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Abstract: A data enhanced iterative few-sample (DEIFS)
algorithm is proposed to achieve the accurate and effi-
cient inverse design of multi-shaped 2D chiral meta-
materials. Specifically, three categories of 2D diffractive
chiral structures with different geometrical parameters,
including widths, separation spaces, bridge lengths, and
gold lengths are studied utilising both the conventional
rigorous coupled wave analysis (RCWA) approach and
DEIFS algorithm, with the former approach assisting the
training process for the latter. The DEIFS algorithm can
be divided into two main stages, namely data enhance-
ment and iterations. Firstly, some “pseudo data” are
generated by a forward prediction network that can
efficiently predict the circular dichroism (CD) response
of 2D diffractive chiral metamaterials to reinforce the
dataset after necessary denoising. Then, the algorithm
uses the CD spectra and the predictions of parameterswith
smaller errors iteratively to achieve accurate values of the
remainingparameters.Meanwhile,according to the impact
of geometric parameters on the chiroptical response, a
new functionality is added to interpret the experimental
results of DEIFS algorithm from the perspective of data,
improving the interpretability of the DEIFS. In this way,
the DEIFS algorithm replaces the time-consuming iterative
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optimization process with a faster and simpler approach
that achieves accurate inverse design with dataset whose
amount is at least one to two orders of magnitude less
than most previous deep learning methods, reducing the
dependence on simulated spectra. Furthermore, the fast
inverse design of multiple shaped metamaterials allows
for different light manipulation, demonstrating excellent
potentials in applications of optical coding and informa-
tion processing. This work belongs to one of the first
attempts to thoroughly characterize the flexibility, inter-
pretability, and generalization ability of DEIFS algorithm
instudyingvariouschiropticaleffects inmetamaterialsand
accelerating the inverse design of hypersensitive photonic
devices.

Keywords: deep learning; few-sample; inverse design;
programmable metamaterial.

1 Introduction

Tremendous literature has grown up around the theme
of chiral metamaterials, which not only provides new
insights into light–matter couplingeffects at thenanoscale
and strong chiroptical interactions, but also demonstrates
dramatic application prospect in chiral sensing and fil-
tering, polarization-selective communication, biological
detection, and chirality-relevant quantum optics [1–4].
Significantly, optical chirality, a ubiquitous phenomenon
in universe, has played a pivotal role in the development
of life science [5], biochemistry [6], pharmaceutics [7],
spectroscopy [8], and quantum computing [9]. Circular
dichroism (CD) effect, serving as one prominent category
of optical chirality, identifies the absorption difference of
metamaterials under irradiation of the right- (RCP) and
left-circularly polarized (LCP) light excitation [10, 11]. In
particular, the CD effect is normally decided by either
the handedness of chiral metamaterials or their chiral
parameters [12], making possible for the engineering of
chiroptical response with a huge degree of flexibility,
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which is totally different from natural molecules that own
weak chirality and are inconvenient to change the size
[13]. One distinct and distinguished chiral metamaterials
is the two-dimensional (2D) version, which demonstrates
significant advantages in small optical losses, compact
dispersion, simple fabrication process, and excellent
reconfigurability [14–16]. Further to that, 2D diffractive
chiral metamaterials have established as alluring and
attractive platforms to study optical chirality and the
relevant but unrevealed mechanisms, in which much
larger CD response is observed at higher-order diffracted
beams than the zeroth-order [17]. Though there has been
a moderate increase in the investigations of diffractive
metamaterials possessing divergent geometries [18–20], a
fast, intelligent and vigorous tool is still needed to perform
inverse design for such metamaterials, considering their
widespread applications in ultrafast detection, nonlin-
ear chiroptical phenomena, and hyper-sensitive ultrathin
devices.

Recently, deep learning (DL) algorithm, an important
branch of machine learning (ML), has been applied as an
attractive and intriguingmethod in scientific studiesowing
to the rapid progress of computer technology. The utiliza-
tion of DL covers tremendous aspects, such as medicine
[21–23], finance [24–26], and nature language processing
[27–29]. In particular, the last five years have witnessed a
great development in the field of nanophotonics thanks to
DLapproach,which facilitates thesolutionofmanynonlin-
ear and nonintuitive problems, with the inverse design of
tremendous devices included [30–33]. Though traditional
numerical simulation methods (e.g. FDTD, FEM, RCWA)
are often used to characterize the optical response of
nano-devices at the cost of expensive computing time and
resources, they cannot provide explicit design principles,
neither. The DL network is essentially a statistical learning
method, which makes reasoning and prediction through
the patterns and connections reflected by data, seeking to
accomplish inversedesign ina fast andefficientway, rather
than focusing on the design mechanisms. This makes
possible for theon-demand inversedesignof avarietyof 2D
programmable chiral metamaterials in a highly-accurate
and ultrafast manner. In 2018, Peurifpy et al. [34] applied
neural networks with 50,000 samples to assist the inverse
design of a multilayer dielectric spherical nanoparticle,
which was a milestone in the domain. Liu et al. [35]
designeda thinfilmcomposingof alternating layers of SiO2
and Si3N4 through employing a tandem neural network
and 500,000 instances tomake the results converge better.
Furthermore, Liu et al. [36] made a successful attempt
at designing metasurfaces in 2018, which revealed the

