band
which affected the calculated absorption cross section at
the given high energy excitation. They used the following
technique to circumvent this problem: (i) they identified the
folded band in the Brillouin-zone of the primitive diamond
cell as described in Ref. [118], (ii) then they averaged out
the calculated absorption cross section values closest to the
corresponding k-space within the energy region of about
0.08 eV. The resulted photo-ionisation absorption spectrum
is then converged well.



374 = A Gali: Theory of solid-state defect qubits

3.3.4 Treatment of spatially extended defect
wavefunctions: beyond effective mass theory

KS DFT calculation of the properties of shallow donors in Si
is computationally very challenging because of the spatial
extension of the donor wavefunction. Accurate calculation
requires hybrid HSE06 functional, e.g., Ref. [119], which
becomes extremely difficult to carry out for sufficiently
large supercell sizes. As was done for the total energy cor-
rection of charged defective supercells (see Refs. [30, 34, 117]
and references therein), one can apply a strategy by study-
ing theoretically and numerically the scaling of the given
property as a function of the supercell size, and then extrap-
olate the result to the dilute (isolated defect) limit. In many
cases, the exact scaling properties are unknown or they
are too much complex because different effects (electron
density and charge distribution, strain field distribution)
are intertwinned and they often depend on the local elec-
tron density distribution of the defect that might change by
increasing the size of the supercell.

In practice, numerical KS DFT investigations could lead
to converged results which requires sufficiently large num-
ber of sampling points for defining the scaling law, i.e.,
ideally up to supercell size with about 10,000 atoms. This
is prohibited by the accurate HSE06 functional so a typical
strategy is to calculate the scaling by the affordable PBE
functional and for a limited range of supercell sizes to com-
pare the scaling with HSE06 and PBE functionals to verify
the scaling function.

Swift and co-workers studied the shallow group-V
dopants of Si by supercell KS DFT calculations [119]. These
dopant introduces a singly occupied electron the state split
from the CBM. In semiconductor physics, these states are
described by the so-called effective mass theory from Kohn
and Luttinger which treats the dopant potential as a posi-
tively charged Coulomb potential which binds an electron
of which state can be described the linear combination of
the CBM valleys. The solution of this system results in a
Rydberg or hydrogenic series of excitation energies until it
converges to the ionisation level. The ionisation or binding
energy of the electron (E,) can be defined as the lowest
energy level €% (1s like envelop function) with respect
to CBM of the perfect crystal (¢°®M). The validity of this
approximation from many-body electron-phonon point of
view was briefly discussed in Section 3.2. It is known in
experiments (see Ref. [119] and references therein) that the
ionisation energies of various group-V dopants in Si differ.
Therefore, a so-called “central cell correction” was intro-
duced to the effective mass theory which assumes that the
1s ground state wavefunction has the largest overlap with
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the dopantion’s attractive potential which will pull down its
energy level with respect to the purely hydrogenic solution
(enlarging the donor ionisation energy). As the potential
of the dopant ion is characteristic to the dopant within
short range around the dopant ion, thus the “central cell
correction” will be dopant dependent. The central cell cor-
rection is merely semiempirical correction to the effective
mass theory of shallow donors and acceptors, where the
acceptor levels are measured with respect to VBM. In KS DFT
calculations, the ionisation energies can be calculated at ab
initio level free from any assumptions on the nature of the
potential induced by the dopants. It can be estimated from
the effective mass theory that the 1s donor wavefunction in
Si will decay at around 55 A from the position of the dopant
which would require a supercell of about 64,000 atoms to
accommodate the donor wavefunction without significant
overlap. This definitely calls to apply a scaling procedure
even for PBE DFT functional.

Swift and co-workers [119] applied scaling method for
calculating E; of arsenic (As) and bismuth (Bi) donors in
Si by PBE and HSEO06 functionals. The calculations were
carried for supercells from 64 to 2744 atoms at PBE level and
for supercells from 64 to 1000 atoms at HSE06 level. They
calculated E, at a given size of the supercell as

Ey = M — gdonor 4 oA, (16)
where AV potential alignhment between the defective and
perfect supercells appears the charge correction of defects
in Section 3.3.1. Interestingly, the AV does not show a clear
monotonous decay with increasing size of the supercell
which was not explained [119]. The scaling of the HSE06 data
was carried out as

fic _ 1pe

_ 1,6
bHSEOG - bPBE - 2 PBE, 5 + inSEOG’gex’ (17)

where bgltSE is the slope fit to the PBE binding energies,

bglgE s 18 the slope fit to the PBE exchange splitting, and

bgtsm’ sex 18 the slope fit to the HSE06 exchange splitting. The
exchange splitting was defined as the difference between
the spin-up and spin-down eigenvalues of the donor state.
Subtracting half of the exchange splitting from the bind-
ing energy yields a spin-averaged value which is cor-
rected between the PBE and HSE06 results with assum-
ing that the supercell-size dependence obtained in PBE for
the spin-averaged case applies also to the HSE06 values.
They obtained 54 meV and 67 meV binding energies for
As and Bi donors, respectively, in very good agreement
with the experimental data at 53.9 meV and 70.9 meV,
respectively [119].
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The neutral donor defects introduce S = 1/2 spin that
can interact with the nuclear spins of the dopant or the prox-
imate 2%Si I = 1/2 nuclear spins which is called hyperfine
interaction. Actually, the interplay between the electron and
nuclear spins could represent qubit states in these systems,
therefore, understanding this interaction as a function of
electric field and strain is highly important (see Ref. [120]
and references therein). This hyperfine interaction can be
generally written as

Hy,, = 8Af,

(18)
where A is the hyperfine tensor and §, 1 are the electron
spin, nuclear spin vector operators, respectively. The Fermi-
contact and the dipole-dipole terms of the hyperfine tensor
can be respectively written as

2 nyR) 1
Agll,) = %geﬂBgn/"nS(T + %geMBgnﬂng

2
x / ?mrisréabn o,

(19)
where n(r) is the electron spin density, r is the vector
between the electron spin and nuclear spin at R, g, is the
nuclear g-factor, and y,, is the nuclear magneton for a given
nucleus n. For the ground state 1s donor wavefunction,
the Fermi-contact term predominates which depends on
the localization of the donor wavefunction at place of the
dopant. Swift and co-workers found that (i) PBE produces
too low hyperfine constants for shallow donors in Si, (ii)
reliable values are obtain for supercell size of 512 atoms
or larger number of atoms, and (iii) in that size range the
hyperfine constant for the dopant atom scales as L. The
final HSE06 values are 132.5 MHz and 1262 MHz for As and
Bi spins, respectively, compared to the experimental data at
198.3 MHz and 1475 MHz, respectively [119]. They also found
that the electric field gradient, V,,, around the dopant atom,
so the quadrupole interaction strength Cy = 3€Qyom V,,/4h
is vanishingly small (1 MHz), where h and e are the Planck-
constant and the charge of the electron, and Q,, is the
nuclear electric quadrupole moment of the dopant atom.
Furthermore, they also studied the strain dependence of the
contact hyperfine tensor of the Bi dopant, which generally
reads [120] as

K L
AJA, =1+ §(£XX +eyt+E,)+ 2 ey, — €,
+ (Exx - 622)2 + (‘Exx - gyy)z]

+ N(sfvz +e2 + e)z(y>, (20)
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where A, is the value in the absence of strain, K coupling is
responsible for the hydrostatic strain, L coupling and N cou-
pling describes the uniaxial and shear strain effects, respec-
tively. Swift and co-workers only focused to the hydrostatic
strain in their ab initio study: they found that K scales
the same in HSEO6 and PBE functionals in relatively small
supercells, thus the error in PBE in the difference of abso-
lute values of hyperfine constants as a function of strain is
cancelled. As a consequence, the PBE scaling can be applied
for larger supercell for extrapolation to the dilute limit. They
obtained K = 20.2 which is close to the experimental data at
K =19.1 (see Refs. [119, 120]).

In the afore-mentioned examples, the defect wavefunc-
tion is spatially extended in the electronic ground state.
Perhaps, it is not a common knowledge among scien-
tists coming from the quantum optics field that similarly
extended wavefunctions could exist in the electronic excited
states. Again, the best example is the most studied small
band gap material, silicon. As silicon has a band gap of
1.215 eV at cryogenic temperatures, there is a little room to
introduce multiple levels by deep defects. Defects may intro-
duce only a single occupied deep level in the fundamental
band gap of Si where the electron could be promoted from
the in-gap defect level to CBM. In this case, the defect can be
described as a positively charged centre which Coulombi-
cally binds an electron split from CBM. This definitely shows
a similarity to the shallow donor states in Si. For example,
the photoluminescence C-centre in Si shows a sharp ZPL
at 789 meV for which photoluminescence excitation (PLE)
measurements revealed a hydrogenic or Rydberg series of
excited states [121]. Later it was shown that this type of PLE
features is common for other deep optical centres of Si that
was called “pseudo-donor” model [122, 123]. Recently, the
pseudo-donor model of C-centre in Si has been confirmed by
HSEO6 calculations [124]. The neutral C;0; defect associated
with this optical centre indeed produces a deep level in the
fundamental band gap (see Figure 3), and the calculated
ZPL energy at 750 meV by ASCF method agreed well with
the experiment. In this calculation, 512-atom supercell was
employed with the same correction in the total energy of
the excited state of the defect (56 meV) as for the positively
charged defect. The reasoning behind this method was the
following. The excited state involves a spatially extended
wavefunction. The scaling property of the total energy of the
excited state was assumed to go similarly to that of the pos-
itively charged defect within the accuracy of about 50 meV
because the extended electron occupying the state split from
CBM could behave similarly to all the crystalline valence
bands of the system which leaves a positively charged core;
in other words, the pseudo-donor electron does not “shield”
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Figure 3: C-centre in silicon. (a) The atomic structure of the C;0, defect complex, consisting of neighbouring carbon (C; — Si;) and oxygen (O; — Si,)
split-interstitial defects associated with C-centre in Si. (b) Kohn-Sham level structure of the C;0,(0) defect ground state ('A’) and singlet ('A’’) excited
state in the spin-polarised HSE06 calculation. VBM, CBM and C label the valence band maximum, the conduction band minimum, and the dangling

bond orbital of the carbon atom, respectively.

the positively charged core. There is a further note here
about the accuracy of ASCF method. In a 216-atom supercell,
the results from ASCF method and GW + BSE method were
compared. It was found that GW + BSE confirmed the com-
position of the exciton as the deep hole state and an electon
state split from CBM and the vertical excitation energies
were within 11 meV. Thus, ASCF method can be applied
for the bound exciton excitation too which is important to
calculate the Stokes-shift upon excitation as no quantum
mechanical force calculation has been yet implemented to
GW + BSE methods. For the case of shallow donors in Si,
the geometry change upon ionisation was neglected. How-
ever, this cannot be neglected for the fluorescence spectrum
of deep defects. Indeed, the sharp features in the phonon
sideband of the PL spectrum could be well reproduced by
applying the Franck-Condon theory [124]. According to the
calculations, C-centre is a potential building block of quan-
tum repeaters in the telecom L-band [124].

