
Nanophotonics 2023; 12(5): 993–1006

Research Article

Omer Yesilyurt, Samuel Peana, Vahagn Mkhitaryan, Karthik Pagadala, Vladimir M. Shalaev,

Alexander V. Kildishev* and Alexandra Boltasseva*

Fabrication-conscious neural network based

inverse design of single-material variable-index

multilayer films

https://doi.org/10.1515/nanoph-2022-0537

Received September 4, 2022; accepted January 17, 2023;

published online January 30, 2023

Abstract: Multilayer films with continuously varying

indices for each layer have attracted great deal of attention

due to their superior optical, mechanical, and thermal

properties. However, difficulties in fabrication have limited

their application and study in scientific literature compared

to multilayer films with fixed index layers. In this work we

propose a neural network based inverse design technique

enabled by a differentiable analytical solver for realistic

design and fabrication of single material variable-index

multilayer films. This approach generates multilayer

films with excellent performance under ideal conditions.
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We furthermore address the issue of how to translate

these ideal designs into practical useful devices which will

naturally suffer from growth imperfections. By integrating

simulated systematic and randomerrors just as a deposition

tool would into the optimization process, we demonstrated

that the same neural network that produced the ideal

device can be retrained to produce designs compensating

for systematic deposition errors. Furthermore, the

proposed approach corrects for systematic errors even

in the presence of random fabrication imperfections.

The results outlined in this paper provide a practical and

experimentally viable approach for the design of single

material multilayer film stacks for an extremely wide

variety of practical applications with high performance.

Keywords: deep learning; fabrication-in-loop; inverse

design; nanophotonics.

1 Introduction

Multilayer films are simple, planar structures that have

found a remarkably wide application space in optics includ-

ing photovoltaics [1], 1-D photonic crystals [2], anti-reflection

coatings [3], optical filters [4], and mirrors [5], to name a

few. Traditionally, these structures are made of alternat-

ing layers of materials with different optical properties.

This limits the design space by only allowing for a limited

number of refractive indices for each layer. An alternative

approach is to use materials and growth techniques that

allow continuous and gradual changes in refractive index.

This allows for the growth of multilayer films where each

layer ismade of the samematerial, but the index is varied by

growth conditions. This approach has severalmajor demon-

strated advantages, the first is that the films produced are

monolithic, leading to improved mechanical performance

particularly enhanced strength and toughness [6]. Secondly,

films produced this way have no internal interfaces leading

to a reduction of light scattering and the elimination of
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side-band harmonics [7, 8]. Finally, such films are made of a

single material, which can greatly simplify any further pro-

cessing such as patterning. A variety of material platforms

and film growth techniques have been explored for their

ability to achieve continuously variable indices of refrac-

tion. Porous silicon obtained via electrochemical etching

has been extensively used to create inhomogeneous optical

filters [9, 10]. However, their application range is limited due

to the absorptive nature of silicon at visible wavelengths.

Rugate filters have been demonstrated with reactive mag-

netron sputtering by controlling the oxygen and nitrogen

stoichiometry of deposited SixOyNz films [11]. Another com-

mon conformal growth technique is chemical vapor deposi-

tion. This film growth technique, as its name implies, is the

result of the chemical reaction between precursor gasses

assisted by heat and in the case of plasma enhanced tools:

microwave power. By adjusting the reaction chemistry and

growth conditions during CVD deposition, broad refractive

index control can be achieved as the resulting films will

have different composition stoichiometry. Single-material

monolithic bandpass filters made with plasma-enhanced

CVD (PE-CVD) silicon nitride were demonstrated by varying

the input microwave power [12]. Similarly, rugate filters

were grown with PE-CVD using silicon carbon-oxynitride

coatings by continuously adjusting N2 and O2 flow into the

reaction chamber [13]. Despite numerous successful demon-

strations and the unique advantages of optical devicesmade

of a single material, the related scientific publications are

limited compared to their multi-material counterparts. One

reason for this is that this fabrication approach requires

precise and dynamic control of the deposition conditions to

achieve the required optical parameters [14].