potential of generative adversarial networks (GANs) in
the design of such structures. In 2021, Kong et al. [37]
proposed a bidirectional cascaded deep neural network
with apretrainedautoencoder for rapiddesignof dielectric
metasurfaces in the range of 450–850 nm, replacing the
traditional time-consuming and laborious design meth-
ods. Raju et al. [38] fabricated the algorithm-designed
plasmonic patterns on the prepared nanolaminate in
2022, showing the practicability of deep learning. All
these works suggest that DL algorithm has demonstrated
obvious advantages in speed, flexibility, and accuracy.
In turn, research groups can complete the design with
similar effect in much less time compared with traditional
methods.

However, traditionalDLalgorithmhas twodrawbacks.
Firstly, the training process is especially data-consuming.
In addition to the aforementioned researches, there are
many works troubled by this problem. For example,
in 2021 Sun et al. [39] trained an improved K-nearest
neighbor algorithm to design meta-atoms using 2.7 × 107
sets of spectra, taking approximately 240 h to yield the
data. Zhang et al. [40] employed 70,000 training coding
patterns to train the machine learning algorithm, in order
to realize intelligent inverse design of metasurfaces in
2019. Ma et al. [41] collected 30,000 samples to complete
on-demand design of chiral metamaterials in 2018. Coin-
cidentally, the cost of data acquisition is unimaginable,
which makes DL algorithms difficult to be popularized.
Secondly, the architecture is too monolithic to be flexible.
Many research efforts lack task decomposition. As tasks
becomemorecomplex, the sizeof thenetworkgrowswhich
increases the difficulty of training and degrades the final
effect.

In this work, targeting at designing 2D chiral metama-
terials efficiently, an algorithm called data enhanced itera-
tive few-sample (DEIFS) has been introduced and applied.
DEIFS has two core ideas. One is DATA AUGMENTATION,
aimed at augmenting the original dataset making it possi-
ble to train large networkswith small amounts of data. The
other is REGRESSOR CHAINS [42], using multiple small
regressors instead of a monolithic network to iteratively
solve theprobleminachain, takingadvantageof thepoten-
tial conditional dependence between data and improving
algorithm performance. In particular, DEIFS is used to
solve the inverse design problem of chiral structures with
a four-dimensional parameter space, shown as Figure 1.
By means of DEIFS network, we study the chiroptical
responses of variously-shaped 2D chiral metamaterials
with different gold lengths, widths, bridge lengths, and
separation spaces. The process of DEIFS can be divided
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Figure 1: Schematic of different chiral meta-
materials. (a) Schematic of the higher-order
diffraction patterns when the circularly polar-
ized light irradiates the S1 metamaterial.
(b)–(d) Schematics of the metallic array’s unit
cell for S1, S2, and S3, respectively.

into two stages. One is data enhancement, focusing on
dataset generation. The other is iterations, aiming at
solver building. Specifically, in stage one, “pseudo data”
is generated by exploiting a forward prediction network
which can predict the optical response of chiral samples
with various geometric parameters, as supplements of
the original training data so that the network can be
well trained after denoising. Notably, “original training
data” refers to the data generated by the traditional
rigorous coupled wave analysis (RCWA) method, which
should be distinguished from the aforementioned “pseudo
data”. In stage two, the inverse design is performed by a
tandem network composed with a forward network and
an inverse network. Additionally, parameters with fewer
design errors are picked out as additional inputs for the
next round of inverse design to take full advantage of
the potential relationships existing between the geometric
specifications. Generally, the inverse design that satisfies
the spectroscopic demands can be realized after two
or three iterations. Importantly, the DEIFS algorithm is
confirmed to be a strong and promising tool that can
realize efficient inverse design for multiple 2D diffractive
chiral metamaterials in a highly-accurate (about 96%) and
ultrafast manner (0.75 s for 737 testing samples), which is
obviously superior to traditional inverse design methods
andmanymachine learningmethods in termsof flexibility,
scalability, and time consumption. The entire designing

algorithm and dataflow are schematically presented in
Figure 2.