Another deep optical centre in Si, the W-centre, has
been recently isolated as a single quantum emitter with ZPL
wavelength close to the telecom region at 1218 nm (1.018 eV)
(see Ref. [20] and references therein). The defect contains a
complex of three self-interstitial silicon atoms. The most sta-
ble configuration, so called I;-V configuration with C; sym-
metry, has been recently identified by HSE06 calculations
where the relative stability changes with respect to PBE cal-
culations [20], which we call here I, for the sake of simplicity.
The electronic structure of the neutral I, is very interesting:
it shows a single resonant a level at 73 meV below VBM (see
Figure 4). At first glance, this defect may be considered as
electrically and optically inactive. However, after ionisation,
the unoccupied defect level emerges inside the band-gap,
and the (+/0) charge transition level is at 55 meV above
VBM after applying charge correction in the total energy of
the positively charged defect. As the stability of the positive

charge state is confirmed, the positively charged defect may
Coulombically bind an electron with the state split from
CBM, alas, the neutral excitation of I; is a bound exciton with
a strongly localized hole on the defect and a loosely bound
electron [20]. The pseudo-donor nature of the defect was
confirmed by HSE06 ASCF calculation in 512-atom supercell.
The estimation of the ZPL energy was based on the full
geometry relaxation of the electronic ground and excited
states with scaling of supercell sizes,

E,p(L)=A/L+B/L*+C, (VA))

where L is the side of the simple cubic supercell, A, B, C
are fitting constants, where C value corresponds to the
dilute limit. L was varied between the supercells of 216-atom
and 8000-atom for PBE calculations and up to 1000-atom for
HSEO06 calculations. It was found that the 216-atom super-
cell results do not fit to the trend and should be ignored.
The idea of the formula in Eq. (21) is that the excited state
requires charge correction. Since too few data points could
be calculated at HSE06 level, it was assumed that the PBE
results well reproduce the electrostatics of the problem, and
the A and B fit results can be used for HSE06 data points.
This procedure finally yields C = 1.102 + 0.003 eV which is
within 0.1 eV when compared to experimental data.

The pseudo-donor or bound exciton excitation can
occur in wide band gap semiconductors too. A very nice
example is the so-called D, centre in 4H SiC [125, 126]. The
optical activity of the defect is identified as the silicon anti-
site [127, 128] which is an isovalent centre with producing a
deep donor level in the fundemental band gap. The defect
can be positively charged and then it can Coulombically
bind an electron from CBM with producing Rydberg series
of excited states [125]. It can be expected that similar bound
exciton excited states may be found in diamond.

Indeed, a recent study has identified Rydberg series in
the optical spectrum of the diamond neutral silicon-vacancy
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Figure 4: W-centre in silicon. (a) The atomic structure of the tri-interstitial (I;) complex associated with W-centre in Si. (b) Kohn-Sham level structure
of the I;(0) defect ground state ('A) and ('A) excited state in the spin-polarised HSE06 calculation. VBM and CBM label the valence band maximum and

the conduction band minimum, respectively.

[SiV(0)] defect in a joint experimental and theoretical study
[11]. Interestingly, optical spin-polarisation and ODMR sig-
nals could be also observed through their bound exciton
states [11] which makes the analysis of these states highly
important as this defect can be isolated in diamond as a
near-infrared single photon emitter [129].

The electronic structure of SiV(0) in diamond was
already briefly described in Section 3.1.1 that we extend here
before we proceed to the discussion of the bound exciton
states. In SiV(0) defect, Si atom sits in the inversion centre of
diamond so the defect can be rather described as a V, defect
with six carbon danglings bonds whereas the “dopant” Si
ion resides in the empty space of V, with the farthest dis-
tance from these six carbon atoms (see Figure 5). The six
carbon dangling bonds create a double degenerate e, level
resonant with the valence band and a double degenerate
in-gap e, level occupied by two eletrons. This forms the

he
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Figure 5: Extension of effective mass state in diamond SiV(0) defect. (a)
Geometry of the SiV(0) defect in diamond as optimized by HSE06 in the
ground state. The dashed circles represent the missing C atoms, i.e.,
adjacent vacant sites or V,. (b) The Bohr-diameter of the heavy-hole for
the n =1 or 1s effective mass state. Apparantly, the dangling bond
orbitals in V, are confined to the same space as the 1s effective mass
state.

3A2g ground state. The usual optical activity is associated
with promoting an electron from the e, level to the e, level
for which the optically allowed 3E,, — 34, ¢ transition yields
the ZPL energy at 1.311 eV (see Figure 6(c)). This energy is
much smaller than the ionisation threshold energy at 1.53 eV
which corresponds to the neutral to the negative charge
transition (see Ref. [11] and references therein). It is impor-
tant to notice the selection rules of optical centre with inver-
sion symmetry that the optical transition is only allowed by
changing the parity of the participating wavefunctions.

By increasing the excitation energy above the ZPL at
1.311 eV but below the ionisation threshold energy at 1.53 €V,
one can excite the hole from the VBM which results in a
SiV(—) defect plus a loosely bound hole, i.e., a bound exciton
state of SiV(0). Generally, analysing the hole bound exciton
spectrum has an increasing complexity over that of elec-
tron bound exciton spectrum because of the orbital degen-
eracy of VBM at the I'-point which results in an effective
spin—orbit interaction. A detailed description is beyond the
scope of the present review paper. We rather defer the read-
ers to the supplemental material of Ref. [11] which is now
very briefly summarized here. The three-fold degenerate
VBM of diamond sligthly splits due to the defect potential
resulting in a;, and e, bands, where a,, band lies above
e, band. The VBM splitting also affected by the spin—orbit
coupling which has similar energy as the crystal field split-
ting induced by the defect potential [11]. The spin-orbit
coupling createslight-hole, heavy-hole and a split-off hole in
the VBM, where the heavy-hole has the shortest Bohr-radius
effective mass state orbitals [11]. According to the theory
from Thiering and Gali [11], the 1s, 2s, ... effective mass
states will transform as A,,, whereas 2p, 3p, ... effective
mass states will transform as A,, and E,, and 3d, 4d, ...
effective mass states will transform as 4, and E . As a con-
sequence, only the p-type effective mass states can be opti-
cally excited from the A,, ground state. The lowest energy 1s
effective mass state may be observed with the contribution
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of u-type of phonons as phonon-assisted optical transition.
Since the translation motion of Si ion in the void of V,
transforms with u odd-parity [130] the 1s, 2s, ... as well as 3d,
4d, ... effective mass states could be optically excited
via the A,, quasi-local phonon mode of the Si ion which
is about 43.4 meV according the PBE calculations [11].
Indeed, the 1s effective mass state was not observable in
the PLE spectrum but well detectable in the optical spin-
polarisation spectrum mediated by the Si-ion vibrations [11]
(see Figure 6(a)).

By applying Rydberg scaling to the experimental data
(Figure 6(b)), one can find that the expected binding energy
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Figure 6: Experimental signals and effective mass theory for the excited
state of diamond SiV(0) defect. (a) Experimental photoluminescence
excitation (PLE) and optical spin-polarisation (OSP) spectra from Ref. [11].
The OSP can be observed in the spin-polarisation of the ground state
towards the m, = 0 electron spin state in the electron paramagnetic
resonance spectrum. (b) Scaling of the peak positions extracted from PLE
in (a). The fit uses Rydberg scaling £, = £; — Ey/n2 associated with the
effective mass states, where n refers to the principal quantum number.
Due to similar fine structures of 2p and 3p states, we fit different fine
structure transitions (wiggles in the PLE and OSP curves) separately
corresponding to the different coloured curves. The fitted ionization
energy (£;) and Rydberg energy (£,) are 1.53 eV and 0.4 eV, respectively.
The horizontal dashed line indicates the fitted ionization energy. States
with “s”-like character are taken from spin-polarisation measurements,
and are shown with triangles. A, and A, are energy deviations for 1s and
2s states compared to the fitted Rydberg scaling that involve both central
cell correction and the localized phonon energy. (c) Proposed bound
exciton model for the higher-lying excited states showing orbital ground
and excited states and BE states at higher energies in the hole picture.
The lower levels closer to the valence band maximum for electrons
require higher excitation energy.
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of the 1s level is about A; — 0.04 = 0.19 eV deeper when the
experimental data is corrected with the phonon energy of
the Siion vibration.

An important observation is that the central cell cor-
rection makes the 1s level shallower (i.e., its binding energy
becomes smaller) than the value of the effective mass the-
ory, in stark contrast to the case of shallow donor and
acceptor dopants in semiconductors. The central cell correc-
tion energy can reach hundreds of meV for deep defects in
diamond.

