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Abstract: Discovery of low-dimensional materials has been
of great interest in physics and material science. Optical
permittivity is an optical fingerprint of material electronic
structures, and thus it is an important parameter in the study
of the properties of materials. Spectroscopic ellipsometry
provides a fast, robust, and noninvasive method for obtain-
ing the optical permittivity spectra of newly discovered ma-
terials. Atomically thin low-dimensional materials have an
extremely short vertical optical path length inside them,
making the spectroscopic ellipsometry of low-dimensional
materials unique, compared to traditional ellipsometry.
Here, we introduce the fundamentals of spectroscopic
ellipsometry for two-dimensional (2D) materials and review
recent progress. We also discuss technical challenges and
future directions in spectroscopic ellipsometry for low-
dimensional materials.

Keywords: electronic structures; ellipsometry; low dimen-
sional materials; permittivity; spectroscopy; van der Waals
materials.

1 Introduction

Reducing the dimensionality of materials enhances hidden
quantum effects and introduces unique properties that are
absent in higher-dimensional materials. Many interesting
physics, such as superconductivity [1, 2], valley polariza-
tion [3, 4], and charge density waves [5], have been
explored using low-dimensional materials. These
achievements have led to the intense exploration of new
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low-dimensional materials. Theoretical computations
have predicted more than 4000 two-dimensional (2D)
materials [6], but most of them await experimental inves-
tigation. In addition, strong interlayer interactions in low-
and mixed-dimensional heterostructures dominate the
entire electronic structure, leading to unconventional op-
tical, electronic, and magnetic properties that were absent
in each constituent. Numerous 2D material candidates and
their heterostructure combinations present countless pos-
sibilities, requiring a fast, robust, and noninvasive method
for characterizing the electronic structures of newly
discovered low-dimensional materials.

Spectroscopic ellipsometry, an optical technique that
measures complex optical permittivity spectra using ellipti-
cally polarized and obliquely incident light (Figure 1a), is a
popular method for obtaining information about the elec-
tronic structures of materials using permittivity. Spectro-
scopic ellipsometry can be implemented straightforwardly in
a laboratory and is also available using a commercial
equipment. Further, it is a noninvasive technique as the light
intensity does not cause thermal damage to the sample at the
appropriate intensity. Many efforts have been made to obtain
the permittivity of 2D materials using conventional spectro-
scopic ellipsometry. However, only a few studies have been
conducted to develop novel spectroscopic ellipsometry
techniques specifically designed for atomically thin 2D ma-
terials because the small optical path length inside them
makes ellipsometry unique compared to conventional
ellipsometry. Low-dimensional spectroscopic ellipsometry
can provide a deterministic permittivity measurement that
does not require parameter fitting, whereas conventional
ellipsometry generally requires parameter fitting and an
arbitrary choice of spectral lineshape functions.

In this article, we review the fundamentals of spec-
troscopic ellipsometry including recent efforts devoted to
spectroscopic ellipsometry, mainly for 2D materials (e.g.,
Figure 1b). In Section 2, we introduce the optical descrip-
tion of low-dimensional materials and their relation to the
electronic structure of the material. In Section 3, we review
three different ellipsometry techniques for 2D materials
and each technique has its own advantage and disadvan-
tage: (i) reflection contrast spectroscopy, (ii) conventional
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Figure 1: Spectroscopic ellipsomety for low-dimensional materials.
(a) Spectroscopic ellipsometry measures amplitude and phase of the light obliquely reflected by 2D materials on a substrate. Thickness of the
2D materials is usually at the Angstrom scale. (b) Typical 2D materials with various optical, electrical, and magnetic properties.

spectroscopic ellipsometry, and (iii) deterministic ellips-
ometry. An appropriate ellipsometry technique should
be chosen based on the measurement characteristics. In
Section 4, we discuss the technical challenges, practical
problems, and future directions of ellipsometry for low-
dimensional material studies. We believe that this review
will benefit condensed matter physicists and material sci-
entists trying to discover new low-dimensional materials,
as well as nanophotonic scientists and engineers investi-
gating the application of low-dimensional materials to
optoelectronic devices.

2 Optical permittivity and
spectroscopic ellipsometry

2.1 Optical permittivity as a fingerprint of
material electronic structures

Many-body interactions in a lattice determine the local
movement of electrons in a crystalline material. Owing
to these interactions, the energy of the electrons is con-
strained to the electronic band structures E(q) according to
the momentum q of electrons in the material. The charac-
terization and analysis of the electronic structure of the
material provide important information about its electric,
magnetic, and optical properties. Many techniques, such as
tunneling spectroscopy and angle-resolved photoemission
spectroscopy (ARPES), have been suggested for analyzing
the electronic structures of materials. In particular, optical
spectroscopic ellipsometry, which generally does not
require specialized setups, enables the rapid, robust, and
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noninvasive characterization of newly discovered materials
regarding the current response related to the material
electronic structure E(q) although it cannot provide direct
information of E(q).

