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Abstract: Multilayer films with continuously varying
indices for each layer have attracted great deal of attention
due to their superior optical, mechanical, and thermal
properties. However, difficulties in fabrication have limited
their application and study in scientific literature compared
to multilayer films with fixed index layers. In this work we
propose a neural network based inverse design technique
enabled by a differentiable analytical solver for realistic
design and fabrication of single material variable-index
multilayer films. This approach generates multilayer
films with excellent performance under ideal conditions.
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We furthermore address the issue of how to translate
these ideal designs into practical useful devices which will
naturally suffer from growth imperfections. By integrating
simulated systematic and random errors just as a deposition
tool would into the optimization process, we demonstrated
that the same neural network that produced the ideal
device can be retrained to produce designs compensating
for systematic deposition errors. Furthermore, the
proposed approach corrects for systematic errors even
in the presence of random fabrication imperfections.
The results outlined in this paper provide a practical and
experimentally viable approach for the design of single
material multilayer film stacks for an extremely wide
variety of practical applications with high performance.
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1 Introduction

Multilayer films are simple, planar structures that have
found a remarkably wide application space in optics includ-
ing photovoltaics [1], 1-D photonic crystals [2], anti-reflection
coatings [3], optical filters [4], and mirrors [5], to name a
few. Traditionally, these structures are made of alternat-
ing layers of materials with different optical properties.
This limits the design space by only allowing for a limited
number of refractive indices for each layer. An alternative
approach is to use materials and growth techniques that
allow continuous and gradual changes in refractive index.
This allows for the growth of multilayer films where each
layer is made of the same material, but the index is varied by
growth conditions. This approach has several major demon-
strated advantages, the first is that the films produced are
monolithic, leading to improved mechanical performance
particularly enhanced strength and toughness [6]. Secondly,
films produced this way have no internal interfaces leading
to a reduction of light scattering and the elimination of
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side-band harmonics [7, 8]. Finally, such films are made of a
single material, which can greatly simplify any further pro-
cessing such as patterning. A variety of material platforms
and film growth techniques have been explored for their
ability to achieve continuously variable indices of refrac-
tion. Porous silicon obtained via electrochemical etching
has been extensively used to create inhomogeneous optical
filters [9, 10]. However, their application range is limited due
to the absorptive nature of silicon at visible wavelengths.
Rugate filters have been demonstrated with reactive mag-
netron sputtering by controlling the oxygen and nitrogen
stoichiometry of deposited SixOyNz films [11]. Another com-
mon conformal growth technique is chemical vapor deposi-
tion. This film growth technique, as its name implies, is the
result of the chemical reaction between precursor gasses
assisted by heat and in the case of plasma enhanced tools:
microwave power. By adjusting the reaction chemistry and
growth conditions during CVD deposition, broad refractive
index control can be achieved as the resulting films will
have different composition stoichiometry. Single-material
monolithic bandpass filters made with plasma-enhanced
CVD (PE-CVD) silicon nitride were demonstrated by varying
the input microwave power [12]. Similarly, rugate filters
were grown with PE-CVD using silicon carbon-oxynitride
coatings by continuously adjusting N2 and 02 flow into the
reaction chamber [13]. Despite numerous successful demon-
strations and the unique advantages of optical devices made
of a single material, the related scientific publications are
limited compared to their multi-material counterparts. One
reason for this is that this fabrication approach requires
precise and dynamic control of the deposition conditions to
achieve the required optical parameters [14].

One of the challenges facing the fabrication of such
multilayer film devices are random fabrication imperfec-
tions. Algorithms for generating multilayer films robust to
random fabrication-related perturbation have been thor-
oughly investigated. Usually, modification of the algorithm
is done at the level of the loss function. Where in addi-
tion to basic merit functions such as target transmit-
tance/reflectance spectra, the change due to imperfections
in the multilayer film parameters (refractive index and
layer thickness) of the merit function is added to the loss
term [15, 16]. These terms are scaled and added with the
basic figure of merit in the loss function to realize robust and
high-performance devices. Similarly, second-order deriva-
tives of the basic figure of merit (sensitivities) of the errors
in the layer parameters have been used to generate robust
multilayer films [17-19]. More recently, training of auto
encoder-based inverse design architectures with imperfec-
tions in the EM response of core—shell particles has been
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investigated for robust design [20]. However, robustness
schemes have only proven to be effective for small imper-
fections in the layer parameters, less than a one percent
shift from the ideal structure in the context of multilayer
structures. Deposition error compensation has been pro-
posed to address the major imperfections introduced during
the deposition of layers [14]. In this method, a layer of the
multilayer stack is deposited. Then the refractive index and
thickness of the deposited layer is measured. With this infor-
mation, a new stack is optimized with the measured grown
layers parameters fixed. However, for each layer grown,
number of layers left for compensation of errors decreases.
Thus, towards the end of the multilayer growth, this method
of error compensation becomes less effective and places
limits on the overall performance that can be achieved.
Furthermore, the grown layers will be imperfect themselves
preventing full compensation of the errors made in previ-
ous layers.