The qualitative explanation behind this observation
can be drawn from Figure 5: the majority of the 1s effective
mass state are localized in the core region of the defect in
which the localized orbitals are confined. As a consequence,
the electron cloud of the localized orbitals will shield the
effective attractive potential of the defect and repel the
1s effective mass state which finally shifts its energy level
closer to the ionisation threshold energy. The quantative
prediction of the 1s energy level calls for ab initio calcula-
tions. Unlike the case of the deep defects in Si with bound
exciton excited states, the relatively short Bohr-diameter of
the VBM hole 1s state makes it possible to embed the excited
state wavefunction in a few-thousand atom supercell, viable
at KS DFT level. From a remote distance, the SiV(—) + hole
system looks completely neutral which is the case of a giant
supercell by completely embeding the 1s wavefunction. In
smaller sizes of supercells, the systems looks like a nega-
tively charged defect as the hole wavefunction is completely
delocalized within the applied supercells, and a total energy
correction should be applied similar to the SiV(—) defect.
However, the total energy correction for the SiV(—) + hole
system should not be exactly the same with the SiV(—) defect
as the size of the supercell is increased because the bound
hole provides a screening towards the SiV(—) defect core.
Thiering and Gali suggested the following formula [11],

COIT __ é _Q E
BT = Zexp(—7 ) + 75 +C 22)

L L3

where D is the screening length which effectively screens
the monopole charge induced by the defect, the s-type spher-
ical potential. The quadropole term B may also incorporate
the strain field effects too, and C is the value of the dilute
limit. It is a critical issue how large could be the screening
length. This can be illustrated by numerical modelling of
a hydrogen atom in the simple cubic supercell with lattice
constants (L) which can be calculated at Hartree—Fock level
within VASP with using a soft PAW potential. The results are
shown in Figure 7(d). One can clearly see that the Coulombic
scaling (—1/L) deviates at sufficiently large supercells. At
sufficiently large supercell size (L > 4 A), the total energy
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of the system converges exponentially to a constant energy.
The dilute limit (C) is found by

— A axp(Du
Ey) = I exp( i > +C, (23)

where the Coulomb interaction (4/L) is screened by
exp (—%“ ) We note that the repulsive 1/L* term is missing
because only a single proton appears in the system. Using
this fitting procedure, Dy = 1.90A =356 - a, was found,
where a, = 0.53A is the Bohr-radius of the isolated free
hydrogen atom for n = 11s state.

One can conclude from the results of this simple model
that the screening length is multiple times longer than the
Bohr-radius of the effective mass state. This result could
explain the need of simplified computational approaches
on silicon defects described above because the Bohr-radius
itselfis already too long to be accommodated by 10,000 atom
supercell, so the screening radius cannot be computed at ab
initio level. In those cases, Eq. (21) was applied [20] which
overcorrects because of the neglect of the screening effect.
In diamond, the Bohr-radius of the effective mass hole states
is short enough to observe the deviation from the formula
in Eq. (21) due to the screening effect in few thousand atom
supercell calculations. Thiering and Gali in Ref. [11] applied
PBE functional to yield the 1s total energy by ASCF method
including 8000-atom supercells, and the resulting screening
length was fixed in the fit to HSE06 ASCF energies as a
function of the supercell size where the maximum size was
1000-atom supercell (Figure 7(b)). The scalings of the charge
transition level (Figure 7(a)) and the excitation energy of
the 1s state show similarities in the range of small supercell
size but a clear deviation can be observed for supercell
size with >1000 atoms. That deviation is essential to obtain
the accurate value, in good agreement with the experi-
mental data. Certainly, the highly localized orbitals and the
corresponding excitation energy converges much faster
with the size of the supercell as demonstrated in (Figure 7(c))
which also holds for the crystal field splitting and spin—orbit
coupling parameters too [11].

These recent findings cannot be found in the textbooks
about semiconductor physics and can be considered as an
extension of effective mass theory towards the excited states
of deep defects.

The bound exciton states may be formed not just
upon optical excitation but by capturing carriers by the
deep defects. The capture rate can be, in particular, effec-
tive if the defect Coulombically attract the carriers. In
the previous example, it can be imagined that the SiV(-)
defect in its ground state captures a hole from VBM, which
turns SiV(—) to SiV(0) plus a bound hole excited state,
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and that will decay either radiatively or non-radiatively
to the ground state of SiV(0). This effect was first con-
sidered in the electroluminescence of single NV defect in
diamond (see Supplemental Material in Ref. [99]). In this
case, the negatively charged NV defect binds a hole, cre-
ating NV(—) plus bound hole from the VBM. That was
calculated by HSE06 ASCF method without studying the
convergence of the excitation energy [99]. In a later study
[100], the interaction of two individual NV defects was
investigated when the photo-ionisation of one NV leads to
the emission of holes toward the neighbour NV(—) defect
which can capture that hole. According to the interpre-
tation of the measurements, a giant o, ~ 3 X 1073 pm?
hole capture rate was derived for NV(—). This was ratio-
nalised by involving the formation of a bound exciton state
featuring an electron localized at the NV(—) plus a bound
hole from VBM. Flick in Ref. [100] calculated the total energy
of this bound exciton excited state by following the recipe
in Ref. [11] with a little modification of Eq. (22) to apply the
screening effect also on the quadrupole term. It was found
that the binding energy of the exciton is about 40 meV for
the 1s state [100]. That is definitely a stable state at room
temperature.

3.4 Computation of zero-field splitting for
high-spin defects and the g-tensor for
defects with heavy ions

The computation of magneto-optic parameters of defect
qubits such as zero-field splitting (ZFS) or g-tensor is of high
importance not only because that they act as a fingerprint
for identification of defect qubits with unknown micro-
scopic structure but they can govern the type of interaction
with external magnetic, electric, and strain fields as well
as temperature. The importance of interaction between the
hyperfine tensor with the strain field was already illustrated
in Section 3.3.4. Here, we briefly list the advance in the
calculation of ZFS and g-tensor for defect qubits.

The high-spin (S > 1) defects with axial or lower sym-
metry may experience the electron spin-electron spin
dipole-dipole interaction that may be expressed as

Q Q Qe 2
g 3<Sirij><rijsj) - (sisj>rij
4

Hss = i>j |rij|S 24)

= ZﬁiDijgj,

i>j

where r; =r; —r;. The 3 X 3D-tensor can be diagonalized
to find the spectrum and spin eigenstates. The D tensor
is associated with the two-particle spin density matrix,
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Figure 7: Excitation processes of SiV(0). (a) Charge transition level of SiV between neutral and negative charge states by means of HSE06 and PBE
functionals. In the dilute L — +oo limit, the HSEQ6 results (1.55 eV) agree with the experimental data at 1.53 eV. (b) n =1 1s bound exciton excitation by
means of HSE06 and PBE functionals. Here we can see that the HSE06 limit at L — 400 with screening included can explain the experimentally data at
1.39 eV. (c) Scaling of the e, < e, excitation process by means of HSE06 functional. (d) Total energy of the hydrogen atom in a Hartree-Fock I'-point
calculation in a simple cubic supercell as a function of the size of the supercell. (e) Schematic of the hydrogen atom in vacuum. The electron is
effectively closed into a > box. However, it is effectively not a box as it warps around its edges due to the interaction with its periodic images. From a
sufficiently large L > 4A distance, the H-atom in the supercell can be interpreted as a free non-interacting H-atom. By adding the atomic energy of the
employed soft PAW potential for H ion, which causes an artificial constant shift in the absolute total energy.

n,(ry,r,), which can be approximated by using the Slater-
determinant of the KS wave functions ¢ of the considered

system, so that n,(ry,ry) = |<Dl-]-(r1, r2)|2, where ®y;(ry, 1) =
% (qﬁi(rl)qﬁj(rz) — ¢j(r1)¢i(r2)) and then

1 u 2 2 occupied
Ho e B
= 547 S@S— 1) Z Aij

/|d>l](r1,r2)| Mf d°r,,  (25)

where r,, = (r; —1,),, and y; is either 1 or —1 for KS i, j
states of the same or different spin channels, respectively.
Note that in DFT the spin-polarised KS states are not spin
restricted. Consequently, not only the unpaired KS states but
also the rest of the occupied states can contribute to the spin
density and the ZFS [131]. However, there is no guarantee in
spin-polarised KS DFT methods that the final solution will
be the eigenstate of the spin operator, and the discrepancy
in it is called spin contamination. In practice, spin contami-

nation may be small with using (semi)local DFT functionals
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but could be significant with hybrid DFT functionals. This
may result in a significant error in the approximation of the
two-particle spin density matrix. Biktagirov and co-workers
suggested a workaround for this problem [132] which is
illustrated for the S = 1case. The idea is that if there is a spin
contamination in the electronic structure then the m; =0
spin configuration with spin-polarised DFT should produce
non-zero contribution to the D-tensor, called ﬁms=s—1- The
bare D-tensor with m; = S spin-polarised DFT results in
D, _s. Finally, the corrected D-tensor, D, is

b= g(n D). 26)

Each of these m;=S-1 configurations can be
obtained by changing the occupation of one of the half-filled
KS orbitals from spin up to spin down and subsequently
performing the self-consistent field calculation. It was found
that for divacancy defects in 4H SiC that the calculated
D-constants are at around 1.6 GHz but D = 1.3 GHz are
obtained after correction, close to the experimental data
(see Ref. [132] and references therein).

The ZFS may have other contribution for S > 1 systems
than electron spin-electron spin dipole-dipole (D) inter-
action as given in Eq. (25). As an example, we mention
here the neutral nickel-vacancy (NiV) defect in diamond
which has the same structure as SiV(0) defect discussed
above in this review paper. NiV(0) has also 3A2g ground
state similar to that of SiV(0) with six carbon dangling bonds
which constitute of the ground state electron wavefuntion.
The calculated Dy = 967 MHz = 0.004 meV which is typi-
cal for the third neighbour distance of dangling bonds in
diamond (see Table 2 below). However, this value is very
far from the observed D =170 GHz = 0.703 meV (see Ref.
[133] and references therein). As 34, ¢ is an orbital singlet,
thus first-order spin-orbit interaction does not enter here.
However, second-order spin—orbit interaction between the
ground state triplet and excited state singlet states may play

Table 2: Spin-orbit and spin-spin contributions to the ZFS (in MHz) of the
NV centre and a set of group-IV-vacancy defects in diamond (compared
to available experimental data). All the defects have S =1 ground state
with orbital singlet A,-type many-body wavefunction. The geometry and
electronic structure of group-IV-vacancy defects are akin to those of
SiV(0). See Ref. [132] and references therein.