Spectroscopic ellipsometry measures the current
response J(q, w), that is, the expectation value of the quantum
electrodynamic movement of electrons constrained by the
material electronic structure, to an applied electric field E(q,
w). If the material of interest is linear and dielectric, the op-
tical conductivity o(q, w) = J(q, w)/E(q, w) describes the
material properties and some indirect but useful information
of the material electronic structures: e.g., the quasiparticle
transition energies, the number of charge carriers within a
finite frequency range, and the materials’ plasmonic
response. In particular, quantum electrodynamic calcula-
tions provide a temperature-dependent expression of the
optical conductivity [7],
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for the interacting electrons in a lattice. The parameters Q, kg,
Z, and n are the unit volume, Boltzmann constant, partition
function, and linewidth, respectively. The optical conductivity
comprises the electronic transitions from the ground state |n)
of energy E, to the excited many-body state |m) of energy E,,
at the transition energy Wy, = Ep — En. ;" = (nﬁqr |m) is the
matrix element of the current operators. Therefore, when
o(q, w) of a material is determined, information about the
material electronic structures, such as the transition energies,
linewidths, and temperature dependence, may be obtained.
In particular, optical techniques, including spectro-
scopic ellipsometry, measure the long-wavelength limit of
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the optical conductivity, lin(l) 0(q,w) =0 (w) because the
q—)

photon energy is usually much smaller than 1 keV, which
results in negligible optical momentum transfer q [7].
Although the zero-momentum limit is a drawback of spec-
troscopic ellipsometry, useful information on the electronic
structures of the material may be obtained from o(w). In
addition, the optical conductivity can be converted into other
equivalent quantities such as the optical permittivity
&(w) =1 + 4nio(w)/w (in the Planck units) and refractive index
fi(w) = \e(w) for convenience for specific purposes. In
spectroscopic ellipsometry, the optical permittivity e(w) is
more commonly used than o(w).

Figure 2 shows an example of the optical permittivity
obtained using spectroscopic ellipsometry and its relation
to the material electronic structures. Figure 2 compares the
experimentally obtained permittivity spectrum (Figure 2a
and b) to the first-principle calculations for the electronic
structures (Figure 2c-f) of monolayer WSe, [8]. In
Figure 2b, the imaginary parts of the in-plane permittivity
of 1-5 layers (L) WSe, have eight peaks labeled from A-H.
The real parts in Figure 2a exhibit Lorentzian lineshapes at
the corresponding positions of €., peaks. The first-principle
calculations for the band structure (Figure 2c and d),
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Figure 2: Optical permittivity and electronic band structure.
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projected density of states (PDOS, Figure 2e), and critical
point analysis (Figure 2f) are consistent with the permit-
tivity features [8]. Comparing the eight peaks (A-H) in
Figure 2b to the band structure in Figure 2c, we conclude
that the peaks correspond to the quasiparticle transitions
in WSe,. The layer-dependent broadening of the permit-
tivity in Figure 2a and b also demonstrates the effect of the
interlayer interaction on each transition.

As shown in Figure 2, we can obtain important infor-
mation on the material electronic structures. For example,
we can extract the energies of quasiparticle transitions
from the peaks of the imaginary part of the permittivity (Im
{e(w)}). We may also estimate the exciton binding energy
and spin-orbit splitting energy from permittivity mea-
surements [9]. In general, other properties of materials at
frequency w can be determined. (i) Quasiparticle transi-
tions occur if peaks of Im{e(w)} appear. (ii) The oscillator
strength is proportional to the Im{e(w)} peaks. (iii) The
material is metallic if e(w) < 0. (iv) Surface plasmons occur
at the frequency w satisfying €(w) = -1 at an air/metal
interface. (v) The optical permittivity also provides infor-
mation on the free-carrier density within a finite frequency
range. The total number of charge carriers oscillating at
different frequencies is conserved as follows:
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(a) Real parts (g,7) and (b) imaginary parts (g,,) of the in-plane permittivity of 1-5L WSe,. (c) Corresponding electronic band structure,
(d) energy differences Ec_y between the first four conduction and valence bands, (e) projected density of states (PDOS), and (f) critical point
analysis of monolayer WSe,. Reprinted with permission from Ref. [8], copyright 2019, The Royal Society of Chemistry.
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where n,, e, and m, are the free charge carrier density,
elementary charge, and electron mass, respectively.
Equation (2) is called the f-sum rule or the Thomas—Reich—
Kuhn rule [7]. and it demonstrates charge conservation in
the material. It states that the integration over a finite
range, w, < W < W, Re jZf o (w)dw, is proportional to the
number of free charge carriers within the range. Recently,
the f-sum rule was applied in the discovery of correlated
plasmons in low-dimensional quantum materials such as
monolayer Bi,Se; and bulk WSe, [10, 11].

2.2 Optical description of low-dimensional
materials

The linear optical response of 2D materials can be
described by classical optics in two different but consistent
ways. The first method models a 2D material as a homog-
enous three-dimensional (3D) slab of permittivity £(w) and
finite thickness d (Figure 3a). The thickness (d) of the 2D
material is usually chosen to be the interlayer spacing of
the corresponding 3D bulk materials, for example, ~0.6
and 0.34 nm for 2D transition-metal dichalcogenides
(TMDs) and graphene, respectively [12]. The thickness
d measured experimentally by atomic force microscopy
(AFM) may also be chosen. The 3D slab model is gener-
ally applicable to 2D monolayers and heterostructures
comprising multiple 2D layers.

(a) 3D slab model

Figure 3: Two models for 2D monolayers.
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In the other method, the 2D material is modeled as a
dimensionless 2D conducting sheet possessing sheet con-
ductivity o(w) (Figure 3b). The 2D sheet model is suitable
for 2D monolayer and few-layered 2D materials where the
optical phase shift of a single pass ¢ is much smaller than
the unity, i.e., || = 21|n|d/A < 1, where i1 = /e is the
complex refractive index of the 3D slab model and A is the
wavelength of light in vacuum [13]. In general, the thick-
ness of 2D materials is smaller than 1 nm, while the
refractive index n does not exceed 10 in the visible spectral
range of 400 nm < A < 800 nm. Although the 2D sheet model
is applicable only when the condition |¢| « 1is satisfied, it
provides analytic advantage over the 3D slab model. In the
2D sheet model, one can deal with a single interface with
dimensionless sheet conductivity o(w) to solve a reflection/
transmission problem. Therefore, expressions of reflection
and transmission are much simpler than the 3D slab model
which has two interfaces, i.e., air/slab and slab/substrate.
Simple expression in the 2D sheet model allows us to
extract information of physics analytically. For example,
Dirac plasmons in graphene can be adequately described
by the 2D sheet model [14], and they are consistent with
experiments [15]. In addition, the photovoltaic Hall effect in
graphene under the intense irradiation of circularly
polarized light can be optically described by the 2D sheet
model [16].