This paper presents a different approach for high-
performance and fabrication conscious multilayer film
design. We will use a similar method to those proposed in
[21-23] where neural network parameters are updated with
gradients extracted from an analytical solver, to optimize
a multilayer optical stack with a continuously changing
refractive index. This method has the advantage of requir-
ing no prior dataset and demonstrates rapid convergence
across a variety of target spectra. Additionally, even though
an ideal design is found using this method, when it is fabri-
cated, the systematic and random errors introduced during
the growth of the monolithic structure will degrade the
performance. To address us our method has a second stage
of training for our neural network, by using the data from
experimentally grown film, the same neural network opti-
mized in the first stage is then trained using experimental
data in each training cycle. The result of this second-stage
fabrication-in-the-loop training is that the neural network
from stage one is further trained to compensate for system-
atic errors. In this work we demonstrate the flexibility and
applicability of this approach across a variety of error types.

2 Multilayer optical film
optimization

Design and optimization of multilayer optical films have
been of great interest to the scientific community for the
past century. The functionality of the devices, enabled by
the fast analytical methods to predict their optical response,
makes these structures a prime candidate for optimiza-
tion research. Without loss of generality, the target of this



DE GRUYTER

Incident Light

N\

Multilayer Optical Film

0. Yesilyurt et al.: Fabrication-conscious neural network based inverse design == 995

Transmitted Light

=

illl

Figure 1: Transmission of unpolarized white light through an optical multilayer film stack. The different colors in the film stack represent the different

refractive indices of the different layers.

problem is to achieve a given target spectra (transmis-
sion/reflection) with a multilayer film of alternating mate-
rial layers, as shown in Figure 1. Many approaches have
been proposed to solve this optimization problem. One
such approach is the Fourier method. The refractive-index
profile is derived for an inhomogeneous layer of infinite
extent having the desired electromagnetic response and
then approximated by a finite system of discrete homoge-
neous layers [24]. Another approach is the needle method
[25] which treats the multilayer film as an interference
structure whose spectral performance depends on the inter-
ference effects among the light waves reflected from its var-
ious layer boundaries. Global optimization techniques, such
as genetic algorithms [26], simulated annealing [27] etc.,
have also yielded good results for multilayer film designs.
More recently, data-driven approaches such as DL-based
methods have been introduced. In our case, the forward
problem maps layer parameters (input set) onto the opti-
cal response (output set). The uniqueness of the electro-
magnetic response for a given stack allows for the use of
multilayer perceptrons [28] and convolutional neural net-
works [29]. The inverse design problem treats the target
optical response as the input. This is a highly degenerate
problem, as many solutions may exist for a given opti-
cal response. We refer the reader to Liu et al. for a more
detailed analysis of the inverse problem [28]. Since it is
impossible to reconstruct multilayer parameters uniquely,

optimization techniques are the only effective approach. For
approaches employing DL optimization techniques, neural
networks are trained to produce multilayer film parame-
ters that exhibit an optical response as close to the desired
spectra as possible. Deep reinforcement learning models
along with Q-variants have been proposed to optimize the
thicknesses of the layers as well as the number of layers
[30, 31]. Generative models like conditional variational
autoencoders (VAE) have also been applied to anti-reflection
grating design. With the addition of active learning to the
VAE, generated high-performing designs are then fed back
into the dataset to realize minimum grating reflectivity [32].
Most of the methods mentioned up to this point are gradient-
based optimizers. Thus, they require the calculation of the
local gradients for design parameters adding to the com-
putational complexity. Alternatively, numerical and analyt-
ical methods that allow calculation and backpropagation
of local gradients are proposed for the efficient optimiza-
tion of electromagnetic devices. Automatic differentiation
and inverse design approaches based on numerical differ-
entiable solvers are shown in [33, 34]. More recently, an
analytical solver that enables automatic differentiation for
calculating the multilayer film spectra has been shown in
[35]. High-performance multilayer optical stacks have been
demonstrated by integrating these differentiable solvers
into NN-based optimization architectures [23, 35]. Updat-
ing the NN parameters with local gradients combines the
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best of both worlds with high-quality solutions obtained by
local gradients and fast convergence enabled by NN [21, 23,
35] Using this central idea, we implemented an NN-based
optimizer for multilayer films with continuously changing
refractive index. Furthermore, we propose a fabrication-in-
loop optimization framework where the fabrication imper-
fections are integrated into the optimization cycles to enable
realistic fabrication of high-performance devices.

