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S1 Derivation of amplification factor

This section describes the detailed theory of the amplification principle and derivation of the ampli-
fication factor A = F cotα using a purely optical approach. Under horizontally polarized incidence,
the beam that is reflected at an interface with Fresnel reflection coefficients rs and rp can be ex-
pressed as

ψ(x, y, z1) ∝

(
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, (S1)

where z1 is the propagation distance since the reflection and (x, y) is defined at the surface normal
to the propagation. The beam after passing through the second lens with the focal length of f2
can be obtained by replacing zR with z̃R = (1 + F 2)zR, where F = z1/zR, and z1 with z2, where
z2 is the propagation distance since the second lens:
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The beam profile after the postselection can be obtained by multiplying its Jones vector (− sinα, cosα)
as

ψafter postselection(x = 0, y, z2) ∝ exp
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by using the first-order Taylor expansion, exp△ ≈ 1 +△ for sufficiently small △. Note that this
assumption is valid under the weak regime (Eq. 1 in the main manuscript). From Eq. S3, the
amplitude of the postselected beam can be obtained as
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This equation demonstrates that the postselected beam is displaced from y = 0 by

⟨y⟩ = z1
z2R + z21

z̃2R + z22
z̃R

δ cotα, (S5)

where δ = −Re(1 + rs
rp
) cot θik0

is the well-known spin Hall shift formula. Provided that the mea-
surement parameters such as the focal lengths are determined to produce large F ≫ 1 for the
amplification, Eq. S5 can be approximated to ⟨y⟩ = δF cotα, which clearly shows the amplification
factor formula, that is, A = F cotα.

S2 Derivation of Equation 2

Equation 2 in the main manuscript can be derived as following:
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where δ = ϵw tanα is used for the last equality. Note that δ = ϵw tanα is the alternate expression
of

|δ|
w

≪ tanα, (S7)

which is equal to Equation 1 in the main manuscript for small α (< 45◦).

S3 Postselection angle, weak value, and amplification factor
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Figure S1. Supplementary data for Fig. 2h in the main manuscript. (a) α, (b) W normalized by
λ, and (c) A.

Fig. S4 shows supplementary data for Fig. 2h in the main manuscript. The spin Hall shift
that reaches zero at n = 1.515 allows α to be arbitrarily small, which amplifies the W significantly.
Because we enforce α to be dependent on the spin Hall shift, α in this regime is near −90◦, which
indicates no postselection at all.
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S4 Precision enhancement using the index-below-unity slab on a
dielectric substrate
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Figure S2. Precision enhancement using the index-below-unity slab on a glass substrate (n =
1.457). (a) Schematic and (b) the magnitude of the spin Hall shift and (c) the corresponding index
resolution. (d) d/λ for ∆n→ 0 and the efficiencies along the same curves.

In the main manuscript, the background medium is considered as air, which makes the index-
below-unity slab levitate in the air. However, our method works well when the medium above the
slab has index beyond unity. Fig. S2 presents the precision enhancement using the index-below-
unity slab on a dielectric substrate. Along the similar curves, δ = 0 and therefore ∆n → 0 are
observed. In particular, the red curve shown in Fig. S2d will be a good candidate along which the
index can be measured with high precision and moderate efficiency. Note that in experiments, the
SHEL at the opposite side of the substrate will be also included, but can be excluded in the data
[1].

S5 Precision enhancement using a lossy index-below-unity slab
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Figure S3. Precision enhancement using a lossy index-below-unity slab. (a) Schematic and (b) the
magnitude of the spin Hall shift and (c) the corresponding index resolution. (d) d/λ for ∆n → 0
and the efficiencies along the same curves.

Because of the dispersive nature of index-below-unity or index-near-zero materials, the slab

S3



may have nonzero optical losses. Fig. S3 demonstrates that our scheme also works when the index-
below-unity slab is lossy. The blue curve shown in Fig. S3 can be used to achieve high precision
and efficiency.

S6 Field profiles near the metasurface
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Figure S4. Electric field profiles near the metasurface under (a) transverse electric and (b) trans-
verse magnetic incidences. The field magnitude is normalized by the amplitude of the incidence.
Incident angle is 25◦ as in the main manuscript.

For completeness, electric field profiles near the metasurface under transverse electric (TE) and
tranverse magnetic (TM) modes are presented in Fig. S4. Whereas the reflection coefficients of
the TE and TM modes are generally different under oblique incidence at most interfaces and thus
producing nonzero spin Hall shift, the reflection coefficients at this artificially engineered interface
support |Re(1 + rs/rp)| ≈ 0, leading to the negligible spin Hall shift.
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