Both the 2D sheet and 3D slab models are consistent
with each other when the condition |p| « 1 is satisfied;
Figure 4 shows the absorption (A), reflection contrast
(AR/R), and transmission contrast (AT/T) of 2D materials
(WS, and graphene) and 10 nm-thick gold film supported

(b) 2D sheet model

A>nd

o()

(@) 3D slab model with the bulk permittivity e(w) and finite thickness d, and (b) 2D sheet model with the sheet conductivity o(w) for a 2D
monolayer (green) supported by a substrate (blue). In the 3D slab model, light (wavelength A, red arrows) undergoes multiple reflections inside
the monolayer. This does not occur in the 2D sheet model with no thickness. The 2D sheet model works well only for A > nd = /ed.
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Figure 4: Absorption (A), reflection contrast (AR/R), and transmission contrast (AT/T) of (a—c) monolayer WS, (d—f) graphene, and (g—i) 10 nm
gold film on fused silica substrates. Reprinted with permission from Ref. [13], copyright 2018, IOP Publishing.

by fused silica substrates [13]. Both the 3D and 2D models
exhibit consistent results in the visible and infrared
spectral regions in Figure 3 because 2D materials and
10 nm-thick gold film exhibit |p| < 5% and |@| < 50%,
respectively. Further, it has been reported that, even though
one made a nano-patch antenna using graphene, both
models are still consistent [17]. For 2D systems comprising
multiple layers, both models can be used, but the 2D sheet
model is applicable only when the optical phase shift
amplitude |¢| of a single pass is much smaller than unity.
In this section, we have discussed the 3D and 2D models
for 2D materials. Correspondingly, 1D materials such as car-
bon nanotubes can be described using two models: (1) a 3D
cylinder model with permittivity £(w) and finite radius R, and
(2) dimensionless 1D line model with the line conductivity
o(w). Although the optical description of 1D materials has not

been studied intensively, the 3D cylinder model was used to
describe a Luttinger liquid plasmon in metallic single-walled
carbon nanotubes at mid-infrared frequencies (details are
provided in Section 4.3) [18, 19].

2.3 Spectroscopic ellipsometry

The reflection coefficients *® and r® of s- and p-polarized
light, respectively, which incident obliquely on the sample
surface, are different. We consider a sample consisting of n
layers, where each layer has a complex-valued permittivity
&n(w) and thickness d,,. Spectroscopic ellipsometry measures
the complex reflection coefficient ratio of s- and p-polarized
light, p = 'P/r®) = tanpe™, where 1 and A are the changes in
the amplitude ratio and phase, respectively [20]. On the other
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hand, we know the analytical form of the ratio p using a
transfer matrix method [21]. Therefore, we obtain the funda-
mental equation of ellipsometry [20]

p(&n, dy) = tanp (0)e®?, 3

where the left- and right-hand sides of Eq. (3) correspond
to the theoretically-known p(e,, d,) and experimentally
measured changes in the amplitude ratio (1)) and phase (A)
at a finite angle of incidence 0, respectively. Solving Eq. (3),
we can determine &,(w) = Reg,(w) + ilme,(w) and the
thickness d,, of each layer of the sample. Because each layer
has three parameters (Reg,(w), Ime,(w), and d,), the
number of unknowns is 3n. The amount of experimental
information required is larger than in, while a single
measurement at 6 yields two parameters, i and A. Per-
forming m experiments by varying the angle of incidence 6
provides 2m of experimental information, making 2m > 3n.
If the thickness of each layer (d,) is known using AFM
measurements or assuming the interlayer spacing of the
bulk material, the number of experiments m to obtain
Ree,(w) and Ime,(w) is the same as the number of layers n.
Many ellipsometry techniques have been suggested to
measure the complex ratio p = tan ye'®. Typical technique
is rotating compensator ellipsometry (RCE), composed of a
rotating wave plate and two fixed polarizers as shown in
Figure 5a. The polarizer and the analyzer angles are fixed to
0° and 45° and angle of the wave plate varies as 6,. Then,
the reflection intensity measured is proportional to [22].

(a)
p =tanye™
Polarizer (0°)
LY
Analyzer (45°)
Sample
Substrate

Figure 5: Experimental implementation of ellipsometry.

DE GRUYTER

I1(0y) x1- %N +Ssin(26,) - %Ncos (46,)

+2Csin(46,), @)
if the quarter wave plate (QWP) is used. Values N, C, and S
are related to ¥ and A by the relations, N = cos(2y),
C = sin(2y)cos(A), and S = sin(2y)sin(A).

3 Spectroscopic ellipsometry for
2D materials

3.1 Reflection contrast spectroscopy for 2D
materials

The simplest spectroscopic ellipsometry for 2D materials in-
volves measuring the reflection contrast 6z = {Ry(w) — Ryup(w)}/
Rqup(w) between a 2D sample Ry(w) and substrate Rg,p(w)
under light at normal incidence. We consider a 2D ma-
terial described by a 3D homogeneous slab of permit-
tivity e(w) and thickness d. The substrate is an infinite
half-space dielectric with a purely real-valued refractive
index, ng,,. Because the wavelength of light A = 2nt/k is
much larger than the atomic-level thickness d, the opti-
cal path length, kod, is much smaller than unity. There-
fore, expanding 6y in the leading order of kyd yields (see
Supplementary Materials for derivation)

(b) Conventional Deterministic
ellipsometry ellipsometry
Measure p Measure p

Model p
as a function of € P
«Q
; @
3.
Fit S
to reproduce p
¥ ¥
Result (€) Result (¢)

