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Abstract: Photothermal heating with metallic nanostruc-
tures has the unique property of generating heat at the
nanoscale owing to plasmon resonances. In this study,
the heat transfer of anodic aluminum oxides (AAOs)
coated with plasmonic titanium nitride (TiN) of 80 nm
thickness are experimentally, numerically, and analyt-
ically studied, wherein TiN photothermally generated
heat. High optical absorptance and photothermal heating
efficiency are observed for the samples with pore sizes
in the range of 161–239 nm, and the sample with the
pore size of 239 nm exhibits the highest absorptance
and photothermal heating efficiency. In addition, the
numerical and analytical heat transfer analyses using
the effective thermal conductivities for AAO-TiN samples
are in reasonable agreement with experimental results,
indicating the validity of effective thermal conductivities,
which consider the periodic nature. These results can
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be extended to design other optically absorbing periodic
structures for photothermal heating applications.

Keywords: heat transfer; plasmonic heating; porous struc-
ture; titanium nitride.

1 Introduction
Photothermal heating is a phenomenon wherein light
energy is converted into thermal energy via absorption.
A significant number of studies on photothermal results
have been conducted in various disciplines, such as
photothermal therapy [1, 2], thermal imaging [3], water
evaporator [4–9], nanofabrication [10, 11], microfluid
[12–14], and ultrafast molecular diagnosis [15]. In the
studies on photothermal heating, the primary focus has
beenonenhancing theoptical absorption togenerateheat,
either with highly absorbingmaterials or with high optical
absorptance nanostructures.

Among highly absorbing nanomaterials, which
include carbon nanoparticles [16, 17] for instance, nano-
materials or nanoparticles with plasmonic properties [2, 4,
5, 8, 18–20] have attracted significant attention. Localized
surface plasmon resonances enhance the optical absorp-
tion to generate heat, even at the sub-diffraction-limit.
Gold has been primarily used to date among plasmonic
materials, owing to its good chemical stability and high
photothermal conversion efficiency [1, 3, 21]; however, gold
nanostructures typically have narrow absorption spectra.

Recent studies [4, 8, 9, 18, 19, 22] have reported
that titanium nitride (TiN) is another plasmonic material
with photothermal properties superior to those of gold.
Typically, TiN nanoparticles exhibit broader and higher
absorption spectra than those of gold nanoparticles,
making them better broadband solar absorbers [8, 20, 23].
Another advantage of using TiN in photothermal research
is that it exhibits a temperature-dependent Raman shift,
which can be used to monitor the temperature changes
under optical irradiation [18, 19, 24].
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In addition to optical absorptance, the thermal con-
ductivities of the entire sample, including intermediate
layers and substrates, also affect the surface temperature
increase. One may consider replacing the substrate with
a material with lower thermal conductivity (e.g., from
silicon (142 W/m/K [25]) to glass (1 W/m/K [26])) or using a
membrane as a substrate; however, a dilemma caused by
restrictions related to sample fabrication and applications
will always be present.

To circumvent this issue, one may consider simul-
taneously designing a nanostructure with high optical
absorptance and low thermal conductivity. A highly
absorbing nanostructure generates heat by photothermal
effect, where the heat dissipation is suppressed with the
effectively low thermal conductivity. A candidate for such
nanostructure is porous structures. Compared with highly
dense materials, porous materials can simultaneously
reduce reflection to increase absorption and heat dissipa-
tion by introducing air gaps. While some porous materials
have random arrangements of pores [9], others have
aligned pores. Anodic aluminum oxide (AAO) is one of the
most well-known structures among periodically aligned
porous materials, owing to its easy and controllable fabri-
cation. Its periodic nature has the advantage of systemati-
cally controlling theeffective thermalconductivity [27]. The
periodically aligned nature of AAO makes it particularly
suitable for solar water desalination [5, 8, 9] by effectively
evaporating water through straight capillary channels.
Although AAO has been used in photothermal studies,
the studies on the quantitative analyses of temperature
increase and heat conduction are scarce.