Defect Dyo Dgg Do, s Experiment
NV(-) 6 2722 2728 2878
Siv(0) 480 570 1050 929
GeV(0) 1469 630 2099 2248
Snv(0) 10,763 630 11,393
PbV(0) 144,860 660 145,520

A. Gali: Theory of solid-state defect qubits == 381

a role which can be selective towards the mg = 0 state of
the triplet, and it results in an effective energy shift of the
m, = 0 level and opening the gap between the m; = 0 and
m, = +1levels. To illustrate this using the first-order pertur-
bation theory, we consider the interaction of the 3A2g and
1A, ¢ State that are linked by the parallel component of the
spin—orbit operator (Hgg), 4,, where

gSO = ZAJ_ (fni’XSAi’x + i’i,ygi,y> + Azi’i,zgi,z' (27)
i

The energy gap between ®4,, and 'A;, is © before
applying Hg, and the spin-orbit coupling between
[*A,g,m; = 0) and 'A;, through 4, is 4,. In that case, the
first-order perturbation theory yields that |3A2g, m, = 0)
level shifts downwards by /1% /©. This means that

Dgy = 60 (28)

and it will be dominant over Dg. According to HSEQ6 calcu-
lations (see details in Ref. [133]), ® ~ 0.68 eV and A, = 23.2
meV which results in Dgy = 0.79 meV. This is much closer to
the experimental data at 0.703 meV.

One can go beyond the first-order perturbation the-
ory and consider the change in the wavefunction due to
spin-orbit interaction (second-order perturbation),

)" = 24y, m, = 0)) + %llAlg), (29)

which may resultin a more accurate result than that by first-
order perturbation theory.

In general, the problem can be rephrased by consid-
ering the total energy of the system as a function of the
spin quantisation direction, E,,(7i,). In a uniaxialrt: case,
the magnetic anisotropy energy is then defined as difference
between E,,(7i,) obtained with 7i_) parallel (z) and per-
pendicular (1) to the anisotropy direction, Eqy = E,(2) —
E.,:(1), and then the corresponding D-constant can be eval-
uated as D, = Eg,/S? for integer S and Dy = Eqo/(S* —
1/4) for half-integer S. For the case of NiV(0) with S =1,
E, should be calculated self-consistently. E,(z) = E,;(11)
calculation can be carried out with the usual mg; = +1 set-
ting for the KS orbitals together with the scalar-relativistic
spin-orbit interaction. E,(L) calculation is a bit tricky. The
two spins should be individually rotated by 90° about the
x-axis. Then the total energy of the system should be calcu-
lated by scalar-relativistic spin—orbit interaction. This total
energy is not identical to E,(L) because the rotated-spins
system is not the exact m; = 0 eigenstate but a mixture of
m, = +1 and m, = 0, so we label it by E,;(——). The final
expression [133] is

Dgy = 3(Ei(11) — Eyy(>—)). (30)
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The self-consistent HSE06 Dy, = 0.73 meV which is
0.06 meV deeper than the first-order perturbation theory
value at 0.79 meV, and it brings the result closer to the exper-
imental data at 0.703 meV. This shows that self-consistent
spin—orbit calculation needed for obtaining accurate ZFS
for defects consisting of heavy ions. It is interesting to note
that self-consistent spin-orbit PBE calculations results in
Dy, = 1.35 meV which is significantly larger than the HSE06
and experimental values. We note that ® = 0.25 eV with
PBE which explains the too large D5° with PBE as first-order
perturbation theory showed that D% scales inversely
between the gap of the triplet and singlet levels [133].

These results clearly demonstrate [133] that the energy
gap between triplet (high-spin) and singlet (low-spin) levels
are highly critical in obtaining an accurate ZFS for defects
which consist of heavy ions.

The disasvantage of the self-consistent spin—orbit cal-
culations is that it can principally work for sufficiently large
spin—orbit energies, usually created by heavy atoms, so that
it does not fall below the numerical noise. For defects with
light atoms, one has to rely on the first-order perturbation
theory which was previously sketched for a special case
(diamond NiV defect) as an introduction to the problem.

Biktagirov and co-workers [134] implemented the per-
turbation theory based method to the GIPAW-tree of the
Quantum Espresso package. They apply collinear spin polar-
isation approximation with direction a = x, y, z. Then the
SO coupling in direction a (ﬁ 20> andb (FI§°> contributes to
the total energy of the system in second-order perturbation
theory as

£ = Y Re('; 3

0,s,s’

ySO s 7SO |\
A6 ()25 ).

Here the sum runs over the spin channels s and s’ and
the occupied states o € s. Thereby, @2) are the correspond-
ing unperturbed KS wave functions (obtained without SO
coupling), and G* (e,) is the Green’s function of the empty
states e € s'. In their implementation, explicit summation
over empty states is avoided by calculating G (e,) by pro-
jecting the empty states onto the valence bands. By this,
the approach becomes faster, numerically more stable, and
almost unaffected by the gap issues quoted above for the
(semi)local DFT functionals. On the other hand, the method
is not so intuitive as the majority of the interaction comes
from the closest high-spin low-spin energy states which can-
not be directly analysed by this method.

Biktagirov and co-workers applied their method to dia-
mond NV centre and group-IV-vacancy defects [134]. The
results are listed in Table 2. As can be seen the defect
with the lightest atom exhibits the smallest Dy, whereas it
increases orders of magnitude with going to heavier atoms.
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In the group-IV-vacancy defects Dy increases slightly as
the heavier atoms push the neighbour carbon atoms far-
ther from each other but the vast contribution comes from
Dy, except for SiV(0) and partially for GV(0) where the
two contributions are similar. We note that PbV(0) shows
about Dy, = 145 GHz for which self-consistent Dg calcula-
tion would result in a lower value.

Although, the calculated Dy, is only 6 MHz for diamond
NV centre but it couples directly to the electric field unlike
Dy which couples to the electric field only indirectly via
changing the electron cloud so the spin density (e.g., Ref.
[135]). As a consequence, the field applied along the defect’s
symmetry axis, the D, part dominantly drives the predicted
Stark coefficient, 0.034 GHz A/V, into the experimentally
observed confidence interval of 0.035 + 0.002 GHz A/V (see
Ref. [134]). The simulation was carried in a (111) diamond
slab where the electric field was switched on during the
calculations of Dgg and Dy,.

Previously, we discussed the spin level structure in the
absense of external magnetic field. Nevertheless, it is highly
important to understand the coupling of defect spins to
external magnetic fields. The external magnetic fields could
be intentionally turned on for manipulation of the qubits
on one hand, and on the other hand, randomly distributed
electron or nuclear spins proximate to the defect qubits
could influence their longitudonal relaxation and coher-
ence times. Here, we discuss the issue of a constant macro-
scopic external magnetic field interacting with the defect’s
electron spin which can be generally described as

H = —Bji = BuygS, (32)
where f1 is the magnetic dipole momentum operator, yy is
the Bohr-magneton of the electron, g is the g-factor, and S
is a phenomenological pseudo-spin, which is set to the net
electron spin of the system, i.e., § =1/2 for the Kramers-
doublet defect’s electron spin. Eq. (32) has the form of the
Zeeman formula for the free electron but g, = 2.0023 free
electron scalar value is substituted by g. Unlike the free
electron case, the defect’s electron spin feels the potential
of ions which is less symmetric than spherical, the defect’s
electron may have an effective angular momentum with
this condition, e.g., localized on the d-orbital, which can be
also influenced by the electron-phonon coupling. All of these
effects are packed into a single tensor g.

This issue is illustrated on the neutral vanadium defect
substituting the Si-site in 4H SiC which has become a very
promising spin-to-photon interface with a quantum mem-
ory and optical emission at the telecom wavelength (see
Refs. [136, 137] and references therein). The d-orbital of the
vanadium ion splits due to the C;,, symmetric crystal field of
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4H SiC and then a double degenerate e-orbital occurs in the
gap localized on the d-orbital of vanadium, occupied by a
single electron. Because of the double degenerate d-orbital,
one can expect an effective spin—orbit coupling between
the orbital and the electron spin, where the low symmetry
crystal field will reduce the effective angular momentum
of the orbital called Stevens reduction factor (r) (e.g., see
the origin of this effect in more detail for group-IV-vacancy
defects in Ref. [138]). However, it is also known that this
is an E ® e Jahn-Teller system [139, 140] which can also
effectively reduce the angular momentum of the electron
orbit so the effective spin—orbit splitting known as Ham
reduction factor (p). As a consequence, f in Eq. (32) can be
written as

= —(upprLl + pp8,8) = — S, (33)
where the contributions of I. and § are separated, so it gives
an opportunity to unravel the microscopic origin of g. Cséré
and Gali carried out ab initio calculations [141] to determine
the r and p factors, so then g can be obtained as

g =288, +L") = 2, (34)
Hp
g, = et ) (35)

Hp

where expectation values of the ladder magnetic dipole
moment operators are used (u,) to express g, . In Eq. (34)
S, and Lgff are expectation values of §, and the effective
angular momentum operator, ﬁgff = prL,, respectively.

We note that the d-orbitals may require a special atten-
tion for accurate calculation, and indeed, HSE06 DFT func-
tional overlocalises the d state that should be corrected
[142]. For the heavy-atom defects one may assume that the
vast majority of the spin—orbit coupling, so the effective
angular momentum, comes from the single heavy-atom. In
this case, the analysis of the d-orbitals and the actual DFT
wavefunctions can reveal the deviation of the d-orbitals
from the spherical symmetry (see Table 3), so the r can be
computed. As an example, ¥; and ¥, as well as ¥, and
W, can be coupled in Eq. (34) where the corresponding
wavefunction coefficients can be extracted for the given
spin—orbit state in the KS DFT calculation. It was found that
the vanadium at one site of 4H SiC feels isotropic environ-
ment with small effective angular momentum which is an
order of magnitude larger in a truly axial-like environment
at the other site of 4H SiC. After solving the Jahn-Teller
Hamiltonian (see Refs. [30, 141]), the typical Ham reduction
factor is at about 0.6 which is significant, so the electron-
phonon coupling effectively reduce the interaction between
the defect’s pseudo-spin and the external magnetic field
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Table 3: Kramers doublets formed by d-orbitals and the corresponding
single and double group irreducible representations under Cs,
symmetry. We give widespread notations for double group irreducible
representations (irreps) and also the corresponding m; = m; + mj values.

I .
Labels Orbitals rreps m;
Single Double
¥, ldgo+3)ld 5 —3) 2 £y (Ty) +3
¥, ldyos =33 1dp0+3) % £ (Tse) %5
¥, ldys +3)s1d_0 =3y % £ (Tsg) %5
¥, ldy, =305 1do+3) £y (Ty) +1
W ldo, +3); 1do, —3) 2A, £y (Ty) +1

parallel to the symmetry axis of the defect. The final typical
values of g are around 1.9.