(@) Schematic of a typical ellipsometry implementation called rotating compensator ellipsometry (RCE). Red arrows show the beam direction.
QWP denotes the quarter wave plate. (b) Flowchart for conventional (left) and deterministic ellipsometry (right).
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RS ((U) - Rsub (w) _ 4kOd
Rsub (w) - n2

sub

Sr(w) = I Im{e(w)}. (5)
The analytical result, Eq. (5), shows that the reflection
contrast spectrum 6x(w) directly yields the imaginary part
of the permittivity of the 2D material sample, Im{e(w)},
which is responsible for the absorption of light. Once Im
{e(w)} is obtained within a spectral region of interest, the
real part of the permittivity Re{e(w)} can be obtained
numerically using the Kramers—Kronig relation:
1 Im{g,(w)/EO}dw', ©
T w-w

)

Re{e(w)/eo} =1+

where P is the principal value. The Kramers—Kronig rela-
tion (Eq. (6)) is a direct consequence of causality in the
electromagnetic field [23]. Reflection contrast spectroscopy
was first suggested to measure the graphene absorbance
ma = 2.293% with the fine-structure constant « at visible
frequencies [24]. After the experimental discovery of 2D
TMDs, the reflection contrast 6z became essential measure
for optically characterizing excitonic features in 2D mate-
rials [13, 25-27].

The experimental implementation of reflection
contrast spectroscopy is straightforward. 2D materials are
prepared on highly reflective (large Rs,,) and nonabsorp-
tive (purely real-valued ng,,) substrates, for example, a Si
substrate for visible frequencies, to ensure a low noise level
and applicability of Eq. (5), respectively. R; and Ry, can be
measured separately to obtain 6y using Eq. (5). Rs and Rgyy,
are limited by shot noise, and thus, one can increase the
light intensity or perform multiple measurements to sup-
press noise in 6z. Another advantage of reflection contrast
spectroscopy based on Eq. (5) is a deterministic measure-
ment that does not require a priori knowledge of the ma-
terial electronic structures to determine Im{e(w)}.

Reflection contrast spectroscopy, however, has certain
limitations: (i) The Kramers—Kronig relation can transform Im
{e(w)} to Re{e(w)} to yield complete information of the
complex-valued permittivity [23]. However, the trans-
formation includes spectral integration from the DC limit
(w =0) to infinity (w — o). Spectroscopic measurements were
always performed within a finite spectral region. Therefore,
the truncated numerical integration in the Kramers—Kronig
relation can introduce inaccuracies in Re{e(w)}. (ii) 2D mate-
rials are usually prepared on thick oxide spacers (to make
atomically thin 2D materials visible), hBN flakes (to have an
atomically flat substrate) or other 2D material layers (to
construct heterostructures). These complicated structures
can introduce interference of light, which renders Eq. (5)
invalid and the measured 8z(w) no longer indicates absorp-
tion by the 2D material, namely, Im{e(w)}.

S. Yoo and Q.-H. Park: Spectroscopic ellipsometry for low-dimensional materials —— 2817

3.2 Conventional spectroscopic
ellipsometry for 2D materials

The conventional spectroscopic ellipsometry discussed in
Section 2.3 has been actively used to measure the permit-
tivity of 2D materials. Li et al. performed spectroscopic
ellipsometry for monolayer MoS,, MoSe,, WS,, and WSe,
supported by sapphire substrates and determined the
exciton binding energy and spin-orbit splitting [9]. Heinz
et al. complemented the previous works by Kramers—Kro-
nig-constrained analysis to obtain the permittivity of 2D
TMDs [12]. Liu et al. conducted spectroscopic ellipsometry
to study the layer-dependent optical permittivity from
monolayer to few-layer WSe, [8]. Volkov et al. reported
broadband spectroscopic ellipsometry for monolayer and
bulk MoS, from 290 to 3300 nm [28]. Working with a
commercial ellipsometer company, Islam et al. also re-
ported the in-plane and out-of-plane permittivity of
monolayer, few-layer, and thin-film MoS, over a broad
spectral range from 190-1700 nm while working with a
commercial ellipsometer company [29].

Conventional spectroscopic ellipsometry aims at
solving the fundamental equation of ellipsometry (Eq. (3))
using experimentally obtained quantities. Experimental
procedure of conventional spectroscopic ellipsometry is
summarized in the left panel of Figure 5b. Although Eq. (3)
appears simple, the left-hand side term, p(e,, d,), is usually
complicated. There is no simple closed-form expression for
the permittivity € of the slab even for a single slab on a
substrate [20]. Therefore, conventional spectroscopic
ellipsometry usually assumes that the permittivity &,(w)
of the sample follows specific lineshape functions to fit
pley, dy) in Eq. (3). For example, to obtain the permittivity of
2D TMDs, Ref. [12] assumes that their permittivity is
composed of N Lorentzian oscillators as follows:

% fi
5 Wi~ w? —lwyy

e(w)=1+ @)
where wy, fi, and y; are the quasiparticle transition fre-
quency, oscillator strength, and linewidth of the kth tran-
sitions, respectively. Ref. [12] included transitions up to
30 eV for the spectral region of 1.5-3.0 eV because the high-
energy transitions significantly influence the low-energy
permittivity in 2D TMDs. Note that the Lorentzian expres-
sion for the permittivity, Eq. (7) can be derived from the
quantum electrodynamic expression, Eq. (1) [7].