In this study, we performed quantitative heat transfer
analyses of photothermally heated AAO coated with TiN
with a thickness of 80 nm (TiN-AAO); we performed these
analyses experimentally, numerically, and analytically.
The top TiN layer acted as an efficient light absorber
to enhance the photothermal heating effect. AAOs with
various pore sizes and thicknesses were fabricated using
an electrochemical method to examine the impact of
the geometrical parameters on photothermal heating. A
785 nm focused laser beam was used to locally heat
the sample surface, and the temperature increase was
characterized using Raman spectroscopy. The analytical
method involved solving the heat transfer equation in
an anisotropic structure, while the numerical method is
based on the finite element method. Both analytical and
numerical results reproduced the experimentally observed
photothermal heating, suggesting a strong influence of the
pore size (not the thickness) on increasing the surface
temperatures of relatively thick samples.

2 Results and discussion
AAO samples were fabricated following a previously
reported procedure [8, 28] and are detailed in the experi-
mental section. The pore size of AAO was systematically
controlled by changing the anodization time from 1 to
8 h and the pore-widening time from 1 to 2 h. It is
noteworthy that increasing the pore-widening time above
2 h resulted in interconnected pores, owing to sidewall
thinning. Figures 1(a) and S1 present the SEM images of
the AAOporeswidened for 1 and 2 h, respectively. The SEM
images show that the pore size distribution is arranged in a
hexagonal lattice as awhole, andTiN-AAOsamples exhibit
a reduction in the pore size due to TiN filling into the pores.
The sample morphologies for the samples pore-widened
for 1 h are shown in Figure 1(a). In Figure 1(b), the pore
size,whichdefinedbyaveraging themajor andminor axes,
indicates a linear increase for a longer anodization time
in the range of approximately 161–239 nm. Furthermore,
porositywas calculated as the averagepore areadividedby
the average unit cell area (assuming a honeycomb array),
and it varied from 36% to 52%. For the AAO samples which
were pore-widened for 2 h, the ranges of pore size and
porosity are 214–252 nm and 48–52%, respectively.

Using UV–Vis spectroscopy, optical absorptance was
calculated by subtracting the diffused reflectance from
100%, where transmittance was 0% because of the thick
aluminum (Al) plate at the bottom of AAO, which initially
had a thickness of 1 mm. A higher optical absorptance
corresponds to a better light-to-heat conversion. The
absorptance of AAO and TiN-AAO where the AAOs were
pore-widen for 1 h and 2 h are shown in Figures 2 and S2,
respectively.Asa reference, theabsorptanceofaplanarTiN
thin film is shown in Figure S3. As shown in Figure 2, with
TiNonAAO,higher absorptance canbeobservedup to 91%
on average for an anodization time of 8 h, indicating that
the addition of TiN significantly enhances absorptance.
TiN can improve absorptance owing to its plasmonic
properties, acting as a light absorber in a broad spectrum.
In addition, larger pores exhibited higher absorptance
values. It is noteworthy that the AAO without TiN exhibits
relatively high absorptance (above 60%). The numerical
electromagnetic simulations presented in the Supporting
Information (Note 1 and Figure S4) quantitatively reveal
that the roughness between the AAO and Al plate was the
origin for high absorptance.

Effective thermal conductivities were introduced for
AAOs comprising alumina and air, and presented in
Figure 3. The TiN layer on the AAO has little contribution
in the heat conduction, thus not modeled in the effective
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Figure 1: Morphologies of AAO and TiN-AAO after pore-widening
for 1 h.
(a) SEM images at different anodization times. The scale bar
corresponds to 200 nm. (b) Anodization time-dependent pore size
(square) and porosity (circle) with a standard deviation error of
20 nm.

thermal conductivity. The use of effective thermal con-
ductivities reduced the computational cost of calculating

Figure 2: Optical images and absorptance of AAO and TiN-AAO
samples.
(a) Photographs of the AAO and TiN-AAO samples. Both samples
were anodized for 1 h, and pore-widening was conducted for 1 h. The
circular areas of AAO are 1 cm2 in both samples. (b) Absorptance
spectra in the visible range. The bold and dotted lines correspond to
the TiN-AAO and AAO samples, respectively.