One of the challenges facing the fabrication of such

multilayer film devices are random fabrication imperfec-

tions. Algorithms for generating multilayer films robust to

random fabrication-related perturbation have been thor-

oughly investigated. Usually, modification of the algorithm

is done at the level of the loss function. Where in addi-

tion to basic merit functions such as target transmit-

tance/reflectance spectra, the change due to imperfections

in the multilayer film parameters (refractive index and

layer thickness) of the merit function is added to the loss

term [15, 16]. These terms are scaled and added with the

basic figure ofmerit in the loss function to realize robust and

high-performance devices. Similarly, second-order deriva-

tives of the basic figure of merit (sensitivities) of the errors

in the layer parameters have been used to generate robust

multilayer films [17–19]. More recently, training of auto

encoder-based inverse design architectures with imperfec-

tions in the EM response of core–shell particles has been

investigated for robust design [20]. However, robustness

schemes have only proven to be effective for small imper-

fections in the layer parameters, less than a one percent

shift from the ideal structure in the context of multilayer

structures. Deposition error compensation has been pro-

posed to address themajor imperfections introduced during

the deposition of layers [14]. In this method, a layer of the

multilayer stack is deposited. Then the refractive index and

thickness of the deposited layer ismeasured.With this infor-

mation, a new stack is optimized with the measured grown

layers parameters fixed. However, for each layer grown,

number of layers left for compensation of errors decreases.

Thus, towards the end of themultilayer growth, thismethod

of error compensation becomes less effective and places

limits on the overall performance that can be achieved.

Furthermore, the grown layerswill be imperfect themselves

preventing full compensation of the errors made in previ-

ous layers.

This paper presents a different approach for high-

performance and fabrication conscious multilayer film

design. We will use a similar method to those proposed in

[21–23] where neural network parameters are updatedwith

gradients extracted from an analytical solver, to optimize

a multilayer optical stack with a continuously changing

refractive index. This method has the advantage of requir-

ing no prior dataset and demonstrates rapid convergence

across a variety of target spectra. Additionally, even though

an ideal design is found using this method, when it is fabri-

cated, the systematic and random errors introduced during

the growth of the monolithic structure will degrade the

performance. To address us our method has a second stage

of training for our neural network, by using the data from

experimentally grown film, the same neural network opti-

mized in the first stage is then trained using experimental

data in each training cycle. The result of this second-stage

fabrication-in-the-loop training is that the neural network

from stage one is further trained to compensate for system-

atic errors. In this work we demonstrate the flexibility and

applicability of this approach across a variety of error types.

2 Multilayer optical film

optimization

Design and optimization of multilayer optical films have

been of great interest to the scientific community for the

past century. The functionality of the devices, enabled by

the fast analytical methods to predict their optical response,

makes these structures a prime candidate for optimiza-

tion research. Without loss of generality, the target of this
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Figure 1: Transmission of unpolarized white light through an optical multilayer film stack. The different colors in the film stack represent the different

refractive indices of the different layers.

problem is to achieve a given target spectra (transmis-

sion/reflection) with a multilayer film of alternating mate-

rial layers, as shown in Figure 1. Many approaches have

been proposed to solve this optimization problem. One

such approach is the Fourier method. The refractive-index

profile is derived for an inhomogeneous layer of infinite

extent having the desired electromagnetic response and

then approximated by a finite system of discrete homoge-

neous layers [24]. Another approach is the needle method

[25] which treats the multilayer film as an interference

structurewhose spectral performance depends on the inter-

ference effects among the light waves reflected from its var-

ious layer boundaries. Global optimization techniques, such

as genetic algorithms [26], simulated annealing [27] etc.,

have also yielded good results for multilayer film designs.

More recently, data-driven approaches such as DL-based

methods have been introduced. In our case, the forward

problem maps layer parameters (input set) onto the opti-

cal response (output set). The uniqueness of the electro-

magnetic response for a given stack allows for the use of

multilayer perceptrons [28] and convolutional neural net-

works [29]. The inverse design problem treats the target

optical response as the input. This is a highly degenerate

problem, as many solutions may exist for a given opti-

cal response. We refer the reader to Liu et al. for a more

detailed analysis of the inverse problem [28]. Since it is

impossible to reconstruct multilayer parameters uniquely,

optimization techniques are the only effective approach. For

approaches employing DL optimization techniques, neural

networks are trained to produce multilayer film parame-

ters that exhibit an optical response as close to the desired

spectra as possible. Deep reinforcement learning models

along with Q-variants have been proposed to optimize the

thicknesses of the layers as well as the number of layers

[30, 31]. Generative models like conditional variational

autoencoders (VAE) have also been applied to anti-reflection

grating design. With the addition of active learning to the

VAE, generated high-performing designs are then fed back

into the dataset to realize minimum grating reflectivity [32].