2 Design of 2D chiral
metamaterials with different
structures

The crucial theme is to design the demanded structures
of 2D chiral metamaterial effectively given less third-order
diffracted circular dichroism response data. The higher-
order diffraction patterns when the T-like metamaterial is
irradiated by the circularly polarized light are shown as
Figure 1(a). Moreover, Figure 1(b)–(d) distinctly exhibit
the basic cells of three chiral metamaterials, denoted
as S1, S2, and S3, in order of structure from simple to
complex. Their depth profiles are shared: a Si layer acts
as the substrate, followed by a 200 nm SiO2 layer and
a 10 nm Cr film stacked on the substrate sequentially.
The uppermost layer is fabricated as 30 nm-thick gold
arrays. Besides investigating multiple structures, different
geometric parameters are considered, including the gold
length (l) (0.8–2.0 μm), width (w) (0.1–0.3l), separation
space (s) (0.1l–l), and bridge length (ls) (0.4l–l). These
parameters are not on a uniform scale, which can bring
inconvenience to feature extraction and learning of the
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Figure 2: Schematics of the DEIFS algorithm for inverse design of 2D chiral metamaterials. The algorithm can be divided into two main
stages, data enhancement (blue solid box) and iterations (black dashed box). The first stage is using the results of the forward prediction
network to strengthen the dataset ((A) and (B)). The second stage is utilizing the spectra to predict corresponding geometric parameters with
the help of additional inputs namely parameters with smaller errors ((C) and (D)). Then, the verification spectra are compared with the input
spectra to verify whether the results of the algorithm are satisfactory ((E) and (F)).

algorithm, ultimately leading to terrible design results.
Nevertheless, the variations of the graphic parameters
can be considered discrete. The preparation precision of a
devicemustnot onlybegreater thanor equal to aminimum
resolution, but the adjustment of parameters must also be
an integer multiple of this precision. What’s more, con-
sidering the balance between density and efficiency in the
data generation process, parameters must be discretized.
Therefore, geometric parameters can be normalized to the
same nonnegative scale in a less complicated way. Assign
a precision to each parameter, thus the normalization
method can be represented as:

xnor =
x − xmin

𝜀

(1)

where xmeans the actual value, xmin means the minimum
value and 𝜀 denotes the precision. As parameters vary in
nonunique ranges, appropriate xmin and 𝜀 are necessary to
be chosen to guarantee that the labels of several tasks are

on a unified scale. The minimum value of each geometric
parameter in the dataset is regulated to be zero so that
other values can be positive integers. Furthermore, since
the parameters are normalized to integers, the prediction
of them should also be rounded and truncated to acquire
moreexact results. Inotherwords, thoseerrors less than0.5
are shrunken to 0, and those greater than 0.5 are generally
enlarged to 1. It requires that the prediction errors should
be as small as possible, otherwise rounding and truncation
will in turn magnify them.

To generate original training data, the rigorous cou-
pled wave analysis (RCWA) method is employed. With its
assistance,we obtain adataset containing 7358pairs of the
LCP and RCP spectra whose wavelength range from 0.2 to
1.775 μm, for the three structures in different gold lengths,
widths, separation spaces, and bridge lengths. The dataset
is divided into three parts: 70, 20, and 10% for training,
validation, and testing, respectively.
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3 Data enhanced iterative
few-sample algorithm

Theworking process of DEIFS algorithm is shown in Figure
2, innovating on data source and additional inputs. Two
key and essential parts of DEIFS algorithm can be immedi-
ately found from Figure 2, namely data enhancement and
iterations. Regarding data enhancement, this algorithm
works mainly due to the difference in the mathematical
principles behind forward prediction and inverse design.
Precisely, the forward prediction is essentially a process of
fitting and solving Maxwell’s equations, while the inverse
design is a more difficult and data-dependent process
of finding the inverse of Maxwell’s equations, even in
cases where only pseudo-inverses exist. Importantly, this
demand for data can be quickly satisfied through data

enhancement. With regard to iterations, its application
is primarily according to the network scale that is pro-
portional to the problem complexity. Furthermore, the
spectrum isdeterministic in inversedesign,which imposes
conditional dependence on geometrical parameters that
are otherwise independent. Therefore, applying an itera-
tivemethod, regressor chains,which can take advantage of
the dependencies and accomplish the inverse design task
easily and flexibly is a wise choice.