3 Methods

Deep learning methods for photonics design require a training dataset
for the forward and inverse problems typically [36—38]. The computa-
tional cost of producing a large training set depends upon the problem’s
complexity and therefore, could be prohibitively expensive. Addition-
ally, the direct application of data-driven models does not guarantee
the best fit to the target spectrum due to extreme differences between
the target spectra and the randomly generated training dataset. To
improve performance, the training dataset can include pre-optimized
designs. However, this significantly escalates the dataset preparation
time since a large set of pre-optimized designs is needed to achieve
better performance. Alternatively, NNs can be used for direct optimiza-
tion without requiring a training dataset. In this configuration, local
gradients calculated with a differentiable solver are backpropagated to
update NN parameters.

This approach is a NN training method in which a neural network
is trained to modify a single input random seed design to produce an
optimal design. Our implementation of the NN-based inverse design of
multilayer optical films with continuously changing refractive index is
shown in Figure 2. The network is trained by feeding in a randomly
generated seed design vector (p) into a fully connected neural network

Online -
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(FCNN) called the online optimizer r,, with parameter set ¢. This FCNN
produces a modified stack vector p from the input seed design vector
p. The optical response of the modified stack (x) is then computed
using an analytical solver. The error/loss is computed as the mean
squared error between the modified stack and target spectra. Finally,
the loss is backpropagated through the network to update the biases
and weights of the FCNN ¢. This training sequence is repeated until the
neural network is trained to take the input seed design and produce
optimal modified design. This is an optimization problem in which the
parameters of the FCNN ¢ are updated, given an input seed design p to
minimize the mean square error between the output modified stack p
optical response x, and the target response X,

n

1 s
min— (Xi _Xi)z’vpi € [pmim pmax]

@.p N )

One thing to note is that the seed design p stays the same through-
out the optimization. This means that for each training iteration the
exact same seed design is fed into the FCNN. As a result, a highly
specialized NN is obtained, which produces an optimal design from
the given input seed design. Counterintuitively, in this method, the
optimization is done on the FCNN, and the optimal design is a byproduct
of training the optimal NN.

4 Results and discussion

4.1 Error free optimization

Here, we present NN-based optimization results for sin-
gle material multilayer films with continuously changing
refractive index. In the first study, the layer thicknesses are
fixed to 30 nm, while their refractive indices can vary within

Analytical
Solver

Optimized Spectra

Figure 2: NN based inverse design of multilayer optical films with continuously varying refractive index. An initial randomized set of layer parameters
is given to the online optimizer, a fully connected neural network. The online optimizer produces a modified film stack. The optical spectrum of the
new film stack is then computed using an analytical transfer matrix method-based solver. The resulting spectra and the target spectra are then used to
compute the loss function and the loss is backpropagated to update the online optimizer parameters. This training is done until the online optimizer
network is capable of modifying the random input stack into an optimal stack at which point the optimal stack is returned as the optimization solution.
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a user-defined range. Our previous work [39] demonstrated
that continuously variable refractive indices are achiev-
able with high-density plasma chemical vapor deposition
(HDPCVD) grown SiNx by varying the chamber stoichiom-
etry. Based on this experimentally collected data, we set the
refractive index range achievable to be between 1.6 and 2.4.
The NN-based optimization starts with an initial input of a
random multilayer stack. The refractive indices of the stack
layers are passed through the online optimizer to gener-
ate a new set of modified layer parameters. These param-
eters are then used to calculate the true optical response
with the TMM analytical solver [35, 40]. After the loss is
calculated, the gradients are backpropagated through the
system, and the online optimizer parameters are updated.
Since the matrix-based analytical solver is differentiable,
it enables efficient backpropagation of gradients through-
out the system, including the solver itself. The optimiza-
tion results for various optical filtering spectra are given