In addition, other types of oscillator lineshape func-
tions can be used to obtain better fitting of p(e,,, d,), instead
of the Lorentz oscillators in Eq. (7). Tauc-Lorentz (TL) and

Cody-Lorentz (CL) oscillators are typical lineshape
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functions that modify and complement Lorentz oscillators.
In the TL and CL oscillator models, the Tauc and Cody
lineshape functions, which describe the absorption pro-
cess in semiconductors, are multiplied by the imaginary
part of the Lorentz oscillator permittivity (Eq. (7)), respec-
tively [30]. Subsequently, the real part of the permittivity is
obtained by the Kramers—Kronig relation. For example,
spectroscopic ellipsometry for monolayer and few-layer
WSe, (Figure 2a and b) used three CL oscillators and five
Lorentz oscillators for the in-plane permittivity, while it
used a single TL oscillator for the out-of-plane permittivity
in the spectral range of 0.73-6.42 eV [8]. The choice of
the oscillator lineshape function in the fitting procedure
depends on the characteristics of quasiparticle transitions.
These fitting oscillator functions enables conventional
spectroscopic ellipsometry to perform regression analysis to
minimize the mean-squared-error (MSE), characterizing the
difference between the fitting-generated reflection spectrum
(o(en, dp)) and the experimentally-obtained ground truth
spectrum [20, 22].

The application of conventional spectroscopic ellips-
ometry to 2D materials is the most general approach that
does not require specific conditions, as in reflection
contrast spectroscopy (Section 3.1). If other techniques fail
owing to experimental situations, one should return to
conventional spectroscopic ellipsometry. In addition, the
oscillator lineshape functions, such as the Lorentzian (Eq.
(7)) satisfy the Kramers—Kronig relation. Using Kramer—
Kronig-constrained lineshape functions to fit the reflection
spectrum, the causal permittivity of the permittivity for a
given material sample can be obtained.

3.3 Deterministic ellipsometry for 2D
materials

As discussed, the reflection contrast spectroscopy (Section
3.1) measures the imaginary part of the permittivity, Im
{e(w)}, alone, and the numerically converted Re{e(w)} is
inaccurate if the spectral window is narrow. Although
conventional spectroscopic ellipsometry is powerful, it
depends on fitting spectral lineshape functions that require
a priori knowledge of material electronic structures; this is
because high-energy transitions can significantly affect
lower energy permittivity. The lack of detailed information
of material electronic structures is a huge drawback in
studies of newly discovered 2D materials [31]. We proposed
deterministic ellipsometry for 2D materials to overcome the
limitations of both techniques. Experimental procedure of
deterministic ellipsometry is summarized in the right panel
of Figure 5b. Importantly, it does not require regression

DE GRUYTER

analysis for model of p (Figure 5b). As illustrated in
Figure 6a, we combined two techniques to overcome the
limitations of each. First, we measure the p contrast defined
by 6,(w) = {ps(@) — psun(@)}/psun(w) in the analogy of the
reflection contrast spectroscopy. The subscripts ‘s’ and
‘sub’ in p denote the reflection coefficient ratios of the 2D
sample and bare substrate. As in the case of conventional
spectroscopic ellipsometry (Section 2.3), the complex-
valued 5p(w) provides two solvable equations for two un-
knowns Re{e(w)} and Im{e(w)}. Because 2D materials have
an atomic thickness, the analytic expression for §,(w) can
be expanded in the leading order of kod, yielding a simple
expression for the permittivity of 2D materials on a
nonabsorptive substrate (purely real-valued ngy,),

1
g(w) = 3 [1+n, +1{6,(w)/a(w)}]

i%\/[l+n§ub +{6,(w)/a(w)}]’ -4, (8

The sign in Eq. (8) is determined by the sample
passivity condition, Im{e(w)} > 0. The function a(w) con-
tains information about the incident angle 8 and 2D sample
thickness d as follows:

n?,, cosfsin’ 6
(e = D{ (8, — 1) + (ngy, + 1)cos (20)}
©)

where cis the speed of light. When a(w) is known and §,(w)
is measured, Eq. (8) provides a deterministic solution of the
permittivity in the spectral region of interest. It requires
neither the Kramers-Kronig transformation, as in the
reflection contrast spectroscopy (Section 3.1) nor the
fitting, as in the conventional spectroscopic ellipsometry
(Section 3.2). It is to be noted that the leading order (kod)-
based method in Eq. (8), has also been extended to the
second-order (kod)’ expansion for the short-wavelength
region or thick samples [32].

Figure 6b-g compare the deterministic ellipsometry
results with the fitting results in the conventional spec-
troscopic ellipsometry if oscillators only in the spectral
region of interest are included. The two ellipsometry
techniques use the same complex reflection coefficient
ratio p measured in the same sample; the deterministic
ellipsometry (solid lines in Figure 6) uses Eq. (8), while the
conventional ellipsometry (dashed lines in Figure 6) use
three TL oscillators to fit the experimentally measured
spectrum of p. In 2D TMDs, three or four excitonic features
are shown at visible frequencies, but higher energy fea-
tures outside the spectral range affect the visible spectrum
significantly. This introduces inaccuracies in the conven-
tional spectroscopic ellipsometry results in Figure 6. If

a(w) = —4ikod
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Figure 6: Deterministic ellipsometry for 2D materials.

(a) Schematic of the deterministic ellipsometry for 2D materials. Comparison of the permittivity € = &; + ig, obtained by the deterministic
ellipsometry (solid lines) and conventional spectroscopic ellipsometry with few TL oscillators (dashed lines) for (b and c) monolayer MoS,, (d
and e) WS,, and (f and g) WSe,. Reprinted with permission from Ref. [30], copyright 2018, de Gruyter.

newly discovered 2D materials or heterostructures are be-
ing considered, information regarding high-energy elec-
tronic structures may remain unknown. Owing to the
energy limitation up to 3-5 eV in conventional spectro-
scopic ellipsometry, the absence of high-energy informa-
tion results in ambiguity in the experimental determination
of the permittivity.