The exhaustive process of DEIFS is as follows: Firstly,
a fully connected forward prediction network with seven
hidden layers is trained with the original training dataset.
The inputof thenetworkare fourgeometricparametersand
the polarization direction, and the output of the network
is an LCP or RCP spectrum with 64 data points indicating
wavelength from0.2 to 1.775μm. Figure 3 shows the perfor-
mance of the network, the basis of data augmentation. The

Figure 3: Comparison of the third-order diffracted chiroptical response calculated by RCWA (label, solid lines) and the forward prediction
network (pred, dotted lines). (a)–(i) The LCP (blue and yellow) and RCP (green and red) spectra for S1, S2, and S3 from top to bottom
respectively. Specially, the values of the geometric parameters are widely distributed to highlight the effect of the forward prediction
network, which are shown in Table 1.
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values of geometric parameters corresponding to spectra
in Figure 3 are shown in Table 1. Note that the absolute
values of original spectra are extremely small, usually
varying between 10−3 and 10−7. Tomake feature extraction
easier and learning outcomes better, it is necessary and
worthwhile to transform the spectra to a dimension with
greater absolute values in the following manner:

y′ = − lg(y + 10−11) (2)

where y represents the spectra before processing and y′
denotes the spectra after computing. Here, 10−11 avoids the
influence of zero values on the pretreatment commendably
and minimizes its impact on the ultimate outcome con-
currently. The loss function of the forward network is the
mean absolute error (MAE), which can be calculated in the
following way:

Lossfor𝑤ard =
1
n

n∑
i=1

abs
(
y′ipred − y′ilabel

)
(3)

where n is the batch size, y′pred represents the prediction
of the spectra, and y′label stands for the corresponding
true optical spectra. The error of the network results is
in the 10−2 order of magnitude. In this case, the predicted
spectra are reliable because the converted value of a data
point is mostly a positive number greater than three and
less than eleven. Therefore, the dataset can be intensified
using the “pseudo data” created by the optical responses
of adjusted novel parameter combinations, which are
not generated via RCWA simulations. By this means,
21,541 pairs of spectra are predicted within 0.68 s and
supplemented to the dataset after necessary interpolation
denoising. The “pseudo data” are added to the training
and validation datasets in accordance with the proportion
of 70 and 30%, respectively. To avoid the possible spectral
error, “pseudo data” is not supplemented to the testing

Table 1: The values of geometric parameters corresponding to
spectra in Figure 3.

Figure Values of geometric parameters

w s ls l

3(a) 0.125l 0.15l 0.45l 1.4 μm
3(b) 0.2l 0.3l 0.8l 1.7 μm
3(c) 0.3l 0.2l 0.6l 1.3 μm
3(d) 0.1l 0.5l 0.9l 1.7 μm
3(e) 0.175l 0.85l 0.55l 1.9 μm
3(f) 0.3l 0.7l 0.4l 1.3 μm
3(g) 0.1l 1.0l 0.5l 1.0 μm
3(h) 0.225l 0.95l 0.55l 1.5 μm
3(i) 0.3l 0.4l 0.6l 0.9 μm

dataset. To some extent, this partition may bring the
problem of inconsistent data distribution between testing
dataset and training dataset. However, in the case that
the spectral error of the “pseudo data” is insignificant,
the distribution inconsistency causes minimal impact
on the training.

The theme of the second stage is inverse design of
2D chiral structures; taking full advantage of the data
including the entries produced from RCWA and artificial
neural network approaches, whose process is called iter-
ation. The objectives of iterations are mainly achieved in
three steps. The first iteration requires a tandem network
which is based on an inverse neural network and a
forward network, both consisting of seven hidden layers.
The purpose of the tandem network is to obtain precise
geometric parameters. When the parameter prediction
error occurs, theoptical functional requirements shouldbe
guaranteed as far as possible. Notably, before the tandem
network’s training process, the forward network needs to
be trained first. The input of the forward network is four
graphic parameters, while the output is a 128 bit vector
consisting of the corresponding LCP and RCP. Predicting
whether a spectrum belongs to LCP or RCP accurately
is quite difficult for the inverse network, which is the
reason why the network with 5 bit input and 64 bit output
trained in the first stage is not employed here. The weights
of the new trained forward network are copied to the
tandem network and frozen, that is, these weights are
not updated in subsequent training. In order to speed up
the experimental process, the inverse design network is
individually trained to find hyperparameters with better
availability. It is less time-consuming thandirect searching
to obtain hyperparameters when training the tandem
network. Moreover, this part of weights is not replicated in
the tandem network. The found hyperparameters are only
used to train the tandem network from scratch. The loss of
the tandem network is denoted as following formula:

Losstandem = 𝛼MAE(specin, specout)

+ 𝛽

(
MAE

(
𝑤xtrue, 𝑤xpred

)

+ 𝛾MAE
(
𝑤x′true, 𝑤x′pred

))
(4)

where 𝛼 and 𝛽 are the scale coefficients which are
responsible for maintaining the balance between spectral
error and parameter error, specin and specout represent the
input and output of the tandem network respectively, xtrue,
xpred, x′true and x′pred represent the true and predicted values
of original training data and “pseudo data”, respectively, 𝛾
denotes a scale factor used to distinguish the two kinds of
data because of the inevitable error of the “pseudo data”
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even after denoising, andwmeans a vector containing the
different weights of the four parameters according to their
influence on the spectra. The hyperparameter w can be
computed in the following way:

diffm = 2
n(n− 1)

n∑
i=1

n∑
j=i+1

MAE
(
speci, spec j

)

abs
(
kim − k jm

)
(
kim ≠ k jm,m = 𝑤, s, ls, l

) (5)