For the calculation of g, (Eq. (35)), the ladder magnetic
dipole operator was considered, fi, that can couple state
|m]-) to state |m]- + 1), where m; =m; + m. However, the
in-gap defect states transform as either E;/, (linear com-
bination of ¥; and ¥,) or E;/, (linear combination of ‘¥,
and '¥;) with the m; values given in Table 3. Consequently,
ji, cannot couple neither ¥, and ¥, nor ¥, and ¥; there-
fore g, = 0in each case. Deviation from g, = 0 may occur
due to secondary effects.

The same method was applied to the nickel defects
in diamond where the NiV(—) was identified by first prin-
ciples calculations as an excellent qubit candidate anal-
ogous to the group-IV-vacancy qubits in diamond [133]
which has an optical emission at about 1.4 eV and a highly
anisotropic g-tensor. In the literature, the NE4/AB1 EPR cen-
tre with § = 1/2 spin and relatively isotropic g-tensor with
& =2.0027(2) and g, = 2.0923(2) was previously associ-
ated with NiV(—) which is linked to the 1.72-eV optical centre
(see Ref. [143] and references therein). Clearly, the NE4/AB1
centre should be associated with another nickel-related
defect in diamond. Thiering and Gali tentatively assigned
Ni(N;);(0) defect to this centre which has an unpaired elec-
tron on the a; orbital strongly localized on Ni 3d orbitals.
In this case, the g-tensor is modified from the free electron
value because of the orbital moment of the Ni 3d states
as explained above for vanadium defects in 4H SiC. This
justifies to calculate the total orbital moment ((ﬁx, y.2)) of the
defect within the PAW sphere of the ions where the largest
contribution comes from the Ni ion. Because of C;, sym-
metry (L,) = (L,) = (L, ). The main components of the g-
tensor can be givenas g, = g, + 2(L,)and g, = g, + 2(L ).
Finally, g, = 2.0058 and g, = 2.0942 are obatined, in good
agreement with the experimental data.
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3.5 Spin-phonon coupling:
temperature-dependent longitudonal
spin relaxation time and
magneto-optical parameters

3.5.1 Longitudonal spin relaxation time

A key parameter of qubits is the longitudonal spin relax-
ation time which is the characteristic time of flipping the
spin, and it is labeled by T, in the literature. This sets the
absolute limit of the spin coherence time, i.e., the char-
acteristic quantum information processing operation time
of the qubit. It is of high importance to understand the
underlying microscopic processes. In nuclear spin physics,
the origin of spin flipping was identified as the interaction
between phonons and the spin which is manifested as a
highly temperature-dependent phenomenon; therefore, it
is also often called spin-lattice relaxation time. As T; often
exponentially decay with elevating the temperature it is
imperative to characterise T, as a function of temperature,
in order to explore the applicability of qubits as sensor
probes in biology which requires ambient conditions. Our
review paper only focusses to the recent advances on defect
qubits, in particular, on S > 1 defect qubits.

Spin flipping processes require such interaction Hamil-
ton operator which contains spin shift operators. It can be
easily recognized that the spin-spin dipole-dipole interac-
tion in Eq. (24) contains single and double spin shift opera-
tors, e.g., S5, and §, S, respectively. Therefore, if the defect
qubit’s spin interact with other spin species then it causes
a spin flip of the defect qubit. The strength of dipole-dipole
interaction goes with inverse cube of the distance between
the spins. This interaction is weakly dependent from tem-
perature and it highlights that the longitudonal spin relax-
ation time is not necessarily a spin-phonon interaction. In
practice, this type of T, process becomes only important at
elevated temperatures for diamond NV centre if the concen-
tration of defect spins is relatively high, e.g., 4-8 particle per
million (ppm) in diamond [62].

Ivady applied the cluster-correlation expansion (CCE)
[144,145] to model the interaction of the central diamond NV
centre’s electron spin with other electron spins such as the
environmental NV centres, nitrogen donor spins (labelled
as P1 EPR centre), and the 3C nuclear spins also as a func-
tion of the external magnetic field and strain [62]. The CCE
approach will be shortly discussed in the next chapter.

We note that another study only restricted this inves-
tigation to the bath of ®C nuclear spins but taking only the
dipolar interactions into account with far 13C nuclear sites
[146]. However, the bath of 3C with Fermi-contact hyperfine
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terms cannot be ignored for accurate simulations which
calls for ab initio simulations.

Ivady calculated the hyperfine tensors for 1*C isotopes
by HSE06 DFT method in a 1728-atom simple cubic supercell
[62]. Since the hyperfine tensors should be determined at
large distances from the defect site this required a special
approach in order to avoid finite size effect problems. Ivady
utilised a real space grid combined with the PAW method
to calculate hyperfine tensors. The Fermi contact term,
dipole-dipole interaction within the PAW sphere, and core
polarisation corrections are calculated within the PAW
formalism from the convergent spin density. The dipolar
hyperfine contribution from spin density localized outside
the PAW sphere is calculated by using a uniform real
space grid. This procedure enabled to obtain hyperfine cou-
pling tensors excluding effects from periodic replicas of
the spin density due to the periodic boundary condition.
Additionally, hyperfine tensors for atomic sites outside the
boundaries of the supercell were calculated by neglecting
Fermi contact interactions with achieving a smooth transi-
tion in the hyperfine constants at the boundary of the two
approaches.

Ivady used the extended Lindbladian equation in order
to simulate the spin dynamics of the central spin and its
relaxation rate 1/T; in materials where the electron spin
density cannot be ignored beside the nuclear spin bath [62].
In this model the total spin relaxation rate (1/7;*") is

1 _ 1 1 1 1
tot P1 NV—basal NV— 13C°
Tt T Tt pNvebasl T opNvpar oy

(36)

where “NV-basal” and “NV-par” label such NV centres in the
environment which have other and parallel symmetry axis
with that of the central NV centre. Finally, it was found that
the environmental NV centres have a dominant effect on
the spin relaxation rate [62]. At special setting of the mag-
netic fields, either ground state level anticrossing (GSLAC) or
excited state level anticrossing (ESLAC), the relaxation rate
is accelerated because the P1 centres and the nuclear spins
can easily induce spin flip-flop processes that were other-
wise protected by the energy gap between the electron spin
levels of the NV centre. At GSLAC, the spin-polarisation of
the electron spin and the coupled nuclear spin also changes
that can be observed by the change of the PL intensity as the
external magnetic field is swept around the GSLAC region
[147]. This modelling also rationalised the photo-electric
read-out process of the single N nuclear spin of the NV
centre at ESLAC condition [148].

TlP 1 time was further investigated in detail [149] in
which they considered the microscopic structure of the P1
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centres in diamond, namely, the strong Jahn-Teller distor-
tion will generate four different symmetry (111) axes in
diamond, and the N nitrogen hyperfine tensor to the P1
centre’s electron spin adapts to these orientations. As a con-
sequence, the spin flip-flop processes between the P1 pairs
are reduced with respect to the case of unrealistic aligned P1
centres [149]. With taking the microscopic structure of the P1
centres into account, the calculated spin relaxation times of
the diamond NV centre exhibits a clear linear dependence
on P1 concentrations on a log scale with a slope of —1.06, in
excellent agreement with some experimental data (see Ref.
[149] and references therein).

This theory was also applied to the divacancy qubit in
4H SiC by considering other divacancy spins (S = 1), neg-
atively charged Si-vacancy spins (S = 3/2), nitrogen donor
spins (S = 1/2), as well as 3C and 2°Si I = 1/2 nuclear spins
in the environment, also as a function of the external mag-
netic field [150]. It was found that the cross-relaxation accel-
erate spin flip-flop rates again in the region of GLSAC and
ESLAC magnetic fields for each considered environmental
spins. At zero magnetic field a simple relation was found for
the interaction between N-donor and the central divacancy
spin,

= =hc

T, (37

where f = 1.6 X 107% Hz/cm™® and C is the concentration
of the N-donor. It is noted that nitrogen implanted samples
the distribution of nitrogen donor is not homogeneous, and
then the “concentration” should be considered near the
target divacancy spin which was created as a result of the
implantation [150]. The theory was also employed to the
Si-vacancy S =3/2 qubit in 4H SiC [151]. In this case,
Bulancea-Lindvall and co-workers considered the interac-
tion the Si-vacancy qubit spin with S =1/2 defects, e.g.,
N-donors. Si-vacancy in 4H SiC has minor ZFS, thus at a
given external magnetic field with similar Zeeman shifts the
two spin systems can be effectively coupled by dipole-dipole
interaction unlike the case of divacancy with S =1 spin
and high ZFS (~1.3 GHz). On the other hand, #Si nuclear
spins at natural abundance (4.5%) exhibit a considerable
hyperfine splitting when they interact with the Si-vacancy
qubit spin which will supress the cross-relaxation between
the Si-vacancy qubit spin and the § = 1/2 spins in the envi-
ronment. By isotope purification (reducing the concentra-
tion of 2°Si isotopes in 4H SiC), the cross-relaxation so the
spin flip-flop process accelerates and the spin relaxation
time of the Si-vacancy qubit significantly reduces when the
concentration of § = 1/2 spins are high (~10%° — 10%® cm=3).
This surprising result was unraveled by these simulations
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with using ab initio hyperfine tensors in the parametrisation
of the interaction Hamiltonian.

High quality materials with single defect spins and low
concentration of nuclear spins do not experience spin flip-
flop events with electron spins in the environment, and the
flip-flop processes caused by nuclear spins are only observ-
able at special conditions (e.g., external magnetic field is set
to GSLAC condition). In this case, the spin-phonon coupling
is responsible for T, and it becomes strongly temperature
dependent. In the case of molecules, vibrations are indeed
responsible behind the spin flipping process. In a recent
review paper [152], the ab initio theory and its application
to molecules have been presented in detail. The formulas
and basic equations apply to defect qubits too which are not
reiterated here in detail.