The deterministic ellipsometry introduced in this sec-
tion inherits the advantages of reflection contrast spec-
troscopy. It is straightforward and error-robust, and does
not require a priori knowledge of the material electronic
structure to determine the complex-valued permittivity.
However, it is only applicable to a 2D monolayer on a
nonabsorptive substrate, as discussed in Section 3.1. Both
reflection contrast spectroscopy and deterministic ellips-
ometry fail in characterizing the permittivity of multiple
layers in a heterostructure, making it necessary to revert to
conventional spectroscopy. This limitation is discussed in
detail in Section 4.2.

3.4 Other techniques
Although it is desirable to obtain the permittivity within

visible frequencies from 1.5 to 3 eV using spectroscopic
ellipsometry, the effect of electronic transitions up to 30 eV

need to be included [12]. Conventional spectroscopic ellips-
ometry usually includes photon energies up to 3.0-5.5 eV.
This mismatch in the energy scale yields inaccurate
measurements. Recently, synchrotron radiation with a
high-intensity photon beam of energy up to 45 eV has
been applied to measure the optical permittivity of bulk
MoS, [11]. Figure 7 shows the effect of temperature on the
permittivity of bulk MoS, measured using synchrotron
radiation. In Figure 7, A-D excitons are clearly visible
below 3.4 eV, while four highly temperature-dependent
high-energy peaks appear at ~5, ~6, ~11, and ~15 eV.
Using permittivity measurements, this ultrabroadband
high-energy spectroscopic ellipsometry reveals high-
energy bands associated with the p-d hybridizations as
well as the existence of unconventional soft X-ray-corre-
lated plasmons occurring in a material with a low free
charge density.

All the techniques introduced above utilize ellipsom-
etry, which measures the changes in the amplitude ratio ¢
and phase A of the reflection coefficient ratio of s- and
p-polarized light. Recently, alternative approaches for
measuring the optical permittivity of 2D materials have
been reported [33]. When 2D materials are coated on a
prism, the linearly polarized reflected beam is split into
p- and s-polarized light by the Goos—Hanchen shift
(Figure 8a) or left- and right-handed circularly polarized
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Figure 7: Ultrabroad band spectroscopic ellipsometry using
synchrotron radiation.

(@) Real parts (¢, and (b) imaginary parts (g,) of the permittivity of
bulk MoS, at various temperatures. Reprinted with permission from
Ref. [11], copyright 2021, Nature Publishing Group.

light by the photonic spin Hall effect (Figure 8b). Both
shifts are sensitive to the optical parameters of 2D materials
on a prism, and hence, they are applied to measure the
optical conductivity [34] and number of layers of 2D ma-
terials [35, 36]. Combining the weak measurement tech-
niques, these alternative measurements can provide a high
resolution of the optical permittivity [33]. Another alter-
native approach uses a scattering-type scanning near-field
optical microscopy (s-SNOM) to obtain the permittivity of
2D materials in 2D heterostructures [37]. Basic principle is
similar with the conventional spectroscopy; s-SNOM mea-
sures scattering amplitude and phase. Then, theoretical
model of the permittivity can be calculated by the Lor-
entzian oscillator with a point dipole model for the tip
apex. Regression analysis provides fitting parameters
reproducing the measured scattering amplitude and

@) |p)+]s) \ (b)

ZST S
s "
eSSt NS ' ' 4
P e oW, TN
< ;?.' 4"\"',,‘
LT ~
. ST .
I | !
//
y

DE GRUYTER

phase. Advantage of s-SNOM-based ellipsometry is high
spatial resolution up to 20 nm.

4 Technical challenges and other
issues

4.1 Interference effect in 2D
heterostructures

Reflection contrast spectroscopy (Section 3.1) and its
application to ellipsometry (Section 3.3) are based on a
single pass of light through atomically thin layers. How-
ever, 2D material research often requires thick insulating
layers to make 2D materials visible (e.g., by SiO, layer on Si
substrate) or prepare atomically flat substrates (e.g., hBN
flakes). In addition, 2D materials can be stacked to form
heterostructures that induce novel phenomena such as the
moiré flat band [2, 27, 38—41]. This breaks down the validity
of the reflection-contrast-based ellipsometry because the
reflected light starts to experience interference from mul-
tiple reflections inside the sample.

For example, Figure 9a shows the changes in the
reflection contrast spectra 6x(w) of 2D materials on an
insulating layer (refractive index n;,s = 1.5, thickness di,s)
supported by a Si substrate (ns,, = 4.0). Reflection was
measured using normally incident light. As shown in
Figure 9, 2D materials exhibit a single Lorentzian oscillator
transition (Eq. (7)) whose transition frequency and line-
width are hw; = 2.25 eV and hy; = 50 meV, respectively.
Further, the background permittivity is 10, instead of 1, in
Eq. (7). If 2D materials occur directly on the Si substrate
without an insulating layer (d;,s = 0), the reflection contrast
spectra 8z(w) shows the imaginary part of the permittivity
of the 2D material, Im{e(w)}, according to Eq. (5). As the
insulator thickness d;,, increases, the features of the real
and imaginary parts of the permittivity are mixed in 6x(w),
as shown in Figure 9a. Peaks and dips of the reflection

Figure 8: Alternative technique to obtain the
optical permittivities of 2D materials.

(a) Goos—Hanchen shift and (b) photonic
spin-Hall effect of a 2D monolayer
supported by a prism. Reprinted with
permission from Ref. [32], copyright 2021,
I0P Publishing Ltd.