Most of themethodsmentionedup to this point are gradient-

based optimizers. Thus, they require the calculation of the

local gradients for design parameters adding to the com-

putational complexity. Alternatively, numerical and analyt-

ical methods that allow calculation and backpropagation

of local gradients are proposed for the efficient optimiza-

tion of electromagnetic devices. Automatic differentiation

and inverse design approaches based on numerical differ-

entiable solvers are shown in [33, 34]. More recently, an

analytical solver that enables automatic differentiation for

calculating the multilayer film spectra has been shown in

[35]. High-performance multilayer optical stacks have been

demonstrated by integrating these differentiable solvers

into NN-based optimization architectures [23, 35]. Updat-

ing the NN parameters with local gradients combines the
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best of both worlds with high-quality solutions obtained by

local gradients and fast convergence enabled by NN [21, 23,

35] Using this central idea, we implemented an NN-based

optimizer for multilayer films with continuously changing

refractive index. Furthermore, we propose a fabrication-in-

loop optimization framework where the fabrication imper-

fections are integrated into the optimization cycles to enable

realistic fabrication of high-performance devices.

3 Methods

Deep learning methods for photonics design require a training dataset

for the forward and inverse problems typically [36–38]. The computa-

tional cost of producing a large training set depends upon the problem’s

complexity and therefore, could be prohibitively expensive. Addition-

ally, the direct application of data-driven models does not guarantee

the best fit to the target spectrum due to extreme differences between

the target spectra and the randomly generated training dataset. To

improve performance, the training dataset can include pre-optimized

designs. However, this significantly escalates the dataset preparation

time since a large set of pre-optimized designs is needed to achieve

better performance. Alternatively, NNs can be used for direct optimiza-

tion without requiring a training dataset. In this configuration, local

gradients calculated with a differentiable solver are backpropagated to

update NN parameters.

This approach is a NN trainingmethod in which a neural network

is trained to modify a single input random seed design to produce an

optimal design. Our implementation of the NN-based inverse design of

multilayer optical films with continuously changing refractive index is

shown in Figure 2. The network is trained by feeding in a randomly

generated seed design vector (𝝆) into a fully connected neural network

(FCNN) called the online optimizer r𝜑, with parameter set𝜑. This FCNN

produces a modified stack vector 𝝆̂ from the input seed design vector

𝝆. The optical response of the modified stack (x) is then computed

using an analytical solver. The error/loss is computed as the mean

squared error between the modified stack and target spectra. Finally,

the loss is backpropagated through the network to update the biases

andweights of the FCNN𝜑. This training sequence is repeated until the

neural network is trained to take the input seed design and produce

optimal modified design. This is an optimization problem in which the

parameters of the FCNN𝜑 are updated, given an input seed design 𝝆 to

minimize the mean square error between the output modified stack 𝝆̂

optical response x, and the target response x̂,

min
𝜑,𝜌

1

n

n∑

i=1

(
x
i
− x̂

i

)2
,∀𝜌

i
∈

[
𝜌min, 𝜌max

]

One thing to note is that the seed design𝝆 stays the same through-

out the optimization. This means that for each training iteration the

exact same seed design is fed into the FCNN. As a result, a highly

specialized NN is obtained, which produces an optimal design from

the given input seed design. Counterintuitively, in this method, the

optimization is done on the FCNN, and the optimal design is a byproduct

of training the optimal NN.

4 Results and discussion

4.1 Error free optimization

Here, we present NN-based optimization results for sin-

gle material multilayer films with continuously changing

refractive index. In the first study, the layer thicknesses are

fixed to 30 nm,while their refractive indices can varywithin

Figure 2: NN based inverse design of multilayer optical films with continuously varying refractive index. An initial randomized set of layer parameters

is given to the online optimizer, a fully connected neural network. The online optimizer produces a modified film stack. The optical spectrum of the

new film stack is then computed using an analytical transfer matrix method-based solver. The resulting spectra and the target spectra are then used to

compute the loss function and the loss is backpropagated to update the online optimizer parameters. This training is done until the online optimizer

network is capable of modifying the random input stack into an optimal stack at which point the optimal stack is returned as the optimization solution.
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a user-defined range. Our previous work [39] demonstrated

that continuously variable refractive indices are achiev-

able with high-density plasma chemical vapor deposition

(HDPCVD) grown SiNx by varying the chamber stoichiom-

etry. Based on this experimentally collected data, we set the

refractive index range achievable to be between 1.6 and 2.4.

The NN-based optimization starts with an initial input of a

randommultilayer stack. The refractive indices of the stack

layers are passed through the online optimizer to gener-

ate a new set of modified layer parameters. These param-

eters are then used to calculate the true optical response

with the TMM analytical solver [35, 40]. After the loss is

calculated, the gradients are backpropagated through the

system, and the online optimizer parameters are updated.

Since the matrix-based analytical solver is differentiable,

it enables efficient backpropagation of gradients through-

out the system, including the solver itself. The optimiza-

tion results for various optical filtering spectra are given

in Figure 3. The insets in the figure represent the refractive

index distribution of the optimized multilayer films. For

a 200-layer stack with fixed 30-nm thick layers, the opti-

mization results in extremely close conformance with the

target transmittance spectra. The largest variation between

the target and the optimized device spectra occurs for the

15 nm stopband filter, shown in Figure 3(f), which can be

addressed with more layers, higher refractive index ranges,

and thickness optimization. To this end, the impact of the

layer numbers on the performance has been investigated.