Regarding the temperature dependence of T, =1/T
of defect qubits, the most studied one is the diamond NV
centre [31, 153-155], and the first ab initio results have
been reported for this defect qubit because the theories
could be well tested on the accurately recorded exper-
imental data. In recent studies [31, 156], the m, = +1
levels of %A, ground state was split by a small exter-
nal magnetic field aligned parallel to the symmetry axis
of the defect (~145 MHz), and they could observe both
single-flip rates (|0) < | + 1), labelled by ) and double-
flip rates (| +1) < | — 1), labelled by y) and found that
y > Q at any observed temperature (T > 125 K) and y ~
2 Q at room temperature. In the temperature region
of 125 K and 400 K, the rates increase from =1 Hz
to ~200 Hz. At this temperature region only phenomeno-
logical theory was considered using an empirical model in
which the high-temperature behavior is characterized by a
term that scales with temperature as T° [153, 154], which
may arise due to Raman scattering of low-energy acoustic
phonons which are weakly coupled to the spin via first-
order interactions. However, insights from ab initio simula-
tions should verify this model including the magnitude of
the double-flip rates.

The spin relaxation rate may be expressed as

=T, +IP0)+TPM+TPM+...,  ©8)
where the superscript refers to the order of the spin-phonon
interaction (i.e., terms with superscript 1 or 2 are linear
or quadratic in the atom displacements respectively) and
the subscript refers to the order in perturbation theory.
I, is a sample-dependent constant term arising from spin-
spin interactions that was discussed above. F?) describes
the absorption or emission of a single resonant phonon by
the spin. Because the ZFS energy of the NV ground-state
triplet is small in comparison to typical phonon energies
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in diamond, this process is only relevant at subkelvin tem-
peratures [155]. I 21) corresponds to the Raman-scattering
of low-energy acoustic phonons via first-order interactions.
However, we will present below [156] unlike for other spin
systems (e.g., several coordination compounds as recently
shown in Ref. [157]), first-order spin-phonon interactions
provide only negligible contributions to Raman scattering
for the NV centre in diamond. The major effect comes from
ng’(T) so the quadratic displacements of ions.

In order to calculate F;Z)(T), the spin-phonon matrix
elements should be obtained by exploiting the dependence
of the D-tensor on the normal coordinates (Q) as

DW®) =DR = or+§: 0

R=0

90,

Qpp (39)

Z anaQ

where the coefficients in Eq. (39) were extracted from VASP
PBE calculations as implemented by Thiering and Gali [156].
In order to evaluate the second-order derivatives, only the
diagonal terms were considered which satisfy i =j and
distort the C,;, symmetric atomic positions by all degen-
erate e, e, phonon modes of the supercell by v/(AR)* =
0.1 Ay/am.u.. The second-order spin-flipping matrix ele-
ments V! and V!_ then determine the D-tensor accord-
ing to the symmetry-adapted expression in which only the
quadratic terms are expresse here as

1
o
—3 | ZR+ XV
211 l
*3
1 1
X -1 |(x7-Y)+]|1 2XY,
1
+ Z\/Evilo (Xl2 - le)
l 1
+ 1f2xy, 40)

where R;, X; and Y; are the dimensionless coordinates (not
normal coordinates) for the phonon modes at energy 7wo; or
hew,;. We note that while the index [ only covers the e modes
once, the index i covers all a;, a,, e,, e, modes and thus
runs over the e modes twice. Eq. (40) can be employed to
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transform it into the spin-phonon interaction V. By expicitly
writing only the quadratic terms, it reads as

A

7 =SDS
( - 73(s+ 1))

i (2 _ laca 52
+ Y3V (8 - 386+ )R
1

41

where S = (S)' = (§X S, .§Z>. The dimensionless coordi-
nates are expanded in terms of the phonon creation and
annihilation operators: R; = <blT + b,-) /V2 and (%, ¥}, =

(b{” + by )/\/E.

As a next step for defining the equations for the rates,
one can apply RPA for these processes so it is assumed
that the consequtively absorbed phonons are not coherent.
Furthermore, one can further simplify the equations by
considering the fact that the ZFS energy of the diamond NV
centre is much smaller than the typical phonon energies
coupled to the spin. The key matrix elements are the first-
order spin-phonon coupling coefficients Vrln , from the first-

order spin-phonon interaction V® = ¥, ., V! (alT + a,)
and the second-order spin-phonon couplings coefficients
72 = VY i (@l + @)@ +ay) from Eq. @41). The
equations involve Dirac & functions for conserving the
energy in the process. However, finite size DFT supercell
calculations do not produce continuous phonon density of
states, so it is required to use a Gaussian convolution for
Vrln ., and V” -, which results in first-order Ffrllzm;(hw) =

>V ,|25(hw hw,) and second-order F?_ (hw, ha') =
mgmy msmy
w2 _ /_ ;
> |V, 1280 — R (hw' — hey) spectral functions
in the continuum limit, respectively [156].
Finally, the appropriate spin relaxation rates are

6 _Arm
IMmm—fZ/WMMMM@H]
FO  (h)FY),  (hw)
(hw)? (42)
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and
@) _4r ’
Fl(msmé)(T) = f/ / d(hw)d(hw' Ing(w)
0 0

[ng(@) +1]F2  (hw, ha')s

(ho' — how), (43)

respectively. The temperature dependence enter via the
Bose—-Einstein occupation function (ng) of the phonons at
w, @' energies. In the current implementation [156], ho' =
hw constraint was employed in Eq. (43) that also enforces
I=1 and so V,’fl , diagonal matrix elements were consid-
ered in the repoi‘téd ab initio calculations [156].

The numerical ab initio calculations provided very slow
rates for F;l()msmg). The basic reason behind this observa-
tion is that w)? in the denominator completely suppresses
FSLng’ because the largest values of Ffzm;, are typical in the
range of 1-10 MHz whereas the relevant phonon frequen-
cies are in the order of 10 THz. This can be rationalised by
noting that the first-order interaction strength is roughly
DAu/a, where D is the zero field splitting (2.8 GHz), Au
is the atomic displacement, and a is the nearest neighbor
distance in diamond. In contrast, contributions to Raman
scattering from second-order interactions scale quadrati-
cally with the second-order interaction strength, approxi-
mately D(Au/a)?. Thus the ratio between the first-order and
second-order contributions is on the order of (D/hw)? ~
1078, indicating that Raman scattering due to first-order
interactions can be neglected for the diamond NV centre and
other § = 1 defects in diamond [31].

The calculated second-order spin-phonon coupling
coefficients are depicted in Figure 8. Two broad peaks can be
observed at certain phonon frequencies that are associated
with the motion of the carbon dangling bonds so the spin
density (see Ref. [156] and references therein). As the fre-
quencies of the effective phonons are much higher than the
thermal energy of the measurement temperature this will
scale as Orbach-process. Ab initio simulation revealed that
two effective phonon frequencies exist, thus I = 1/T; can
be described as a double Orbach-process, where the higher
effective frequency plays a role at elevated temperatures
[156]. The theory also well describes the double-flip transi-
tion and the appropriate rate equations, and both processes
are double Orbach-processes. The double Orbach-process
parameters could be well fitted to the experimental data
with providing 68.2 meV and 167 meV effective phonon fre-
quencies (gray lines in Figure 9) which agree well with the
features of the calculated spin-phonon spectral functions.
Insights from theory provided a physically well motivated
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model for the spin-lattice relaxation times of diamond NV
centre. The calculated rates are depicted in Figure 9. The
agreement between theory and experiment for y is very
good whereas a larger discrepancy is observed for Q. It
was hypothesized that the discrepancy in the predicted Q
is due to the exclusion of combinations of modes for which
1 # ', as combinations of modes with different symmetries
likely account for significant matrix elements associated
with pairs of different spin operators, which correspond
to the single-quantum transitions. It was also discussed
that F(hw, hw) in Figure 8 plays an important role in
the phonon-assisted decoherence process, also showing a
double Orbach-process character, which has not yet been
recognized in previous works [156]. This will be discussed
in the next chapter.

3.5.2 Temperature shifts of magneto-optical
parameters

Understanding the temperature shifts of magneto-optical
parameters of defect qubits is of high importance in various
aspects. One of the most obvious issues is the temperature
sensing with defect qubits at the nanoscale which requires
temperature characterisation of the basic magnetic param-
eters. Again, the diamond NV centre is the most investigated
defect qubits in this regard (see Ref. [30] and references
therein). As an example, the temperature dependence of
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Figure 8: Ab initio calculation of the second-order spin-phonon coupling
coefficients (thin lines) and spectral function (thick lines) for a single
diamond NV centre in a 512-atom supercell. NV spin-phonon dynamics
are characterised by the magnitudes of the matrix elements Sli (blue),
fﬁr (red), and §§ - %SAZ (black), which cause single-flip relaxation,
double-flip relaxation, and dephasing respectively. The spectral function
display peaks near the values of 68.2(17) and 167(12) meV extracted from
the fit of the two-phonon Orbach-process model to the experimental
data (gray lines and + 1o intervals, see text).



388 = A.Gali: Theory of solid-state defect qubits DE GRUYTER
(a) P (b) _
mmEE - /y
” JPrr o :
o P £ 1.0
‘Tw 101 (((,./4‘ !
) ] ' :
§ ~u', g y
& ) I
: 7 g 06
: i ) !
o) :I' ————— 7Y mode| E 04
o 1071 ::'I,I ......... v ab initio =
R :
i 2 model 0.2
10*2 ",,' ) ab initio
T i ' ' | ' | ' ' ' '
0 100 200 300 400 0 100 200 300 400

Temperature T (K)

Temperature T' (K)

Figure 9: Comparison between ab initio theory and experiment. (a) Dotted lines show relaxation rates obtained by evaluating Eq. (43) with the ab initio
second-order spin-phonon spectral function shown in Figure 8. Dashed lines show fit of the analytical model (see text) to the experimental data with
sample-dependent constants set to zero. (b) Ratio of the ab initio relaxation rates to the analytical model rates. In the phonon-limited regime (gray
line) the ab initio theory underestimates the experimentally measured relaxation rates by approximately 16% for y and a factor of 8 for €2 at room

temperature.

the ZFS of the diamond NV centre was modelled by the
thermal expansion [158] which results in an increase in the
distance between carbon dangling bonds so the decrease
in the ZFS parameter (D-constant). However, the obtained
coupling coefficient was much lower than the experimental
data. Recently, Tang and co-workers pointed out [159] that
the thermal expansion model covers a “third order” effect
as the measured magneto-optical entity v will be a statistical
average of the phonon mode distribution as