𝑤m = diffm
min{diff

𝑤
, diffs, diffls , diffl}

(m = 𝑤, s, ls, l) (6)

where n represents the size of the training dataset divided
from original training data, m means the four parameters
and k means the value of the geometric parameters after
normalization. Thus, the algorithm pays more attention
to the more important parameters in spectrum, so as to
better grasp the nonlinear relationship between geometric
parameters and spectra. On the other way, a more exact
prediction of the important parameters is conducive to
reduce the overall spectral error. This method has been
proved to be feasible and effective in another inverse
design problem [43]. The tandem network can be used
to preliminarily predict the structures. On this foundation,
two parameters with better effect are chosen as additional
inputs for the latter two steps. The criterion for selection
is MAE of the parameter less than 0.05, so width and
gold length are selected for the three structures. Half of
the geometric parameters do not benefit from the iteration
in designs to some extent. On the one hand, their errors
(MAE < 0.05) are very low compared to their normalized
minimumvariation (i.e., 1), leaving little space for improve-
ment. On the other hand, providing information gain at the
cost of tolerating small errors facilitates better prediction
of other parameters.

Thenext twostepsare largely identicalwithonlyminor
differences. Their networks are both with seven hidden
layers. Their inputs are vectors embodying spectra and
additional parameter predictions, and their outputs are
the other geometric parameters. Their loss functions are
similar in every detail which can be represented as:

Losst𝑤o = MAE
(
xtrue, xpred

)
+MAE

(
𝛾x′true, 𝛾x

′
pred

)
(7)

where the meaning of each variable in this formula is
the same as formula (4). The third parameter is elected
in the second iteration. It is the bridge length for S1 and
S2 and separation space for S3. Significantly, due to the
operational characteristics of the code, the output of the
third iteration is the reuse of the fourth parameter to
ensure the correct outcomes. After these three iterations, a

prediction of the four graphic parameters canbe generated
by correlating the preceding iteration results.

After getting theprecise predictions of theparameters,
the corresponding optical responses can be acquired and
compared with the true value to verify the effectiveness
of the algorithm. In this comparison, through satisfying
the functional requirements for spectra successfully, the
superiority of the algorithm can be demonstrated.

The relevant neural network in the algorithm is
coded using TensorFlow2-gpu, an open-source artificial
intelligent framework. The Adam optimization algorithm
is selected as the optimizer to train the network. As
for searching the hyperparameters, an open-source auto-
mated machine learning toolkit named NNI developed by
Microsoft is chosen tomake theexperimentalprocess faster
and more efficient.

4 Inverse design of the chiral
metamaterials

In this section, intending to reveal the advantages of
the DEIFS algorithm, it is applied to realize the accurate
and efficient inverse design of three 2D chiral structures.
The testing dataset for each type of metamaterial is
the 737 randomly selected samples from the original
training data which contains 7358 items. The inputs of
the DEIFS algorithm are 128-data-point vectors containing
LCP and RCP, and the outputs are 4 bit vectors denoting
the geometric parameters. The priority target is to get
accurate predictions of the four structure parameters,
and the algorithm should complete the optical target
at least. Therefore, the mean absolute percentage error
(MAPE) not greater than 5% in the spectrum corre-
sponding to the predicted parameters relative to the
spectrum of the true parameters is set as the standard.
The MAPE can be denoted clearly using the following
equation:

MAPE = 1
n

n∑
i=1

abs
(y′

pred − y′
label

y′
label

)
× 100% (8)

Only those predictions whose optical response’s error
greater than 5% are considered “wrong”. The “right”
designs consist of two portions. One is the predictions
completely consistent with the real parameters; the other
is the samples with tiny errors. The MAPE of the former
equals to 0 and that of the latter is in a range of 0–5%.
Some predicted samples’ spectra whose MAPE are around
5% are shown in Figure 4(a), (b), (d), (e), (g) and (h), and
their corresponding geometric parameters are presented in
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Figure 4: Qualified effects of the inverse design using DEIFS algorithm. (a), (b), (d), (e), (g), (h) Comparison of spectra corresponding to real
(green solid lines) and predicted (red dotted lines) geometric parameters for S1, S2 and S3 from top to bottom, respectively. Concretely, their
real and predicted parameters and MAPE are shown in Table 2. (c), (f), (i) The errors of the geometric parameters in the iterations and the
number and percentage of wrongly predicted samples in the testing for S1, S2, and S3 from top to bottom respectively. Notably, the labels
are normalized to be integers so the minimum change in geometric parameters is one rather than the ‘‘precision’’ denoted before.