Figure 4 shows the effect of the total number of layers on

the design performance. For this study, the long pass and the

double band stop filter spectra are chosen as the target. For

both target spectra, an optimization is performed with 60

and 200-layer optical stacks with fixed layer thicknesses of

30 nm. While the performance of the long pass filters given

in Figure 4(a) and (b) does not change much, dual-band

stop filters given in Figure 4(c) and (d) show a significant

Figure 3: The results of the single material multilayer film optimization with continuously changing refractive index. The generated stacks are

optimized for (a) high pass (475 nm cut-off), (b) low pass (625 cut-off), (c) band stop (525–575 nm), (d) band pass (475–625 nm), (e) double-band stop

(437.5–475 nm and 587.5–625 nm), (f) and narrow band stop (550–565 nm) optical filters respectively. The insets show the refractive indices of the

layers which range from 1.6 to 2.4. The color bar for the range of refractive indices in the stacks is shown on the middle right of the figure. The layer

thicknesses and total number of the layers are 30 nm and 200, respectively.
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Figure 4: Transmittance spectra comparison between the target spectra

(orange) and the generated optimized optical stack spectra (blue) for a

long pass filter with a cut-on at 475 nm for (a) 50, and (b) 200-layer

structures. The same plots are shown for a dual stop band filter with stop

ranges between 437.5 and 475 nm and 587.5–625 nm for (d) 50, and (e)

200-layer structures.

increase in performance as the number of layers increases.

Thus, it is safe to conclude that the number of layers needed

for high-quality optimization increases with the increasing

complexity of the target spectra.

4.2 Reduction of layer number

Thenumber of layers is yet another parameter in optimizing

multilayer films. Usually, the least number of layers needed

to satisfy an optimization criterion is not known a priori.

Therefore, we implement a layer number reduction scheme

into the NN-based optimization architecture. For the layer

number reduction, a policy of reduction and performance

threshold for stopping criteria is required. As the policy

of reduction, removing the last 10 layers of an optimized

stack at user-defined intervals is selected in the scope of this

specific aim. Different policies could also be implemented,

such as combining adjacent layers with similar refractive

indices. As the performance threshold, we use mean abso-

lute percentage error (MAPE), which is defined as [41]:

MAPE = 100

n

n∑

t=1

||||||

T
(
𝜔t

)
target

− T
(
𝜔t

)
optimized

T
(
𝜔t

)
target

||||||
where T(𝜔)target and T(𝜔)optimized are the target and opti-

mized transmittance spectra. The optimization starts with

a large number of layers to guarantee high performance for

a given design problem. After optimization converges to a

good solution, last 10 layers of the structure are removed,

and the remaining structure is reoptimized. This cycle is

repeated until the reduced stack can no longer satisfy the

performance threshold after a reasonable number of iter-

ations. The impact of the layer reduction is depicted in

Figure 5. For the stopping criterion of MAPE 3%, the opti-

mization started with 300 layers and reduced the structure

to 130 layers. We will note that the thicknesses are fixed;

therefore, the reduced structure becomes thinner. While

bandstopperformance is somewhat affectedwith 130 layers,

the changes in the performance for the 200-layer structure

are negligible compared to the initially optimized struc-

ture with 300 layers. In principle, one can use a weighted

MAPE or different stopping criterion to prevent perfor-

mance degradations within desired bands. Using the layer

reduction protocol, the total number of layers becomes an

optimizable parameter for multilayer optical stack design.

This enables optimization with least number of layers pos-

sible, allowing an easier and cost-effective fabrication of

multilayer optical films.

4.3 Optimization in the presence of

systematic growth imperfections

In practice, when fabricating single material continuously

changing films, imperfections always occur. These imper-

fections could be inherent to the nature of multilayer films,

such as stress-induced inhomogeneities that lead to shifts

in the refractive indices. Additionally, imperfections can be

inherent to growth techniques, such as imperfect chamber

gas stoichiometry due to switching precursor gas ratios for

each layer deposition or slow changes in precursor gasses

leading to gradually changing properties instead of clean

cut-offs at the layer interfaces. These imperfections will

result in refractive index shifts with different dependencies

and transitory regions between the layers. Accumulated

over many layers, these errors can dramatically reduce

the performance of the multilayer stack. Fundamentally,

all fabrication imperfections are either systematic or ran-

dom in their nature. In this section we will discuss system-

atic errors, and the random errors will follow in the next

section. Systematic errors are errors that are replicatedwith

every repeated stack fabrication. Due to their deterministic

nature, these errors can be fully compensated for. A variety

of systematic errors are simulated during the optimization

process to understand (i) the impact of the imperfections on

the performance and (ii) efficient ways to compensate for

them. Specifically, we modeled a variety of possible system-

atic errors such as: linear gradient shifts, transitory regions

between layers with refractive indices spanning from the

bottom to top layer values, and height-dependent refractive

index shifts in the system including polynomial, and other
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Figure 5: Transmittance spectra comparison between optimized stacks with different number of layers. A 300-layer optimized optical stack spectra