2
<v>=<v0>+2l<(%>o<oi>+;<gé> <Q§>], (44)
i t i’70

where {Q;} are the normal coordinates of the phonons
wihtin quasi-harmonic approximation. In the Born-
Oppenheimer approximation, the global energy minimum
results in (Q;) = 0 (forces are zero) and it becomes non-zero
because of violating of the harmonic approximation, i.e.,
anharmonicity of the phonons. This can be taken into
account in the thermal expansion of the lattice. However,
the second term is then expected to be dominating. As

(Ql?) = Mf’w‘ (ng(wy) + %) with ny Bose—Einstein occupation
function iE(i (44) can be expressed as
_ 10%v h 1
V) = vpl@) + 25070?@(%(@) +3) @

where M, is the mode-specific effective mass and v, is cal-
culated at the lattice constant a which corresponds to the

thermal expansion at the given temperature. The spectral
function was defined as

2
jol T

(46)

The second derivative was calculated numerically as
implemented in VASP in a 128-atom face centred cubic
diamond supercell with 3x 3 Monkhorst—Pack k-point
sampling and DFT PBE functional [159]. The theory was
applied the D-constant, the hyperfine constant A,, and the
quadrupole moment Q,, of the N, and the ZPL energy of
the diamond NV centre [159]. It was found that temperature
dependence of the D-constant could be well reproduced
where the dynamical effects play a major role, although,
the termal expansion effect cannot be neglected. The ZPL
energy shifts were well reproduced too by this theory. How-
ever, it is unexpected that the calculated spectral function
for D-constant does not show up a peak at around 70 meV
phonon energy in the study of Tang and co-workers [159],
which is quite visible in the F(‘)ZO) spectral function in Figure 8
from Thiering and Gali in Ref. [156]. The temperature shift
of Q,, is also well-reproduced (see Ref. [159] and references
therein) and good agreement can be anticipated for 4,, in
comparison to the few experimental data points available
to date. All-in-all, this theory seems to be highly promising
with good predictive power after achieving the convergent
parameters in the ab initio simulations.
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3.6 Abinitio theory of coherence of defect
spins in solids

The coherence time of the defect qubits’ spin corresponds
to a decoherence of the transverse nuclear spin magneti-
sation which is generally labelled by T,. It is also called
spin-spin relaxation time as usually the interaction of the
defect qubit’s electron spin with the nuclear spin bath limits
its value in high quality (small electron spin bath) mate-
rials. These nuclear spins do not precess with the same
frequency in real materials which can lead to a distribution
of resonance frequencies around the ideal. Over time, this
distribution can lead to a dispersion of the tight distribution
of magnetic spin vectors, and loss of signal. This is called
the dephasing time, labelled as T.', which is associated with
static or slowly varying inhomogeneities in a spin system.
T is the characteristic decay time of a free-induction-decay
(FID) measurement, wherein a series of Ramsey sequencies
(z/2 pulse — 7 — z/2 pulse) are performed with vary-
ing free-precession interval z, and an exponential decay
is observed. Dephasing from fields that are static over the
measurement duration can be reversed by application ofa z
pulse halfway through the free-precession interval invented
by Erwin L. Hahn [160]. In this protocol, the x pulse alters
the direction of spin precession, such that the phase accu-
mulated due to static fields during the second half of the
sequence cancels the phase from the first half. The spin
phase is then refocused which appears as an echo signal
in the spin resonance spectrum, i.e., Hahn-echo signal. The
decay of this echo signal, due to magnetic fields that fluctu-
ate over the course of the measurement sequence, is char-
acterized by the coherence time T,. In practice, T, exceeds
Ty by orders of magnitude. We further note that the phonon
induced spin relaxation, longitudonal relaxation time T, as
an incoherent process places hard limits on the maximum
achievable coherence times, where the theoretical limit is
T, = 2T,.

The calculation of the hard limit of T, at a given tem-
perature and electon/nuclear spin bath requires the calcu-
lation of T, as described in the previous chapter. For S =1
defect qubit’s spin, the | + 1) spin states may split due to the
low-symmetry of the defect or an external small constant
magnetic field. In recent studies [31, 156] it has been found
for the diamond NV centre that the double-flip transition
(y rate) is even faster than single-flip transition (€2 rate)
induced by phonons. However, y was neglected in previous
studies (see Ref. [156] and references therein), thus T, have
likely been overestimates which should be rewritten as

sp _ 2

2,max 3Q + % @7
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for a superposition in the {|0), | + 1)} single-flip subspace

and
onp _ 1

2max Q+ % : (43)

for a superposition in the {| —1),|+ 1)} double-flip sub-
space [161, 162].

If spin-lattice relaxation does not interfere then the
central spin (qubit’s electron spin) and the (nuclear) spin
bath interaction and their dynamics should be simulated
for obtaining the spin dephasing and decoherence times
where the simulations should consider how the qubit’s spin
is controlled and driven for yielding T, and T, times. This is
a highly complex process because the qubit’s control starts
with the initialisation of the qubit, i.e., spin-polarisation of
the qubit’s electron spin and the spin-polarisation may be
transferred to the nuclear spin bath depending on the qubit
control protocol. At certain magnetic fields, some nuclear
spin levels could drive into resonance to the electron spin
levels, e.g., GSLAC condition, which can significantly change
the dynamics of the defect qubit’s electron spin coupled to
the spin bath.

For defect qubits, the CCE approach has been success-
fully applied that was originally invented by Yang and Liu
[144, 145]. It was originally applied to calculating the pure
dephasing of the diamond NV centre’s electron spin in the
large detuning regime. However, the central spin flip must
be considered when the energy relaxation of the diamond
NV centre is involved in the nearly-resonant regime, i.e.,
GSLAC condition [146]. Often, this is called generalised CCE
or gCCE approach. To briefly sketch the problem and the
neccessity of approximations, an open system S that con-
sists of a central spin s, and a number of bath spins s;, where
i={1 ... n}. The master equation of the open system S to
obtain the density matrix p can be written as

ps = = Hy. sl + E(ps), (49)
where the Hamiltonian H,, can be written as
n
Hy=hy+ )" (b + hy), (50)

i=1

where h; is the Hamiltonian of the central spin, h; is the
Hamiltonian of the coupled spin s;, and hy,; describes the cou-
pling of the central spin and the bath spin s;. The last term on
the right-hand side of Eq. (49) accounts for environmental
effects that are not included in S, through the Lindbladian
& that we already discussed above. One can define h, and hy;
such a way which include the driving fields or other external
fields like a constant magnetic field or strain field.

The size of the problem, i.e. the dimension of the
Hilbert space, increases exponentially with n, which makes
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Figure 10: Cluster approximations of a many-spin system S. (a) S consists of a central spin s, and number of n coupled spins s; that couple only to the
central spin s. (b) First-order cluster approximation of S (CCE1) that comprises n + 1 cluster systems ¢, and ¢;. ¢, includes the central spin s, only,
while ¢; for i # 0 includes a pair of spins, s, and s;. (c) Second-order cluster approximation of S (CCE2) that comprises n/2 + 1 cluster systems ¢;, where
each cluster system contains s, and two coupled spins s; where 1 <I < n/2. ¢, includes solely the central spin s,,.

an exact solution unfeasible for large n. To model the
dynamics of S it is divided into a cluster C of overlapping
cluster systems, where A is the order of the cluster approx-
imation as illustrated in Figure 10. All of the subsystems
are artificially coupled then together through a modified
Lindbladian superoperator

cop=Y D
(by) zl] - (cj,cl-lpq.)

X (Cilpc,. ch - %(Pci CaCy + CiCape, )) GD
added to the master equation of each subsystem, where and
C,; and C; are Lindblad operators. We consider Cy; and C;
operators that describe solely spin flip-flop transitions of the
central spin. Here b;; are time-dependent rates determined
from the flip-flops occurring in subsystem other than i. The
Lindbladian formalism ensures that all the spin flip-flops
occurring in the different subsystems is carried out in all
subsystems. This way the central qubit replicas evolve iden-
tically in all subsystems. Due to the extended Lindbladian,
spin momentum is conserved no longer in the subsystems
but in the whole cluster approximation. This way the clus-
ter approximation together with the Lindbladian coupling
describes the dynamics of the whole qubit-spin bath system
approximately. Considering the dynamics, the main approx-
imation of the method is the neglect of the intra spin bath
coupling and entanglement that may affect the dynamics
of the central qubit through spin diffusion as well as con-
structive and destructive interference that can give rise to
echo signals and dark states, respectively. These limitations
can, however, be systematically lifted by including more and
more environmental spins in the subsystems of the cluster
approximation.

In the CCE approach, the corresponding Hilbert-space
can be significantly truncated that are coupled to each other

in which the density matrix of the central spin can be con-
sistently calculated. As we increase the order of expansion,
the results should converge to the theoretical limit, in good
analog to the CI expansion method for approaching the
accurate correlation energy of the many-electron system.
For instance, Yang and co-workers found for the diamond
NV centre in the nuclear spin bath of remote *C nuclear
spins [146] that gCCE4 and gCCES results agree, thus gCCE4
can considered as absolutely convergent for this particular
system.

Seo and co-workers [163] applied CCE method for dia-
mond NV centre and divacancy qubits in 4H SiC for under-
standing the spin dynamics between the qubit’s electron
spin and the nuclear spin bath with assuming natural abun-
dance of C at 1.1% and °Si at 4.5%. The authors ignored
the Fermi-contact term in the hyperfine interaction between
the electron spin and the nuclear spins. A constant magnetic
field was applied in the simulation. We note that because not
the gCCE method was applied in Ref. [163], therefore, these
simulations could not well describe the spin dynamics for
the magnetic fields at GSLAC and ESLAC conditions of the
systems, which results in a rapid decrease of the coherence
times. This was later done by gCCE method for divacancy
qubits in 4H SiC [164]. Seo and co-workers found that CCE2
level of theory well converges with the afore-mentioned
conditions and the radius of the spin bath at around 50 A
from the defect qubit’s spin provides convergent results.
At the CCE2 level, the distance between interacting nuclear
spins was set to 8 A which converged well [163]. It was found
that ensemble averages over 50 samples are good enough
to produce numerically converged results. For the magnetic
fields above 30 mT they found a simple relation between the
T; times and the concentrations of *C and Si isotopes in
the SiC crystal showing that the C and 2°Si nuclear spins are
completely decoupled due to the different Zeeman-splitting
for these two species which hinders spin flip-flop processes
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between these types of nuclear spins. As a consequence,
the spin dephasing times of divacancy qubits in 4H SiC are
equal or greater to that of diamond NV centre despite the
larger density of I = 1/2 nuclear spins in SiC than that in
diamond [163]. This conclusion was earlier achieved in a
similar study applied to the Si-vacancy qubit (S = 3/2) in 4H
SiC [165] as we quote below. For a given cut-off distance R,
the number of total nuclear spins (N + Ng;) surrounding
the Si-vacancy centre in SiC is about 2.6 times as large as that
of the diamond NV centre, due to the larger 2’Si abundance.
The reasons for the T time of Si-vacancy centres not being
reduced by the same factor are as follows: (i) the C-Si bond
length 1.89 A in SiC is larger than the C-C bond length 1.54
A in diamond, which implies the volume density of nuclear
spins is reduced by a factor of (1.89/1.54)° = 1.8; and (ii)
about 80% of the nuclear spins in the bath are 2°Si, which
have smaller gyromagnetic ratios than C (|y./yg| = 1.3)
and, as a result, produce weaker hyperfine fluctuations.
These two factors compensate the larger natural abundance
of the 2°Si, and results in similar T; times of defect qubits in
SiC and NV centres in diamond.