(a) (b)
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in Figure 3. The insets in the figure represent the refractive
index distribution of the optimized multilayer films. For
a 200-layer stack with fixed 30-nm thick layers, the opti-
mization results in extremely close conformance with the
target transmittance spectra. The largest variation between
the target and the optimized device spectra occurs for the
15 nm stopband filter; shown in Figure 3(f), which can be
addressed with more layers, higher refractive index ranges,
and thickness optimization. To this end, the impact of the
layer numbers on the performance has been investigated.
Figure 4 shows the effect of the total number of layers on
the design performance. For this study, the long pass and the
double band stop filter spectra are chosen as the target. For
both target spectra, an optimization is performed with 60
and 200-layer optical stacks with fixed layer thicknesses of
30 nm. While the performance of the long pass filters given
in Figure 4(a) and (b) does not change much, dual-band
stop filters given in Figure 4(c) and (d) show a significant
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Figure 3: The results of the single material multilayer film optimization with continuously changing refractive index. The generated stacks are
optimized for (a) high pass (475 nm cut-off), (b) low pass (625 cut-off), (c) band stop (525-575 nm), (d) band pass (475-625 nm), (e) double-band stop
(437.5-475 nm and 587.5-625 nm), (f) and narrow band stop (550-565 nm) optical filters respectively. The insets show the refractive indices of the
layers which range from 1.6 to 2.4. The color bar for the range of refractive indices in the stacks is shown on the middle right of the figure. The layer

thicknesses and total number of the layers are 30 nm and 200, respectively.
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Figure 4: Transmittance spectra comparison between the target spectra
(orange) and the generated optimized optical stack spectra (blue) for a
long pass filter with a cut-on at 475 nm for (a) 50, and (b) 200-layer
structures. The same plots are shown for a dual stop band filter with stop
ranges between 437.5 and 475 nm and 587.5-625 nm for (d) 50, and (e)
200-layer structures.

increase in performance as the number of layers increases.
Thus, it is safe to conclude that the number of layers needed
for high-quality optimization increases with the increasing
complexity of the target spectra.

4.2 Reduction of layer number

The number of layers is yet another parameter in optimizing
multilayer films. Usually, the least number of layers needed
to satisfy an optimization criterion is not known a priori.
Therefore, we implement a layer number reduction scheme
into the NN-based optimization architecture. For the layer
number reduction, a policy of reduction and performance
threshold for stopping criteria is required. As the policy
of reduction, removing the last 10 layers of an optimized
stack at user-defined intervals is selected in the scope of this
specific aim. Different policies could also be implemented,
such as combining adjacent layers with similar refractive
indices. As the performance threshold, we use mean abso-
lute percentage error (MAPE), which is defined as [41]:
n

mapE = 20y T,

n t=1 T(a)f)target

target T(a)f)optimized

where T(@)rger AN T(@)gptimizea are the target and opti-
mized transmittance spectra. The optimization starts with
alarge number of layers to guarantee high performance for
a given design problem. After optimization converges to a
good solution, last 10 layers of the structure are removed,
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and the remaining structure is reoptimized. This cycle is
repeated until the reduced stack can no longer satisfy the
performance threshold after a reasonable number of iter-
ations. The impact of the layer reduction is depicted in
Figure 5. For the stopping criterion of MAPE 3%, the opti-
mization started with 300 layers and reduced the structure
to 130 layers. We will note that the thicknesses are fixed;
therefore, the reduced structure becomes thinner. While
bandstop performance is somewhat affected with 130 layers,
the changes in the performance for the 200-layer structure
are negligible compared to the initially optimized struc-
ture with 300 layers. In principle, one can use a weighted
MAPE or different stopping criterion to prevent perfor-
mance degradations within desired bands. Using the layer
reduction protocol, the total number of layers becomes an
optimizable parameter for multilayer optical stack design.
This enables optimization with least number of layers pos-
sible, allowing an easier and cost-effective fabrication of
multilayer optical films.

4.3 Optimization in the presence of
systematic growth imperfections

In practice, when fabricating single material continuously
changing films, imperfections always occur. These imper-
fections could be inherent to the nature of multilayer films,
such as stress-induced inhomogeneities that lead to shifts
in the refractive indices. Additionally, imperfections can be
inherent to growth techniques, such as imperfect chamber
gas stoichiometry due to switching precursor gas ratios for
each layer deposition or slow changes in precursor gasses
leading to gradually changing properties instead of clean
cut-offs at the layer interfaces. These imperfections will
result in refractive index shifts with different dependencies
and transitory regions between the layers. Accumulated
over many layers, these errors can dramatically reduce
the performance of the multilayer stack. Fundamentally,
all fabrication imperfections are either systematic or ran-
dom in their nature. In this section we will discuss system-
atic errors, and the random errors will follow in the next
section. Systematic errors are errors that are replicated with
every repeated stack fabrication. Due to their deterministic
nature, these errors can be fully compensated for. A variety
of systematic errors are simulated during the optimization
process to understand (i) the impact of the imperfections on
the performance and (ii) efficient ways to compensate for
them. Specifically, we modeled a variety of possible system-
atic errors such as: linear gradient shifts, transitory regions
between layers with refractive indices spanning from the
bottom to top layer values, and height-dependent refractive
index shifts in the system including polynomial, and other
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different number of layers. A 300-layer optimized optical stack spectra

the (orange) is optimized first. Layer numbers are gradually reduced until the stopping criterion is reached. The transmittance spectra of reduced
optical stacks (blue) with (a) 130 layers, and (b) 200 layers are compared to initially optimized structure with 300 layers.