the (orange) is optimized first. Layer numbers are gradually reduced until the stopping criterion is reached. The transmittance spectra of reduced

optical stacks (blue) with (a) 130 layers, and (b) 200 layers are compared to initially optimized structure with 300 layers.

higher-order dependencies. As the test bed for this study, a

100-layer optical stack with refractive indices ranging from

1.6 to 2.4 and layer thicknesses ranging from 20 to 120 nm

is chosen. Figure 6 depicts the systematic errors applied to

each layer of the multilayer stacks. The linearly increas-

ing index shift is implemented by linearly increasing the

amount of error in the refractive index at each successive

layer. The bottom layers have minimum shifts while top

layers have the highest shifts of up to 0.4, which is half of the

user-defined range (1.6–2.4) of 0.8. Due to the time needed to

change chamber stoichiometry between layers, a transition

region between layers is expected. These transitory regions

are modeled as 10 nm regions centered between the layer

boundaries with a linear refractive index gradient between

the interface’s bottom and top layers. Specifically, the 10 nm

thick transition region is divided into 1 nm thick sub-layers,

with the linear shift implemented as gradual changes in the

refractive indices of the sub-layers. This transitory region is

applied to all layer interfaces throughout the structure. To

generalize further and to demonstrate this method’s capa-

bility and versatility higher-order height-dependent func-

tions of refractive index shift were also implemented. These

functions introduce an index shift based on the layer height

measured from the bottom of the multilayer stack. Specifi-

cally, the following height-dependent functions were imple-

mented,

Δn(x) = 3x3 − 5x2 + 2.2x − 0.2

Δn(x) = 0.2
(
sin x2 + sin 3x

)

Δn(x) = 0.2
(
ex − e

x

2 − e
x

3 − 4x2 − 2x
)

are cubic, trigonometric and hybrid exponential-

polynomial height-dependent index shift functions,

respectively. Δn(x) are the index shifts applied to a specific
layer, and x is the distance measured from the bottom of

the layer to the bottom of the multilayer stack. Note that the

systematic errors will depend on the deposition tool, which

is typically unknown and often difficult to measure a priori.

The example functions are chosen to demonstrate the error

compensation capability of the approach, regardless of the

distribution of the systematic error.

These errors are implemented individually and in com-

bination to determine the impact on the optimization per-

formance. The results under systematic imperfections are

given in Figure 7. A linear gradient shift of indices enlarges

the band stop region while the entire spectrum is red-

shifted, as shown in Figure 7(a). Transition regions, on the

other hand, only redshift the spectra. Figure 7(c) indicates

that the combination of these imperfections leads to the

linear addition of the degradations introduced by them

in the transmittance curve. Height-dependent index shift

functions depicted in Figure 7(e)–(f) yield more significant

performance degradation, which is more fundamental than

a simple red/blue shift. Based on these results, it is safe to

conclude that systematic errors can significantly impact the

optimized stack performance.

A fabrication-in-loop inverse design approach is pro-

posed to counteract the systematic errors in the film growth

process effectively. The details of the approach are shown

in Figure 8. The proposed method consists of two phases. In

the first phase, a multilayer optical stack is optimized with

the NN-based inverse design architecture given in Figure 2.

The resulting high-performingmultilayer filmdesign is then

fabricated in the second phase. During the growth pro-

cess, layer parameters are extracted with in-built metrology

tools, which are available in many deposition machines.
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Figure 6: The fabrication imperfections for CVD grown single material multilayer optical stacks. (a) Linear gradient shift, (b) randomly changing shifts

in refractive index, (c) graded transition regions between layers, and (d) height dependent functional shift in refractive index.