Table 2. Errors of thismagnitudehavenosignificant impact
on the results since theyhardly alter the spectra, indicating
that the rule is reliable in most cases. Additionally, the
errors of inverse design covering the entire samples are
explicitly displayed in Figure 4 (c), (f) and (i). They dis-
tinctly reveal the decreasing errors of parameters in three
iterations on the testing dataset containing 737 samples.

The two rightmost bars in these three subplots show the
number of samples whose predicted and real parameters
arenot identical.Notably,only the rightmostbar represents
the “wrong” designs, and the penultimate bar represents
the sum of the quantities of the “wrong” designs and the
“right” designs with tiny errors. To highlight the “error
term”, the completely correct predictions are not shown

Table 2: The values of real and predicted parameters and MAPE corresponding to spectra in Figure 4.

Figure MAPE Values of geometric parameters

w (real) w (pred) s (real) s (pred) ls (real) ls (pred) l (real) l (pred)

4(a) 4.46% 0.175l 0.175l 0.75l 0.95l 0.75l 0.8l 0.9 μm 0.8 μm
4(b) 4.81% 0.3l 0.3l 0.6l 0.55l 1.0l 1.0l 2.0 μm 2.0 μm
4(d) 4.30% 0.125l 0.125l 0.55l 0.55l 0.65l 0.65l 1.9 μm 2.0 μm
4(e) 5.00% 0.15l 0.15l 0.6l 0.7l 1.0l 0.95l 2.0 μm 1.9 μm
4(g) 4.95% 0.1l 0.1l 1.0l 1.0l 0.4l 0.65l 1.3 μm 1.3 μm
4(h) 5.39% 0.125l 0.125l 0.35l 0.35l 0.5l 0.45l 1.4 μm 1.4 μm



Z. Zhao et al.: Data enhanced iterative few-sample learning algorithm-based inverse design | 4473

in the figure, but this portion accounts for the majority of
testing dataset, namely 94.4% for S1, 95.7% for S2, and
54.5% for S3. Obviously, after filtering the samples with
tiny errors (i.e., 0 < MAPE ≤5%), the error rates of all
three structures are controlled at about 4%. This indicates
a relatively low percent of “wrong” designs comparedwith
the “right” ones, illustrating the power of the algorithm in
realizing accurate inverse design. In more detail, the four
parameters differ in their computational difficulty in terms
of parameter errors in the three iterations. Calculating
the accurate width and gold length is relatively easy and
they are usually selected in the first iteration to assist
the design of the remaining two parameters. For S1 and
S2, obtaining exact predictions of the space is harder
than bridge length while the opposite is true for S3. This
phenomenon is basically consistent with their different
effects on the spectra, as shown in Table 3. In general, the
larger value in the table means the greater influence of
each unit on the spectrum when the parameter changes.
That is, for these parameters, the algorithm can capture
and learn the highly nonlinear relationship between their
changes and the corresponding spectra more simply, so
the error of their prediction is usually less than the others.
There is an exception that the diffls is greater than diff l
for S3, but its bridge length is too hard to strictly predict
for the algorithm, probably due to the multiple solutions
introducedby thebridge length.Here, “multiple solutions”

Table 3: The different effects of the four geometric parameters on
the spectra.

Effects Type of the chiral metamaterials

S1 S2 S3

diff w/diff s 1.45 1.51 1.43
diff s/diff s 1.00 1.00 1.00
diff ls/diff s 1.17 1.19 1.30
diff l/diff s 1.26 1.27 1.25

means that different combinations of geometric parame-
ters correspond to similar optical responses, which is also
difficult to solve in conventional scanning simulations. The
DEIFS algorithm tries to minimize its impact which cannot
be eliminated due to the underlying physics. In addition,
wealsoutilize the original trainingdataset only containing
the “real” RCWA-derived samples to train the tandem
network for comparison, with the results being shown in
Tables 4 and 5. It can be easily found that the application
of data enhancement can reduce the MAE to no greater
than 35% of the original loss in nearly all cases. Therefore,
data enhancement can greatly reduce the number of
“wrong” designs, revealing the unique benefit of data
enhancement. Notably, the errors of results using only the
original data are so significant that they are unacceptable
for the second and third iterations, so there is no relevant

Table 4: The different MAE results of the tandem network with and without data enhancement (DE).

Group MAE of the geometric parameters

w s ls l
Without DE With DE Ratio Without DE With DE Ratio Without DE With DE Ratio Without DE With DE Ratio

S1 0.10 0.018 18% 0.63 0.14 22% 0.50 0.15 30% 0.24 0.031 13%
S2 0.26 0.019 7% 2.4 0.077 3% 1.1 0.10 9% 6.3 0.024 0.4%
S3 0.11 0.0054 5% 0.18 0.056 31% 1.0 0.66 66% 0.043 0.015 35%

Table 5: The different sample quantity results of the tandem network with and without DE.