DE GRUYTER

contrast, i.e., d6x(w)/dw = 0 (Figure 9b), mainly appear in
the region h(w; — y1)/2 < hw; < h(w; + y,)/2, where both
boundaries correspond to the peak and dips of the real part
of the Lorentzian lineshape. To measure the features of Im
{e(w)} in 8x(w) (Figure 9¢), only specific conditions such as
dins ~ 90 nm should be satisfied, whereas 6z(w) generally
mixes the features of Re{e(w)} and Im{e(w)} (Figure 9a).
Likewise, other conditions such as dj, ~ 210 nm show the
features of Re{e(w)} in 6x(w) (Figure 9d). Therefore, we can
conclude that the reflection contrast spectra for thick
layered systems show mixing of the real and imaginary
parts of the permittivity. In addition, the influence of the
oxide/substrate reflection introduces the repeating pat-
terns (blue and red regions), which cannot be removed in
Or(w) (Figure 9a).

As shown in Figure 9, the reflection contrast mea-
surement on a thick layer supported by a substrate cannot
directly provide permittivity information. This interference
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Figure 9: Limitation of reflection contrast spectroscopy.
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effect causes the breakdown of reflection contrast spec-
troscopy (Section 3.1) and its application to deterministic
ellipsometry (Section 3.3). It is necessary to revert to con-
ventional spectroscopic ellipsometry discussed in Section
3.2 if the reflection contrast spectroscopy fails to yield the
permittivity. We also note that one should be careful when
assigning spectral features to the electronic origins of the
materials in the reflection contrast spectrum 8x(w) if the
system of interest contains multiple or thick layers that
introduce the interference of reflected light.

4.2 Beyond the linear isotropic regime:
anisotropy, chirality, and nonreciprocity

We have focused on 2D materials whose linear, isotropic,
dielectric, and nonmagnetic responses are optically
described by the electromagnetic constitutive relations
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(a) Reflection contrast spectra dg(w) of a 2D material/insulator/Si substrate according to thickness of the insulating layer di,s. (b) Derivative of
the reflection contrast spectra 99x(w)/dw. The dashed lines correspond to the transition energy (fiw,) of 2.25 eV, while the dotted lines
correspond to the linewidths A(w; — y1)/2 < hw, < A(w; + y1)/2. Specific examples of the reflection contrast spectra x(w) of a 2D material/
insulator/Si substrate at (c) dins = 90 nm and (d) di,s = 210 nm (black lines). The real and imaginary parts of the permittivity of the 2D material

are plotted for comparison in Figure 7d and e (blue lines).
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given by D = ¢E and B = poH, where D, E, B, H, and y, are the
displacement field, electric field, auxiliary field, magnetic
field, and vacuum permeability, respectively. However, this
optical description is sometimes insufficient for describing
the optical response of 2D materials because the constitutive
relations can be nonlinear and anisotropic to the applied
electric field in some cases. For example, (i) in general, the
permittivity is a tensor and not a scalar, owing to the intrinsic
anisotropy of the crystal structure. (ii) 2D materials can
exhibit chiral and/or nonreciprocal responses with external
perturbation. To the best of our knowledge, ellipsometric
studies of 2D materials with complicated constitutive re-
lations have rarely been performed. In addition, it is
intriguing to determine whether the reflection contrast spec-
trum can deterministically provide all the optical parameters
in the complicated constitutive relations. We briefly review
two cases beyond the linear isotropic regime in the consti-
tutive relations of 2D materials to promote future efforts for
novel ellipsometry techniques.

First, 2D materials are anisotropic because their atomic
crystals extend in the in-plane direction, while they are
terminated along the out-of-plane direction, making them 2D.
They can be optically described by the permittivity tensor of a
uniaxial crystal, namely, ¢ = diag(e,, &, £), where &, and &,
denote the ordinary in-plane and extraordinary out-of-plane
permittivities, respectively [8]. Fortunately, the anisotropy of
2D materials does not affect the reflection by a monolayer on a
substrate [8, 29, 31]. It has been reported that the effect of
anisotropy in TMD becomes significant when the thickness
becomes a few tens of nanometers [29]. However, for
complicated 2D heterostructures composed of multiple 2D
layers and thick hBN flakes, anisotropy should be considered
in spectroscopic ellipsometry because their thickness can be
comparable to the wavelength of light. In addition, the out-of-
plane permittivity may play an important role in nano-
photonic applications, because resonant nanostructures and
metamaterials can induce strong out-of-plane components of
the electromagnetic fields [42-44).

Second, 2D materials can show chiral and/or nonre-
ciprocal responses, originating from breaking the inver-
sion and time-reversal symmetries, respectively. The
inversion symmetry can be broken intrinsically or extrin-
sically. In the 2H phase of 2D TMDs, the lack of intrinsic
inversion symmetry in their crystal structures enables the
orbital magnetic moment accompanying optical circular
dichroism (CD), which is different optical properties
induced by left- or right-circularly polarized light [3, 4]. A
potential difference across 2D materials is induced by
applying electrostatic fields normal to 2D materials,
resulting in broken inversion symmetry. In general,
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breaking the time-reversal symmetry requires external
perturbations. High DC magnetic fields [45], the optical
Stark effect without magnetic fields [46] the magnetic
proximity effect [47], and the direct current application
[48-50] can break the time-reversal symmetry. A time-
reversal broken chiral superconducting phase was also
predicted by electron correlations in a single trilayer TiSe,
[51]. When the inversion symmetry and/or the time-reversal
symmetry are broken in 2D monolayers and hetero-
structures, the optical permittivity of linear dielectric ma-
terials is not sufficient to describe their chiroptical
responses. Optical descriptions of chiral and/or nonrecip-
rocal materials differ from those of dielectric materials; the
constitutive relations become D = ¢E + (y + ik)H/c, and
B = uoH + () — ix)E/co, where y and k are the nonreciprocity
and chirality parameters, respectively [52]. The scalar
optical parameters ¢, y, and k also become tensors if the
materials are anisotropic, as in 2D materials.