higher-order dependencies. As the test bed for this study, a
100-layer optical stack with refractive indices ranging from
1.6 to 2.4 and layer thicknesses ranging from 20 to 120 nm
is chosen. Figure 6 depicts the systematic errors applied to
each layer of the multilayer stacks. The linearly increas-
ing index shift is implemented by linearly increasing the
amount of error in the refractive index at each successive
layer. The bottom layers have minimum shifts while top
layers have the highest shifts of up to 0.4, which is half of the
user-defined range (1.6-2.4) of 0.8. Due to the time needed to
change chamber stoichiometry between layers, a transition
region between layers is expected. These transitory regions
are modeled as 10 nm regions centered between the layer
boundaries with a linear refractive index gradient between
the interface’s bottom and top layers. Specifically, the 10 nm
thick transition region is divided into 1 nm thick sub-layers,
with the linear shift implemented as gradual changes in the
refractive indices of the sub-layers. This transitory region is
applied to all layer interfaces throughout the structure. To
generalize further and to demonstrate this method’s capa-
bility and versatility higher-order height-dependent func-
tions of refractive index shift were also implemented. These
functions introduce an index shift based on the layer height
measured from the bottom of the multilayer stack. Specifi-
cally, the following height-dependent functions were imple-
mented,
An(x) = 3x% — 5x* +2.2x — 0.2

An(x) = 0.2(sinx* + sin 3x)

An(x) = 0.2<eX —er—es —4x®— 2x>

are cubic,
polynomial

trigonometric
height-dependent

and hybrid exponential-
index shift functions,

respectively. An(x) are the index shifts applied to a specific
layer, and x is the distance measured from the bottom of
the layer to the bottom of the multilayer stack. Note that the
systematic errors will depend on the deposition tool, which
is typically unknown and often difficult to measure a priori.
The example functions are chosen to demonstrate the error
compensation capability of the approach, regardless of the
distribution of the systematic error.

These errors are implemented individually and in com-
bination to determine the impact on the optimization per-
formance. The results under systematic imperfections are
given in Figure 7. A linear gradient shift of indices enlarges
the band stop region while the entire spectrum is red-
shifted, as shown in Figure 7(a). Transition regions, on the
other hand, only redshift the spectra. Figure 7(c) indicates
that the combination of these imperfections leads to the
linear addition of the degradations introduced by them
in the transmittance curve. Height-dependent index shift
functions depicted in Figure 7(e)—(f) yield more significant
performance degradation, which is more fundamental than
a simple red/blue shift. Based on these results, it is safe to
conclude that systematic errors can significantly impact the
optimized stack performance.

A fabrication-in-loop inverse design approach is pro-
posed to counteract the systematic errors in the film growth
process effectively. The details of the approach are shown
in Figure 8. The proposed method consists of two phases. In
the first phase, a multilayer optical stack is optimized with
the NN-based inverse design architecture given in Figure 2.
The resulting high-performing multilayer film design is then
fabricated in the second phase. During the growth pro-
cess, layer parameters are extracted with in-built metrology
tools, which are available in many deposition machines.
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Figure 6: The fabrication imperfections for CVD grown single material multilayer optical stacks. (a) Linear gradient shift, (b) randomly changing shifts
in refractive index, (c) graded transition regions between layers, and (d) height dependent functional shift in refractive index.
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Figure 7: Multilayer stack optimization under deterministic fabrication imperfections. The blue curve represents the spectra of the original ideally
optimized stack without any imperfection introduced. The orange curve is the spectra of the same stack but with fabrication errors added. The black
dotted curve is the spectra of the stack after the second stage of optimization to compensate for the fabrication errors is complete. The different plots
are for different types of systemic error introduced: (a) linear gradient shift, (b) graded transition regions between layers, (c) linear gradient shift and
graded transition regions between layers combined, (d)-(f) polynomial, sinusoidal, and exponential height dependent index shifts, respectively.
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Figure 8: Network architecture for fabrication-in-loop NN-based inverse design of single-material multilayer optical stacks with continuously
changing refractive index. (a) The optimization starts under ideal conditions and iterates until convergence. Later, fabrication-related imperfections
are added to the ideally produced stack to simulate the imperfections from deposition tools. Modified stack response is calculated and the loss is
backpropagated to update NN parameters. This procedure simulates the practical fabrication, (b) case. After ideal optimization, optimized parameters
are used to grow the desired multilayer film. The imperfectly grown film will be measured and experimentally retrieved layer parameters are
integrated back into the optimization cycle to calculate the imperfect response and loss function. This allows direct integration of imperfections related
to the growth process into the optimization loop without disrupting the backpropagation chain. Simulated errors replace the film growth and
ellipsometry in the optimization process for the experimental realization of the multilayer films.