Group Sample quantities

The first iteration The second iteration The third iteration

MAPE = 0 MAPE>0 MAPE>5% MAPE = 0 MAPE>0 MAPE>5% MAPE = 0 MAPE>0 MAPE>5%

S1, without DE 297 440 390
S1, with DE 583 154 131 690 47 29 696 41 26
S2, without DE 3 734 731
S2, with DE 634 103 94 699 38 32 705 32 28
S3, without DE 256 481 150
S3, with DE 382 355 46 402 335 26
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data in Table 5. As for the advantage of iterations, it can
be found through comparing the decreasing quantity of
“wrong” samples in different iterations. It should be noted
that only two test iterations are performed for S3 due
to the large prediction error of its bridge length in the
third iteration. Thus, in the case that all the results can
be well explained, the algorithm is suggested to be very
reliable.

It is worth mentioning that the above results do not
take much time compared with the RCWA approach. Tra-
ditional RCWA method usually preconfigures a structure
and computes its optical response. Then it continuously
adjusts the geometric parameters until the spectrummeets
the functional requirements. This process is quite time-
consuming and difficult to quantify. In contrast, all three
iterations of DEIFS algorithm can be completed within 1 s,
greatly improving the efficiency of inverse design. Accord-
ing to the experimental results, the algorithm spends 0.75 s
achieving the inverse design of 737 samples in the testing
dataset.

Besides its high accuracy and ultrafast speed, the
flexibility of the algorithm deserves to be mentioned. In
this paper, three types of 2D chiral metamaterials are
studied, which shows that the algorithm is flexible enough
to solve more issues rather than being limited to a specific
structure. It is also an advantage of DEIFS algorithm
compared with most previous deep learning methods. It is
worthmentioning that DEIFS algorithm is probably able to
dealwithnon-unique solutioncausedbymulti-parameters
in inverse design via neural network modification, which
facilitates better extraction and learning of the potential
highly nonlinear relations between the parameters and
spectra.

5 Further exploration of
multi-shaped chiral
metamaterials via DEIFS

ViaDEIFS,we turn to carry out the inverse design formulti-
shaped 2D diffractive chiral metamaterials and explore the
nonlinear and nonintuitive relationships between chiral
parameters and their CD responses. Notably, the shape
and unit period are two crucial parameters of 2D metama-
terials that dramatically influences chiroptical responses.
Normally for a simple grating, its resonant wavelength 𝜆

and diffraction angle 𝜃 would obey the grating equation of
a sin𝜃 = n·𝜆, with n to be the diffraction order. However,
this relation is no longer suitable for our case, as the

multi-shaped chiral metamaterials cannot be viewed as
point sources, whose dimensions are comparatively large
for incident wavelength. Accounting for the facts that
the unit period satisfies the relation of a = 2l + 2s and
the width w is proportional to gold length l, we begin
applyingDEIFS algorithm to explore the CD characteristics
of third diffraction order lights for S1–S3 metamaterials
at divergent gold length l and bridge length ls, as shown
in Figure 5. The most striking result to emerge from this
figure is that the dependence of CD properties on the
wavelength λ and gold length l is exceptionally nonlinear,
for all 3 investigated metamaterials. For most l of S1–S3
chiral metamaterials, complex bisignate phenomena are
immediately found from CD maps, which are denoted as
positive (red) and negative (blue) signs of CD. Take S2
metamaterials for instance (see Figure 5(d)–(f)), when
increasing the bridge length ls, bisignate features of CD
responses changes significantly, which turns to be more
sophisticated at larger ls. Additionally, the blue CD modes
play a dominant role across the contour map of S3
metamaterials with ls = 0.8l (see Figure 5(i)), while the
red modes turn much stronger in S1 and S2 array with ls
= 0.4l (see Figure 5(a) and (d)), with a quasi-balance state
between these twomodes reached for the remaining chiral
modules. This indicates that the variation of bridge length
ls would cause the shape change of chiral metamaterials,
and affect the higher-order diffraction modes. In other
aspects, the diffraction angles of higher-order diffractive
CD responses can be engineered by tuning the unit period,
boosting the applications of hypertensive, angle-resolved
chirality sensing, and detecting.