Figure 3: Effective thermal conductivity of AAO with different
porosities simulated using the finite element method. Inset: AAO
hexagonal lattice schematic.

the laser-power-dependent temperature in the numerical
heat transfer simulations which are discussed later. From
Figure 3, the effective thermal conductivities were in the
ranges of 0.85–1.10 and 0.55–0.85 W/m/K for the parallel
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(kx and ky) and perpendicular (kz) components, respec-
tively,which are anisotropic. The origin of anisotropy is the
vertically aligned pores, which dominate heat conduction
in AAO. Another thing that can be inferred from Figure 3 is
that a lower effective thermal conductivity can be achieved
with a highly porous material. Additionally, simulation
results were compared with Maxwell’s effective media
theory (Supporting Information, Note 2). The comparison
in Figure S5 indicates that AAO thermal conductivity can
also be approached using Maxwell’s theory.

Laser-power-dependent temperature increase was
measured using Raman spectroscopy. A 785 nm CW laser
simultaneously excited Raman scattering and optically
heated the sample. The temperature-dependent Stokes

Figure 4: Temperature measurements and heat transfer analyses of
photothermally heated TiN-AAO samples.
(a) Laser-power-dependent temperature increase from experiments
(symbol) and simulations (dashed line). (b) Photothermal heating
efficiency of the experiment, simulation, and analytical data where
heating efficiency is the slope of power-dependent temperature
normalized by absorptance. In subpanels (a) and (b), the TiN-AAO
samples were pore-widen for 1 h. The linear fitting in subpanels (b)
were fitted from the experiment results.

peakshiftwasused toevaluate theactual temperatureafter
calibration [18, 24] (see Figure S6(a) and (b)). Calibration
was performed by fitting the experimental temperature-
dependent Stokes peak with a generalized four-phonon
process reported previously [29] (see Figure S6(c)). The
temperature linearly increased with respect to the laser
power and the pore size. In addition to experiments,
numerical heat transfer simulations and analytical calcu-
lations were performed for validation. The former and the
latter were based on the finite element method and the
heat conduction in an anisotropic medium (Supporting
Information, Note 4), respectively. From Figures 4(a),
S7 and S8, good agreements were observed between
the experimental, numerical, and analytical results that
indicate effective thermal conductivity can be used to
estimate the temperature increase for the TiN-AAO sample
under laser irradiation. Therefore, anisotropic effective
thermal conductivity was responsible for the enhanced
surface temperature. Furthermore, from the experimental,
numerical, and analytical calculations, the slope from
the temperature-dependent laser power can be treated as
the heating efficiency after dividing by absorptance and
extracted for each sample. From Figures 4(b), S9 and S10,
it is evident that the higher heating efficiency is dominated
by a larger porous structure and not the thickness, as long
as the thickness is higher than 40 μm.

Based on these results, it can be concluded that a
material with a high heating efficiency can be engineered
by combiningAAOwithplasmonicTiN,where thepore size
and thickness of AAO can be systematically controlled by
adjusting the anodization and pore-widening times. Our
systematic study indicated that a higher heating efficiency
is expected for a larger pore size, as long as each pore is not
connected. The current results and the analysis methods
can be applied to improve the photothermal efficiencies of
porous structures for various applications, such as solar
water desalination using AAO-basedmaterials and energy
harvesting with thermophotovoltaics [30].

3 Conclusions
In summary, quantitative heat transfer analyses were
conducted for the TiN-AAO samples to enhance the pho-
tothermal heating efficiency systematically. In particular,
increasing the pore size of AAO using electrochemical
anodization can increase its optical absorptance while
decreasing its effective thermal conductivity. Upon opti-
mizing the AAO geometry, TiN-AAO with a high heating
efficiencycanbeheatedaround400Kwitha laserpoweron
the order of fewmilli-watt. Furthermore, the experimental,
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numerical simulation, and analytical results agree well
with one another, indicating that the effective anisotropic
thermal conductivity is responsible for the temperature
increase caused by photothermal heating. This study is a
potential guide for improving the photothermal heating
efficiency of porous materials, which would benefit var-
ious applications, such as solar water desalination and
thermophotovoltaics.