Specifically, after each layer is grown its properties are
extracted with ellipsometry layer-by-layer [14]. Once the
imperfect layer data is extracted from experimental mea-
surements, they are integrated into the optimization cycle.
To achieve this, the experimentally measured layer param-
eters are passed through the analytical solver to calculate
the expected transmittance spectra. The resulting loss func-
tion is then calculated with the imperfect response. This
approach allows a gradient-based inverse design method
such as the one proposed here to effectively learn the
response of a so-called “black box” system, which is the
deposition tool in this case. In essence, by using the exper-
imental layer parameters in the optimization cycle, imper-
fections in the deposition tool can be learned/compensated
with a gradient-based optimization method. Importantly,
the backpropagation chain is continuous, which is neces-
sary for NN training. Consequently, the NN-based inverse
design must learn the imperfections of the machine to

produce high-quality stacks in addition to the general EM
response of the multilayer films. This cycle of fabrication,
measurement, backpropagation, and update continues until
a high-performance device is realized experimentally.

In the scope of this study, the experimental growth and
measurement process is simulated with systematic fabrica-
tion imperfections, as shown in Figure 8(a). After conver-
gence to a good solution in the first phase, the selected error
function is applied, and the refractive indices of individual
layers are modified accordingly in the second phase. The
modified stack response is calculated with the analytical
solver, and the gradients are backpropagated after loss func-
tion calculation. This procedure, shown in Figure 8(a), simu-
lates the practical fabrication cycle, as shown in Figure 8(b).
We note that the introduced errors are not static, meaning
that the error that depends on the layer properties, such
as index and thickness, are changed every iteration with
different optimized stacks.
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The results of the compensation for fabrication imper-
fections are shown in Figure 7 (black dotted line). In the
second phase of the optimization, starting from the modified
stack with an imperfect response (solid orange line), the
NN-based inverse design scheme learns to compensate for
fabrication errors to a high degree. As a result, it produces
a stack specifically modified to offset the impact of the fab-
rication errors for all the types of systematic error studied.
Analyzing this procedure, the results indicate that the sys-
tematic errors in a deposition device can be fully accounted
for in the optimization loop to realize high-performance
multilayer stacks. The Supplementary Figures S2—S7 shows
the loss track and modified device performance in inter-
mediate steps. These results indicate that depending on
the complexity of the device, from few tens up to a hun-
dred cycles of optimization can yield multilayer stacks with
high performance. The number of iterations also depends
on the severity of the errors in the system, the learning
rate, and the neural network architecture, which can be
optimized for a given design problem. We would like to
note that the NN-based inverse design proposes a modi-
fied stack, which offsets the imperfections introduced by
the deposition tool. In an error free fabrication process,
the multilayer film grown with error-compensated layer
parameters will perform poorly as the NN is trained to
change the layer parameters with respect to the fabrica-
tion imperfections. Naturally, the multilayer stack can be
optimized with fabrication in the loop from the beginning
as shown in Figure 8(b). However, this has the effect of
increasing the number of optimization iterations with time
consuming experimental growths required as indicated by
results shown in Figures S2-S7 in the Supplementary text.
This unsurprising result stems from the fact that the NN
is learning the EM response of the multilayer film stack in
addition to the behavior of the fabrication process in this
case. Thus, our two-stage fabrication-in-loop inverse design
method minimizes the number of optimization iterations
with time-consuming and expensive experimental growths
required.