It would be extremely important at this point to study
the impact of all typical chiral parameters on the higher-
order diffracted chiroptical response of multi-shaped chi-
ral modules. Thus, we illustrate the CD spectra of S1–S3
metamaterials in Figure 6, accounting for the changeable
width, bridge length, space length, and gold length,
respectively. One remarkable finding from Figure 6(a) is
that the LCP/RCP intensity of the third-order diffraction
beams is enhanced when gold width increases from w
= 0.15l to w = 0.25l, but with a slight blue shift of
the resonant wavelength, for all S1–S3 metamaterials.
However, from Figure 6(d), one can discern that the
strongest CD responses of S1 and S2 are observed at w
= 0.15l, while the largest CD of S3 is w = 0.25l, indicating
that the comparably giant LCP and RCP intensity is not
a prerequisite to ensure a large CD. When considering
the impact of bridge length in details, one can readily
discover from Figure 6(b) is that most the LCP and RCP
resonant modes locate in the range of 0.8–1.6 μm, whilst



Z. Zhao et al.: Data enhanced iterative few-sample learning algorithm-based inverse design | 4475

Figure 5: CD contour maps of the third-order diffracted beams in S1–S3 chiral metamaterials, considering various wavelength, bridge
length, and gold length. From top to bottom, the panels represent the cases of S1, S2, and S3 metamaterials, respectively. The left to right
panels stand for the cases of ls = 0.4l, ls = 0.6l, and ls = 0.8l, with the rest parameters set to w = 0.2l and s= 0.2l. All results are calculated
utilizing the DEIFS algorithm.

the maximum CDs locate in a wider wavelength range (see
Figure 6(f)). Another interesting finding from Figure 6(b)
and (f) is that increasing bridge length ls enables the
geometricdifference forS1–S3chiralmetamaterials,which
not only alters the higher-order diffraction modes, but
also changes the corresponding chiroptical responses,
consistent with results in Figure 6. What follows is the
evaluation of the variable of space. It is found from
Figure 6 (c) and (g) that both the resonant wavelength of
light intensity and CD show redshifts with the increment
of space length. In this case, the unit period is enlarged
at longer s according to a = 2l + 2s, but accompanied by

weaker coupling interaction between adjacent modules,
ultimately causing variations in CD responses. Lastly,
the chiroptical response curves of S1–S3 metamaterials
with different gold length and fixed other parameters of
w= 0.3l, s= 0.2l, and ls = 0.6l are presented in Figure 6 (d)
and (h). One significant conclusion is that the resonant
wavelength of LCP/RCP light intensity turns larger with
an enlarged gold length, and the same is true for the CD
resonantwavelength. Furthermore, a highly nonlinear and
complicated relation between the CD response and gold
length or unit period is also discovered, in agreement with
Figure 6.
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Figure 6: The DEIFS predicted CD spectra of S1–S3 metamaterials possessing four typical geometrical parameters. Precisely, (a)–(d)
illustrate the third-order diffraction beam intensity of S1–S3 under irradiation of LCP and RCP light, whereas (e)–(h) demonstrate the
corresponding CD responses, with the variables to be width (a) and (e), bridge length (b) and (f), space length (c) and (g), and gold length (d)
and (h). It is important to stress that only one key parameter is altered at a time, while the values of rest parameters are fixed: (a) and (e)
s= 0.4l, ls = 0.5l, l= 1.4 μm; (b) and (f) w = 0.2l, s = 0.2l, l = 2 μm; (c) and (g) w = 0.15l, ls = 0.6l, l= 1.2 μm; (d) and (h) w = 0.3l, s= 0.2l,
ls = 0.6l. Notably, the solid lines represent the cases of LCP light, whereas the dashed ones stand for the RCP light.
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6 Conclusions
In summary, a DEIFS algorithm based on DATA AUGMEN-
TATION and REGRESSOR CHAINS had been developed.
Through DEIFS, inverse design for multiple 2D chiral
metamaterials was accomplished in a significantly-fast
and extremely-accurate way. Firstly, the RCWA method
was applied to provide an original dataset containing the
optical circular dichroism responses of three chiral meta-
materials (S1, S2, and S3), with the forward network gener-
atingsupplementary trainingdata.Thisgreatly reduces the
dependence on simulations in the inverse design process
of programmable metamaterials. And then, the enhanced
dataset was utilized to iteratively complete the inverse
design step by step, avoiding the conventional time-
consuming iterative process. The inverse-design results
can be well explained by the DEIFS algorithm in per-
spective of data, indicating its high dependability. Equally
important, using the DEIFS network, the complex and
nonlinear dispersion relationships between CD responses
and shape, unit period, width, bridge length, and sepa-
ration length of diffractive chiral metamaterials had also
been addressed. The flexibility and accuracy of the DEIFS
algorithm are extremely excellent which demonstrates
its broad prospects in inverse design of optical devices.
This work represents a giant progress in the aspect of
multi-task inverse design of 2D chiral metamaterials and
promotes the excellent potentials of DEIFS in applications
of optical chirality related nano-devices and complex
but programmable metamaterials for optical coding and
information processing.
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