4 Experimental section

4.1 TiN-AAO fabrication
AAO was fabricated using aluminum plates of 1 mm
thickness (99.99%, KS TRADING) and an electrochemical
method. Prior to anodization, Al plates were electropol-
ished to remove the native oxide layer on the surface in a
solution containing 2 mL of perchloric acid (60%, Kanto
Chemical) and 18 mL of ethanol at room temperature
(24 ± 2 ◦C) and a constant current of 100 mA until the
voltage reached 32V controlledusing a sourcemeter (2450,
Keithley). Subsequently, ananodizationprocesswith0.3M
phosphoric acid in deionized water at 4 ◦C was controlled
using a cooler (NCB-1210A, Tokyo Rikakikai) for a few
hours (1–8 h). Then, pore-widening was performed by
dipping the AAO templates into 6 wt % phosphoric acid
in deionizedwater at 30 ◦C for 1 or 2 h. Finally, 80-nm thick
TiN was sputtered on top of the AAO templates by the
DC sputtering (CFS-4EP-LL(4G), Shibaura Mechatronics
Corp.).

4.2 Characterization
The morphologies and reflectance of the samples were
characterized using the scanning electron microscope
(SEM, S4800, HITACHI) and a UV–Vis spectrometer
(BIM-6002, BroLight), respectively. For reflectance mea-
surement, an integrating sphere (ISP-50-8-R-GT, Ocean
Optics) was installed to collect the specular and diffusive
reflectance owing to the surface roughness of the AAO.
A white reflectance standard was used as a reference. In
addition, a planar 80-nm thick TiNfilmwasmeasuredwith
a UV-Vis-NIR spectrometer (SolidSpec-3700, SHIMADZU).

Sample temperatures were characterized using a
Raman spectrometer (MicroRAM-300/BZI-1L, Lambda
Vision), 785 nm CW laser (laser diode (LD785-SEV300
Thorlabs)poweredbyacontroller (ITC4002QCL,Thorlabs)
for excitation, and 50 × objective lens (TU Plan Fluor
NA0.80, Nikon). The laser spot size was approximately

11 μm in diameter. Initially, a TiN film sputtered on
a silicon substrate was placed on a heater (CW-300,
Japan High Tech), and Stokes spectra were recorded by
gradually increasing the heater temperature at a constant
power of 1 mW. The Stokes peak, which was initially at
∼560 cm−1, was plotted against the film surface tem-
perature and used as a calibration curve. A polynomial
equation which fitted the calibration curve was used
to estimate the surface temperatures of the TiN-AAO
samples,whichwere heated by increasing the 785nm laser
power.

4.3 Numerical simulations
A commercial software based on the finite elementmethod
(COMSOLMultiphysicswithwaveopticsandaheat transfer
module) was used to calculate the roughness-dependent
absorptance (Supporting Information, Note 1), to derive
the effective thermal conductivity of AAO, and to verify
the experimental results of the laser-heated samples using
heat transfer analysis. Effective thermal conductivities
were simulated by defining a unit cell with a hexagonal
lattice and applying temperature differences in the x, y,
and z directions. The thermal conductivities of air, alu-
mina, and Al were obtained from [31–33], respectively. To
simulate the laser-heated surface temperature, a gaussian
profile incomingheat fluxwith a size identical to that of the
laser beam was used. AAO structures were homogenized
into slabs with simulated effective thermal conductivities
and identical sample thicknesses.

4.4 Analytical calculations
The heat transfer equation was formulated for a condi-
tion wherein one half of the semi-infinite space was an
anisotropicmaterial (AAO) and the other halfwas isotropic
(air). The laser spotwas expressedasapoint source located
at the interface. Details can be found in Supplementary
Information, Note 4.
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