Figure 7: Multilayer stack optimization under deterministic fabrication imperfections. The blue curve represents the spectra of the original ideally

optimized stack without any imperfection introduced. The orange curve is the spectra of the same stack but with fabrication errors added. The black

dotted curve is the spectra of the stack after the second stage of optimization to compensate for the fabrication errors is complete. The different plots

are for different types of systemic error introduced: (a) linear gradient shift, (b) graded transition regions between layers, (c) linear gradient shift and

graded transition regions between layers combined, (d)–(f) polynomial, sinusoidal, and exponential height dependent index shifts, respectively.
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Figure 8: Network architecture for fabrication-in-loop NN-based inverse design of single-material multilayer optical stacks with continuously

changing refractive index. (a) The optimization starts under ideal conditions and iterates until convergence. Later, fabrication-related imperfections

are added to the ideally produced stack to simulate the imperfections from deposition tools. Modified stack response is calculated and the loss is

backpropagated to update NN parameters. This procedure simulates the practical fabrication, (b) case. After ideal optimization, optimized parameters

are used to grow the desired multilayer film. The imperfectly grown film will be measured and experimentally retrieved layer parameters are

integrated back into the optimization cycle to calculate the imperfect response and loss function. This allows direct integration of imperfections related

to the growth process into the optimization loop without disrupting the backpropagation chain. Simulated errors replace the film growth and

ellipsometry in the optimization process for the experimental realization of the multilayer films.

Specifically, after each layer is grown its properties are

extracted with ellipsometry layer-by-layer [14]. Once the

imperfect layer data is extracted from experimental mea-

surements, they are integrated into the optimization cycle.

To achieve this, the experimentally measured layer param-

eters are passed through the analytical solver to calculate

the expected transmittance spectra. The resulting loss func-

tion is then calculated with the imperfect response. This

approach allows a gradient-based inverse design method

such as the one proposed here to effectively learn the

response of a so-called “black box” system, which is the

deposition tool in this case. In essence, by using the exper-

imental layer parameters in the optimization cycle, imper-

fections in the deposition tool can be learned/compensated

with a gradient-based optimization method. Importantly,

the backpropagation chain is continuous, which is neces-

sary for NN training. Consequently, the NN-based inverse

design must learn the imperfections of the machine to

produce high-quality stacks in addition to the general EM

response of the multilayer films. This cycle of fabrication,

measurement, backpropagation, and update continues until

a high-performance device is realized experimentally.

In the scope of this study, the experimental growth and

measurement process is simulated with systematic fabrica-

tion imperfections, as shown in Figure 8(a). After conver-

gence to a good solution in the first phase, the selected error

function is applied, and the refractive indices of individual

layers are modified accordingly in the second phase. The

modified stack response is calculated with the analytical

solver, and the gradients are backpropagated after loss func-

tion calculation. This procedure, shown in Figure 8(a), simu-

lates the practical fabrication cycle, as shown in Figure 8(b).

We note that the introduced errors are not static, meaning

that the error that depends on the layer properties, such

as index and thickness, are changed every iteration with

different optimized stacks.
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The results of the compensation for fabrication imper-

fections are shown in Figure 7 (black dotted line). In the

secondphase of the optimization, starting from themodified

stack with an imperfect response (solid orange line), the

NN-based inverse design scheme learns to compensate for

fabrication errors to a high degree. As a result, it produces

a stack specifically modified to offset the impact of the fab-

rication errors for all the types of systematic error studied.

Analyzing this procedure, the results indicate that the sys-

tematic errors in a deposition device can be fully accounted

for in the optimization loop to realize high-performance

multilayer stacks. The Supplementary Figures S2–S7 shows

the loss track and modified device performance in inter-

mediate steps. These results indicate that depending on

the complexity of the device, from few tens up to a hun-

dred cycles of optimization can yield multilayer stacks with

high performance. The number of iterations also depends

on the severity of the errors in the system, the learning

rate, and the neural network architecture, which can be

optimized for a given design problem. We would like to

note that the NN-based inverse design proposes a modi-

fied stack, which offsets the imperfections introduced by

the deposition tool. In an error free fabrication process,

the multilayer film grown with error-compensated layer

parameters will perform poorly as the NN is trained to

change the layer parameters with respect to the fabrica-

tion imperfections. Naturally, the multilayer stack can be

optimized with fabrication in the loop from the beginning

as shown in Figure 8(b). However, this has the effect of

increasing the number of optimization iterations with time

consuming experimental growths required as indicated by

results shown in Figures S2-S7 in the Supplementary text.

This unsurprising result stems from the fact that the NN

is learning the EM response of the multilayer film stack in

addition to the behavior of the fabrication process in this

case. Thus, our two-stage fabrication-in-loop inverse design

method minimizes the number of optimization iterations

with time-consuming and expensive experimental growths

required.

4.4 Optimization in the presence of random

growth imperfections

Besides systematic errors, random and unrepeatable errors

could be present in the deposition of multilayer films. These

errors change from one fabrication process to another and

are characterized statistically. Since truly random effects

cannot be compensated, they pose a challenge in producing

high-quality multilayer films. As pointed out in the intro-

duction, robustness schemes such as including refractive

index and layer thickness sensitivities in the loss term of

the multilayer film optimization have been proposed to

alleviate the impact of the random imperfections [15–19, 42,

43]. However, these methods have shown limited improve-

ments against minor imperfections where random thick-

ness changes are predicted to be less than a nanometer.