4.3 Permittivity of 1D materials

This review mainly discusses ellipsometry for 2D materials
and heterostructures because the amplitude and phase
information of light reflected by 2D materials can be ob-
tained in a straightforward manner. This reflection-based
approach for 2D materials cannot be applied to 1D mate-
rials whose radii are atomically small, such as carbon
nanotubes, gold atom chains, mirror-twin boundaries in 2D
TMDs, conducting polymers, and quantum Hall edges. For
these 1D materials, alternative techniques are necessary for
experimentally characterizing their optical response.
Similar to 2D materials whose optical responses are
described by the 3D slab model of permittivity e(w) and slab
thickness d, 1D materials can be described by a 3D solid
cylinder of finite radius R filled with permittivity e(w). As
discussed briefly in Section 2.2, 1D materials can be
described by a dimensionless 1D line current of the line
conductivity o(w). A detailed analysis of the difference
between the two models for 1D materials, namely, the 3D
cylinder and 1D line models, is absent. However, the 3D
cylinder model has been shown to describe the optical
response of 1D metallic single-walled carbon nanotubes
(SWNTs) that support a Luttinger liquid.

In brief, the permittivity of metallic SWNTSs, eswnr(w),
can be experimentally determined by measuring the plas-
mon wavelength A,, plasmon quality factor Q, and SWNT
radius R. Metallic SWNTs have linear electronic dispersion
up to near-infrared frequencies (~1 eV) [53]; thus, they
behave as a Luttinger liquid, a strongly correlated elec-
tronic matter in 1D metals. The optical and electronic
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responses of the Luttinger liquid are described by the
Luttinger liquid interaction parameter g. It is determined
by the experimentally observable A, and R using the
expression [18, 54]:

_1/\/1+ ri Kol (2n/A)R), (10)

where the Fermi velocity, reduced Plank constant, and
zeroth-order modified Bessel function of the second kind
are vg, h, and K, respectively. Then, g yields the metallic
SWNT permittivity in the approximate form (in SI units)
(18],

16 ke vi 1
1-g? eghve R? w?’

Re{eswnr (W)} = - (1)
where the Coulomb constant k. = 1/4me,, and the effective
permittivity of the background is €.¢. The imaginary part of
the permittivity, Im(eswyt), can be obtained from the local
plasmon property Q = {wRe(deswnr/dw)}/{2Im(egwnr)}. It is
noteworthy that the surface plasmon dispersion relation of
cylinders in the transcendental form can provide the exact
solution of Re(eswnt) instead of Eq. (11) [18, 55, 56].
Experimentally, A, and Q can be measured by scattering
near-field optical microscopy (SNOM) [19, 54, 57], while R
can be obtained by AFM. The DC electron tunneling
experiment can also measure A, if only Re(eswnr) is
required [58-61]. The method for determining the permit-
tivity discussed here is applicable to other paramagnetic 1D
metals because they support the Luttinger liquid [62].

For 1D semiconductors, however, the experimental
determination of the permittivity of isolated 1D semi-
conductors is still lacking experimentally. The experi-
mental techniques for 1D semiconductors should be
explored. Note that optical identification of chirality
indices of individual carbon nanotubes is possible via the
reflection contrast spectroscopy [63, 64]. It is also note-
worthy that a composite film of 1D materials becomes a 2D
film of effective permittivity that can be characterized by
reflection contrast-based ellipsometry and the conven-
tional spectroscopic ellipsometry discussed in Section 3
[65, 66].

5 Conclusion and outlook

In this review, we have reviewed the basic concepts and
recent progress in spectroscopic ellipsometry for 2D ma-
terials. Spectroscopic ellipsometry is one of the easiest
ways to characterize material electronic structures via
optical permittivity, and it can promote experimental
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efforts to discover new 2D materials. The well-established
conventional spectroscopic ellipsometry techniques
(Section 3.2) may be used to measure the optical permit-
tivity of 2D materials experimentally, but the reflection
contrast between a 2D material and substrate enables
more straightforward and deterministic ellipsometry
(Section 3.1 and 3.3), without any ambiguity originating
from the fitting in the conventional ellipsometry.

We again emphasize that the technical challenges and
issues discussed in Section 4 still need to be resolved. To
summarize, (i) reflection contrast-based spectroscopic
ellipsometry for thicker heterostructures should be devel-
oped. As shown in Section 3.3, applying the reflection
contrast to ellipsometry enables the deterministic mea-
surement of the permittivity for a 2D monolayer without
fitting. The extension of this technique to thicker hetero-
structures will benefit the precise measurement of the
material electronic structures. (ii) Spectroscopic ellipsom-
etry, including broken inversion and time-reversal sym-
metry, should be explored. All ellipsometry discussed in
this review considers only linear dielectric optical re-
sponses. Spectroscopic ellipsometry with external pertur-
bations such as DC electric and magnetic fields can
elucidate information of symmetry and electronic struc-
tures. (iii) Optical techniques to determine the permittivity
of general 1D materials should be explored.

In addition to the advantages of ellipsometry in
condensed matter physics studies, ellipsometry for the
optical permittivity of low-dimensional materials also
benefits their nanophotonic applications. Recently, opti-
cal communities have evinced great interest in integrating
low-dimensional materials into nanophotonic devices
because the exotic quantum properties of such materials
can enable novel nanophotonic applications such as the
nanophotonic routing of circularly polarized emission, 2D
TMD lasers using photonic crystal cavities, graphene
nanoantennas, molecular sensing, and novel Luttinger
liquid-based infrared light sources. The tabulated data of
the optical permittivity can be used as an input for the
numerical simulations, including the finite-difference
time-domain method (FDTD) and finite element method
(FEM) to design nanophotonic devices. We believe that
spectroscopic ellipsometry studies can promote the study
of low-dimensional materials in condensed matter phys-
ics, material science, and nanophotonics.
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