4.4 Optimization in the presence of random
growth imperfections

Besides systematic errors, random and unrepeatable errors
could be present in the deposition of multilayer films. These
errors change from one fabrication process to another and
are characterized statistically. Since truly random effects
cannot be compensated, they pose a challenge in producing
high-quality multilayer films. As pointed out in the intro-
duction, robustness schemes such as including refractive
index and layer thickness sensitivities in the loss term of
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the multilayer film optimization have been proposed to
alleviate the impact of the random imperfections [15-19, 42,
43]. However, these methods have shown limited improve-
ments against minor imperfections where random thick-
ness changes are predicted to be less than a nanometer.
This section extends the fabrication-conscious optimization
approach to include the case of stochastic imperfections.
Following the previous section, the test bed for this study
is a 100-layer optical stack with layers having refractive
index and layers thicknesses ranging from 1.6 to 2.4 and
20-120 nm, respectively. Following the architecture out-
lined in Figure 8, the first stage of the optimization produces
a high-performing multilayer stack assuming perfect fab-
rication. In the second stage, simulated random errors are
added to the ideal layer parameters, and the EM response is
calculated with the imperfect stack, as shown in Figure 8(a).
The details of the backpropagation with random imperfec-
tions in the optimization loop are given in the Supplemen-
tary materials. At every iteration, a different set of random
perturbations to both index and thickness is added to the
ideal stack parameters. The optimization cycle with ran-
dom imperfections is ended manually after 700 iterations.
Rigorously, we implement the random fabrication errors
as additive noise to the learnable base of multilayer stack
parameters which can be expressed as:

Nimp = Nig + MigNrand < Myana = 2YUO0, 1) — p

timp = tig + biabrana © trana = 2vU0,1) — u

The imperfect layer parameters ¢, Ny, are obtained
by adding random error functions t.,,4, Npanq to the ideal
layer parameter 4, nig. U(0, 1) is a random variable with a
uniform distribution between 0 and 1, and y and yu are the
user-defined error rate range and the mean of the error dis-
tribution, respectively. The results of the optimization with
stochastic fabrication imperfections are given in Figure 9.
To allow for a fair comparison between multilayer stacks
optimized taking into account random imperfections during
optimization (black dotted line) and those optimized assum-
ing no imperfections (blue solid line), the EM response of
multilayer stacks obtained with both methods have been
calculated for 1000 different sets of random perturbations.
Figure 9(a)—(h) depict the highest and the lowest performing
samples from their respective sets according to the calcu-
lated mean squared loss for the given target spectra (solid
orange line). For a mean error rate () of 0 and error rate
range (y) of 1 percent, multilayer stack optimized with and
without random perturbations perform quite similarly and
overall performance is not affected for the best and worst
cases as seen in Figure 9(a) and (e), respectively. For 4 = 1%
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Figure 9: Multilayer stack optimization in the presence of random fabrication imperfections. Results after random error is added for both ideally
optimized stacks (blue solid line) and stacks optimized considering random imperfections during the optimization process (black dotted line). The
orange solid line is the target spectra. The transmittance of the multilayer stacks produced by both methods is tested with 1000 different sets random
imperfections. The transmittance curves for the highest and the lowest performing stacks from their respective sets of results are shown in the top
(a)-(d) and bottom (e)-(h) rows, respectively. The mean and the range of the uniform distribution used to create random imperfections are (a and e)
4 =0%and y ==+1%, (b) and (f) u =1% and y = +1%, (c) and (g) # = 0% and y = +5%, and (d and h) ¢ = 5% and y = +5%, respectively.

and y = +1%, a red shift in the spectra is observed for the
ideally optimized stack, while the stack optimized with ran-
dom perturbations compensates for this effect, as shown in
Figure 9(b) and (f). For 4 = 0% and y = +5%, the impact of
the random error is more significant as shown in Figure 9(c)
and (g). Both stacks perform similarly for best and worst
cases with minor improvements in the bandpass region for
the fabrication-conscious design. Similar to Figure 9(b) and
(f), the case of random error with non-zero mean, y = 5%
and y = +5% shown in Figure 9(d) and (h) indicates a red-
shift for the ideally optimized stack with an even greater
impact on the performance. Regardless of the mean of the
random error, optimizations with random imperfections
perform similarly for the same error ranges. We thus con-
clude that the proposed NN-based inverse design method
can effectively learn the random error’s mean and compen-
sate for it. Unsurprisingly, random imperfections are not
fully compensated, as seen in Figure 9, where the impact
of the stochastic imperfections remains even for a multi-
layer stack optimized with fabrication-conscious NN-based
inverse design.