In a subsequent publication, the spin dephasing times
were calculated for hypothetical defect spins with no Fermi-
contact hyperfine interaction with moderate magnetic fields
(0.1-0.5 mT) in 2D materials [166] by applying the same
method. The subject of this study was later extended
to 12,000 materials in which both spin dephasing (free-
induction decay) and spin coherence (Hahn-echo) times
were considered at large constant magnetic fields (e.g., 5 T)
[13]. With these simulation conditions, Seo and co-workers
[166] found for hBN and molybdenum-disuplhide (MoS,)
materials that the spin dephasing time in bulk hBN should
be around 18 ps for natural abundance of B and °B iso-
topes whereas it is about 1.18 ms in MoS,. They attributed
the orders of magnitude difference to partially to the variant
of nuclear spin density in the two materials and partially to
the relatively small gyromagnetic constant of Mo isotopes
[166]. By replacing all ''B by '°B should result in >2 factor
improvement in the spin dephasing time in hBN, according
to the model. Kanai and co-workers [13] concluded that SiC
and Sicould reach T, ~ 5ms beating even diamond (=4 ms).
They identified various chalgogenides which have verylong
intrinsic spin-spin related T, times at magnetic field of 5 T
such as CeO, (=179 ms), Ca0 (=77 ms), a-quartz (~8.5 ms),
wurtzite ZnO (~4.2 ms), and MgO (x1.33 ms). It should be
mentioned that the T, time can be long in a common 2D
material, WS, (=11 ms). These results should be interpreted
with the caveat that the temperature-dependent spin-lattice
relaxation times and other limiting factors are not included
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in that study, thus these results might be valid at relatively
low operation temperatures for many materials.

Although, the results on spin dephasing and coherence
times with hypothetical defects are somewhat indicative
for classifying materials, the defect qubit’s spin relaxation
properties may crucially depend on the local environment
induced by the defect in terms of ZFS, strain fields and
spin density distribution. The last entity is in particular
important for materials with dense nuclear spin bath. In
that case, the Fermi-contact term in the hyperfine tensor
is dominant, and such an effect cannot be fully neglected
even in diamond or SiC with relatively dilute nuclear spin
densities.

For S = 1 defects the case of GSLAC or ESLAC condition
was already mentioned where a simple external parameter,
magnitude and direction of the constant magnetic field, may
drastically change the coherence properties of the defect
qubits, e.g., the interplay between the actual D-constant of
the defect spin and the strength of the constant magnetic
field [62,147, 148, 164]. Another interesting example is the so-
called clock-transition quantum optics protocol which may
be realized by low-symmetry defect spins, e.g., basal diva-
cancy defects in 4H SiC, where the | +1,) and | —1,) levels
naturally splits (see Refs. [164, 167] and references therein).
Combining the E = 18.4 MHz splitting with a strong longitu-
dinal splitting (D = 1.334 GHz), the ZFS tensor leads to an
avoided crossing of electron spin levels at zero magnetic
field from which a clock transition emerges. The qubit levels
at the clock transition correspond to |+) = (1/ \/E)(|12) +
| —1,)) and |0) = |0,) (e.g., see Ref. [167]). The frequency
of clock transitions is insensitive to magnetic fields to first
order, thus increasing protection from the nuclear bath
induced decoherence. Onizhuk and co-workers proved by
gCCE theory that the clock transition can indeed elongate
the coherence times and the coherence times can be fur-
ther elongated with opening the gap between |+ 1) and
| — 1) levels which indeed occurs for the other basal plane
divacancy qubit with E = 82.0 MHz and D = 1.222 GHz ZFS
parameters [164]. In experiments, the fluctuating electric
fields can lead to a serious decoherence for |+) state, so
the charges should be depleted to observe the predicted
improvement in the coherence times that was achieved by
applying an external electric field to the system [164, 168]. In
the simulations, the fully convergent results were achieved
at gCCE4 level.

Another important defect spin is the negatively charged
boron-vacancy (V) in hBN that was already mentioned
in our review paper. The defect has three nitrogen dan-
gling bonds with large (~47 MHz) hyperfine coupling to the
electron spin (S = 1) with ZFS in the GHz region both for
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the ground and excited states (see Ref. [27] and references
therein). In other words, the three N nuclear spins are
strongly coupled to the electron spin for which the Fermi-
contact term is dominant. This explains a recent observation
[24] that the spin coherence time of Ve in hBN is much
shorter at the condition of close to zero magnetic fields than
that previously anticipated, and it is below 0.1 ps, c.f., 18 ps
in Ref. [166] for a hypothetical defect. Ivady and Gali carried
out gCCE simulations on this system at the experimental
external magnetic field of 14 mT?4. It was found that gCCE3
level is convergent. The maximum distance between the
defect spin and the nuclear spin should be around 10 A
whereas the maximum distance between the nuclear spins
should be around 7.5 A, in order to achieve convergent
results. The simulated spin echo decay curves of the centre
in h'BN and h'°BN are fitted with a stretched exponential
function, exp[—(t/T,)"|, leading to T, = 92 ns and T, = 115
ns for h'"'BN and h'°BN, respectively, with an exponent n ~
1.35. The dependence of the coherence time with the isotopic
content exhibits a linear increase with the B abundance.
This effect results from the reduced nuclear gyromagnetic
ratio of 1B that weakens the hyperfine interaction and the
boron nuclear spin flip-flop rate, both of which has a posi-
tive impact on the coherence time of the central spin. In a
recent study it has been shown [169] that the long T, = 27
ps can be retained for V" in hBN at giant external magnetic
fields, e.g., 3 T, which suppresses the strong electron-nuclear
spin couplings.

At moderate external magnetic fields, it is challeng-
ing to observe the Rabi-oscillation of the V;~ electron spin
because of the intrinsically short coherence times. Ivady
and Gali showed by gCCE simulations [25] that if the
microwave field is tuned at the centre hyperfine peak or
the m; = +1 hyperfine peaks of the strongly coupled three
!N spins then the Rabi-oscillation of the 4-spin V; becomes
observable, and even 10 MHz detuning significantly sup-
presses the amplitude of the Rabi-oscillation. In experi-
ments [25], one can see a multiple-frequency oscillation, in
which a beat is clearly recognized, and it is superposed on
another slow oscillation. The results could be interpreted
by the results from gCCE simulations: the nearest neigh-
bour N nuclear spins are driven by the microwave field
at the given magnetic field (44 mT) and the observed multi-
ple frequencies in Ramsey interference correspond to spin-
rotation frequencies in rotating frame on three hyperfine
levels. The three frequencies in the spectrum can be identi-
fied as the detuning between the microwave field and the
centre hyperfine level, as well as the m; = +1 levels [25].
The spin bath of the 4-spin V" system was further simulated
by taking 127 N and 127 "B nuclear spins into account in
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which the HSE06 hyperfine tensor and electric field gradi-
ent tensors were applied. In the simulations, an effective
spin-polarisation transfer could be observed towards these
N nuclear spins whereas the spin-polarisation towards 'B
is small. Hence, it was concluded that the neighbour “N
nuclear spins are responsible for the modulation of the Rabi
oscillation, including the decay of the background beyond
0.2 ps, and rest of the spin bath is responsible for the decay
of the Rabi oscillation [25].

In pulsed electron spin resonance measurements, the 4-
spin nature of V" was further confirmed [26]. The measure-
ments were carried out in a W-band (94 GHz) microwave
resonator which brings the electron spin resonance fre-
quencies at around 3.5 T. At this high magnetic fields, the T,
time of V" extends to 15.1 ps observed by electron spin echo
(ESE) measurements [26], in good agreement with the recent
gCCE3 simulations [169]. The decay curve reveals its oscilla-
tory behavior especially pronounced at the very beginning
of the transient curve. Such oscillations refer to electron
spin echo envelop modulation (ESEEM) and manifest the
presence of coherent coupling of the V" electron spin with
magnetic moments of nuclei available in the hBN lattice. The
observed beating frequencies corresponds to the nuclear
magnetic resonance frequencies (consisting of the combina-
tion of hyperfine and quadrupole interactions) of the three
nearest neighbour N nuclear spins. PBE DFT calculations
confirmed that no other N near the vacancy could produce
such nuclear spin resonances [26] which makes the 4-spin
V5 model consistent. Finally, it was found that the optical
nuclear spin-polarisation at the GSLAC and ESLAC condi-
tions of the external magnetic fields at respective 124 mT
and 74 mT can be efficiently carried out towards the neigh-
bour N nuclear spins and it can be coherently driven at
~5 MHz which is much faster than the appropriate nuclear
spin resonance frequency [27]. To our knowledge, the spin
dephasing and spin-echo simulations for these strongly cou-
pled systems have not yet been reported.

4 Summary

In this paper, we reviewed the recent advances on ab ini-
tio theory on defect qubits. A strong emphasis was put on
the calculation of excited states, photo-ionisation thresh-
olds and optical excitation spectra also as a function of
temperature. A novel theory has been developed on the
effective mass states of the excited states of deep defects.
Major breakthroughs have been presented on the calcula-
tion spin dynamics of the defect qubits which converted the
phenomenological description of the spin relaxation times
to fully ab initio solution.
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