This section extends the fabrication-conscious optimization

approach to include the case of stochastic imperfections.

Following the previous section, the test bed for this study

is a 100-layer optical stack with layers having refractive

index and layers thicknesses ranging from 1.6 to 2.4 and

20–120 nm, respectively. Following the architecture out-

lined in Figure 8, the first stage of the optimization produces

a high-performing multilayer stack assuming perfect fab-

rication. In the second stage, simulated random errors are

added to the ideal layer parameters, and the EM response is

calculated with the imperfect stack, as shown in Figure 8(a).

The details of the backpropagation with random imperfec-

tions in the optimization loop are given in the Supplemen-

tary materials. At every iteration, a different set of random

perturbations to both index and thickness is added to the

ideal stack parameters. The optimization cycle with ran-

dom imperfections is ended manually after 700 iterations.

Rigorously, we implement the random fabrication errors

as additive noise to the learnable base of multilayer stack

parameters which can be expressed as:

nimp = nid + nidnrand ↔ nrand = 2𝛾U(0, 1)− 𝜇

timp = tid + tidtrand ↔ trand = 2𝛾U(0, 1)− 𝜇

The imperfect layer parameters timp, nimp are obtained

by adding random error functions trand, nrand to the ideal

layer parameter tid, nid. U(0, 1) is a random variable with a

uniform distribution between 0 and 1, and 𝛾 and 𝜇 are the

user-defined error rate range and the mean of the error dis-

tribution, respectively. The results of the optimization with

stochastic fabrication imperfections are given in Figure 9.

To allow for a fair comparison between multilayer stacks

optimized taking into account random imperfections during

optimization (black dotted line) and those optimized assum-

ing no imperfections (blue solid line), the EM response of

multilayer stacks obtained with both methods have been

calculated for 1000 different sets of random perturbations.

Figure 9(a)–(h) depict the highest and the lowest performing

samples from their respective sets according to the calcu-

lated mean squared loss for the given target spectra (solid

orange line). For a mean error rate (𝜇) of 0 and error rate

range (𝛾) of 1 percent, multilayer stack optimized with and

without random perturbations perform quite similarly and

overall performance is not affected for the best and worst

cases as seen in Figure 9(a) and (e), respectively. For 𝜇 = 1%
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Figure 9: Multilayer stack optimization in the presence of random fabrication imperfections. Results after random error is added for both ideally

optimized stacks (blue solid line) and stacks optimized considering random imperfections during the optimization process (black dotted line). The

orange solid line is the target spectra. The transmittance of the multilayer stacks produced by both methods is tested with 1000 different sets random

imperfections. The transmittance curves for the highest and the lowest performing stacks from their respective sets of results are shown in the top

(a)–(d) and bottom (e)–(h) rows, respectively. The mean and the range of the uniform distribution used to create random imperfections are (a and e)

𝜇 = 0% and 𝛾 =±1%, (b) and (f) 𝜇 = 1% and 𝛾 =±1%, (c) and (g) 𝜇 = 0% and 𝛾 =±5%, and (d and h) 𝜇 = 5% and 𝛾 =±5%, respectively.

and 𝛾 = ±1%, a red shift in the spectra is observed for the
ideally optimized stack, while the stack optimized with ran-

dom perturbations compensates for this effect, as shown in

Figure 9(b) and (f). For 𝜇 = 0% and 𝛾 = ±5%, the impact of
the random error ismore significant as shown in Figure 9(c)

and (g). Both stacks perform similarly for best and worst

cases with minor improvements in the bandpass region for

the fabrication-conscious design. Similar to Figure 9(b) and

(f), the case of random error with non-zero mean, 𝜇 = 5%
and 𝛾 = ±5% shown in Figure 9(d) and (h) indicates a red-

shift for the ideally optimized stack with an even greater

impact on the performance. Regardless of the mean of the

random error, optimizations with random imperfections

perform similarly for the same error ranges. We thus con-

clude that the proposed NN-based inverse design method

can effectively learn the random error’s mean and compen-

sate for it. Unsurprisingly, random imperfections are not

fully compensated, as seen in Figure 9, where the impact

of the stochastic imperfections remains even for a multi-

layer stack optimized with fabrication-conscious NN-based

inverse design.