Finally, the impact of combined random and system-
atic errors is investigated, and the results are shown in
Figure 10. For the bandstop filter design, 2 sets of system-
atic and random errors are implemented. The mean of the
stochastic error rate for all the results shown in Figure 10 is
0 percent (4 = 0%). Linear grading and transitory regions
are applied with y = +1%, and y = +5% random shifts to

(a)
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e
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Transmittance
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S &
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Figure 10: Multilayer stack optimization in the presence of both
deterministic and random fabrication imperfections. (a) and (b) Linear
gradient shift and graded transition regions between layers combined
with y = +1% and y = +5% random index shifts, respectively (c) and (d)
sinusoidal height dependent index shifts (2) with y = +1% and y = +5%
random index shifts, respectively. The solid blue curve represents the
ideally optimized spectra without any error. The orange curve represents
the ideally optimized spectra after both the error types are introduced.
The black dotted curve is the result of optimization to compensate for the
errors.

each layer. The results are shown in Figure 10(a) and (b),
respectively. The results for height-dependent sinusoidal
function with a y = +1%, and y = +5% random shifts are
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shown in Figure 10(c) and (d). Looking at the figures and
related loss tracks in Figures S2—S7 of the Supplementary, it
is clear that the systematic errors are learned and compen-
sated for even in the presence of random errors. Comparing
the results with corresponding random error rates hetween
Figures 9 and 10, it is clear that full compensation of the
deterministic errors is achievable even in the presence
of random imperfections. Starting with both random and
deterministic imperfections (solid orange line), a multilayer
stack optimized using the fabrication-conscious approach
outlined earlier can reach performance only limited by the
random imperfections (black dotted line). This approach is
most advantageous when systematic errors are dominant
in the growth process. Essentially, regardless of the nature
of the systematic error, this fabrication-in-loop optimization
scheme can produce high-performance films even in the
presence of stochastic deposition errors.

5 Conclusions

As the complexity of photonics design requirements grow,
the need for novel and effective fabrication conscious
inverse design techniques increases. This work proposes an
NN-based inverse design scheme for single-material vari-
able index multilayer films. Additionally, we demonstrated
an approach using our NN-based inverse design technique
to compensate for fabrication imperfections introduced by
the multilayer film growth into the optimization process.
The automatic differentiation capability provided by the
differentiable analytical solver used enables efficient inte-
gration of NNs into the optimization scheme. This proce-
dure requires no user intervention or physics knowledge
of the problem on the user’s part. Under ideal conditions,
the NN-based inverse design scheme produces multilayer
structures with nearly ideal spectra. These designs were
produced with a single material (Si;Ny), with a continuously
variable index. The refractive index variability was taken
from the literature to ensure the experimental feasibility of
this approach. We also demonstrated a method to reduce
the number of layers without significantly sacrificing per-
formance for fabrication simplicity. Finally, a fabrication-
in-loop design technique has been proposed to compensate
for the errors resulting from the fabrication process. The
imperfections introduced during deposition are simulated
as layer refractive index and thickness variations. These
variations can either be systematic or random errors and
both classes were analyzed in this work. By simulating the
imperfections and including them during a second stage
of neural network training, we showed that the systematic
errors could be compensated for resulting in designs that
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perform ideally even in the face of significant systematic
error. For the random errors, our results indicate the pro-
posed method can learn the fundamental characteristics
of the random distribution and correct for spectra shifts.
Furthermore, our results conclusively show that systematic
errors can be learned and compensated for, even in the
presence of significant random errors.

In practice, the simulated imperfect deposition would
be replaced with actual deposition and characterization of
the resulting stack. The outlined method allows a gradient
based optimizer to work with a so called “black box system”
in the optimization cycle by retrieving layer parameters
during the growth process. In principle, one can avoid the
measurement during the growth by utilizing gradient-free
approaches such as particle swarm optimization, genetic
algorithm, deep reinforcement learning, et cetera. However,
gradient-based approaches converge faster due to the addi-
tional information given by the local gradients of the system,
provided that they are not stuck on a local minimum. The
faster convergence is crucial as it minimizes the number
of expensive fabrication cycles required. Naturally, a pos-
sible extension of this study is to explore methods utiliz-
ing gradient-free optimization methods in such a way that
the necessary number of optimization cycles is practically
achievable. In future work, the second stage optimization
of the neural network will be done using real experimental
data. Importantly, this study demonstrated that the number
of required samples to perform the second stage training
of the network is relatively small (30—100) meaning that
this approach is experimentally practical. This fabrication-
oriented design approach paves the way towards the real-
ization of robust high-performance single-material index
variable multilayer films. With their superior optical, ther-
mal, and mechanical properties, we believe these structures
will play more significant role in future optical applications.
Particularly, as design techniques such as those outlined
in this paper address the practical fabrication difficulties
associated with the realization of such devices.
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