Finally, the impact of combined random and system-

atic errors is investigated, and the results are shown in

Figure 10. For the bandstop filter design, 2 sets of system-

atic and random errors are implemented. The mean of the

stochastic error rate for all the results shown in Figure 10 is

0 percent (𝜇 = 0%). Linear grading and transitory regions
are applied with 𝛾 = ±1%, and 𝛾 = ±5% random shifts to

Figure 10: Multilayer stack optimization in the presence of both

deterministic and random fabrication imperfections. (a) and (b) Linear

gradient shift and graded transition regions between layers combined

with 𝛾 =±1% and 𝛾 =±5% random index shifts, respectively (c) and (d)

sinusoidal height dependent index shifts (2) with 𝛾 =±1% and 𝛾 =±5%
random index shifts, respectively. The solid blue curve represents the

ideally optimized spectra without any error. The orange curve represents

the ideally optimized spectra after both the error types are introduced.

The black dotted curve is the result of optimization to compensate for the

errors.

each layer. The results are shown in Figure 10(a) and (b),

respectively. The results for height-dependent sinusoidal

function with a 𝛾 = ±1%, and 𝛾 = ±5% random shifts are
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shown in Figure 10(c) and (d). Looking at the figures and

related loss tracks in Figures S2–S7 of the Supplementary, it

is clear that the systematic errors are learned and compen-

sated for even in the presence of random errors. Comparing

the results with corresponding random error rates between

Figures 9 and 10, it is clear that full compensation of the

deterministic errors is achievable even in the presence

of random imperfections. Starting with both random and

deterministic imperfections (solid orange line), a multilayer

stack optimized using the fabrication-conscious approach

outlined earlier can reach performance only limited by the

random imperfections (black dotted line). This approach is

most advantageous when systematic errors are dominant

in the growth process. Essentially, regardless of the nature

of the systematic error, this fabrication-in-loop optimization

scheme can produce high-performance films even in the

presence of stochastic deposition errors.

5 Conclusions

As the complexity of photonics design requirements grow,

the need for novel and effective fabrication conscious

inverse design techniques increases. This work proposes an

NN-based inverse design scheme for single-material vari-

able index multilayer films. Additionally, we demonstrated

an approach using our NN-based inverse design technique

to compensate for fabrication imperfections introduced by

the multilayer film growth into the optimization process.

The automatic differentiation capability provided by the

differentiable analytical solver used enables efficient inte-

gration of NNs into the optimization scheme. This proce-

dure requires no user intervention or physics knowledge

of the problem on the user’s part. Under ideal conditions,

the NN-based inverse design scheme produces multilayer

structures with nearly ideal spectra. These designs were

producedwith a singlematerial (SixNy), with a continuously

variable index. The refractive index variability was taken

from the literature to ensure the experimental feasibility of

this approach. We also demonstrated a method to reduce

the number of layers without significantly sacrificing per-

formance for fabrication simplicity. Finally, a fabrication-

in-loop design technique has been proposed to compensate

for the errors resulting from the fabrication process. The

imperfections introduced during deposition are simulated

as layer refractive index and thickness variations. These

variations can either be systematic or random errors and

both classes were analyzed in this work. By simulating the

imperfections and including them during a second stage

of neural network training, we showed that the systematic

errors could be compensated for resulting in designs that

perform ideally even in the face of significant systematic

error. For the random errors, our results indicate the pro-

posed method can learn the fundamental characteristics

of the random distribution and correct for spectra shifts.

Furthermore, our results conclusively show that systematic

errors can be learned and compensated for, even in the

presence of significant random errors.

In practice, the simulated imperfect deposition would

be replaced with actual deposition and characterization of

the resulting stack. The outlined method allows a gradient

based optimizer to work with a so called “black box system”

in the optimization cycle by retrieving layer parameters

during the growth process. In principle, one can avoid the

measurement during the growth by utilizing gradient-free

approaches such as particle swarm optimization, genetic

algorithm, deep reinforcement learning, et cetera. However,

gradient-based approaches converge faster due to the addi-

tional information givenby the local gradients of the system,

provided that they are not stuck on a local minimum. The

faster convergence is crucial as it minimizes the number

of expensive fabrication cycles required. Naturally, a pos-

sible extension of this study is to explore methods utiliz-

ing gradient-free optimization methods in such a way that

the necessary number of optimization cycles is practically

achievable. In future work, the second stage optimization

of the neural network will be done using real experimental

data. Importantly, this study demonstrated that the number

of required samples to perform the second stage training

of the network is relatively small (30–100) meaning that

this approach is experimentally practical. This fabrication-

oriented design approach paves the way towards the real-

ization of robust high-performance single-material index

variable multilayer films. With their superior optical, ther-

mal, andmechanical properties, we believe these structures

will playmore significant role in future optical applications.

Particularly, as design techniques such as those outlined

in this paper address the practical fabrication difficulties

associated with the realization of such devices.
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