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A. Gaussian curvature and gap dynamics of IFS  

A.1. Gaussian curvature of IFS 

In differential geometry, the Gaussian curvature of a surface is defined as Κ = κ1κ2, where κ1 and κ2 are the principal 

curvatures at the given point. In the main text, we focus on the IFSs kx
2 ∕ εy + ky

2 ∕ εx + kz
2 ∕ εz = k0

2, especially for 

uniaxial anisotropic materials, namely εx ≠ εy = εz. The Gaussian curvature of an elliptical IFS (εx > 0, εy = εz > 0, 

Fig. S1a) is  
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while the curvature for a hyperbolic IFS (εx < 0 and εy = εz > 0, Fig. S1b) is  
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In the main text, we apply a geometric indicator G = K/|K| to represent the geometrical topology of IFSs.   

 

Fig. S1. Schematics of principal curvatures κ1, κ2 for (a) elliptical and (b) hyperbolic IFSs.  

A.2. Wavevector gap of IFS 

In the main text, we introduce the concept of wavevector gap (Δkx) for the x-propagating interface states in the kx-

ky two-dimensional (2D) IFC diagrams (Fig. 1b). Analogous to the energy gap in a k-ω dispersion diagram 

describing the forbidden range of the frequency ω, each IFS at a constant frequency has a forbidden regime of 

propagating states. The position and magnitude of Δkx depends on the material constants. For example, the Δkx of 

an elliptical IFS spans the outside of the ellipse along the kx-axis: Δkx: {kx | kx<–ke, kx<ke}, where ke = |εy|k0 is the 

magnitude of the vertex of the elliptical IFC in the kx-axis. The type-I hyperbolic IFS has a single span of Δkx: {(kx 

| –kh < kx < kh} with kh = |εy|k0, while no Δkx for the type-II hyperbolic IFS. For metallic media, the Δkx spans all 

the range of kx in consideration except for the origin point.  

For an interface, Δkx is defined as the overlap of Δkx in environmental layers. The propagation constant of the 

pure T-spin state βpure lies inside the gap Δkx: {kx | ke < kx < kh}, where kh = |ε1y|k0 and ke = |ε2y|k0 are the magnitude 

of the vertices of the hyperbolic-I and the elliptical IFCs, respectively (Fig. S2a). The material constants of this 

example structure for the pure T-spin states are ε1x = –0.5, ε1y = 2.5, ε2x = 0.5, and ε2y = 1.5. In the metal-dielectric 

interface, the propagation constant of the mixed T-spin state also lies inside the gap Δkx: {kx | kx<-ke, kx<ke}, where 

ke = |εy|k0 (Fig. S2b). We choose an example structure for the excitation of mixed T-spin waves with ε1x = –2.0, ε1y 

= –2.0, ε2x = 0.5, ε2y = 1.5 (Fig. S2b).  
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Fig. S2. Wavevector gaps of IFCs for (a) pure T-spin states and (b) mixed T-spin states.  

B. Wave quantities for bound interface states 

In the main text, we focus on a transverse magnetic (TM) mode that propagates along the interface (x-axis) 

between two nonmagnetic (μ = μ0) anisotropic media with permittivity tensors ε1 and ε2. For each medium, we 

assume uniaxial anisotropic medium for the formulation of the permittivity tensor with εy = εz (Fig. S3). 

B.1. Dispersion relation of the x-propagating interface state 

The dispersion relation of this TM interface mode is 
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where εx,y,z is the component of the permittivity tensor and k0 is the free-space wavenumber. 

B.2. Transverse field-decay factors for evanescent interface states 

The transverse decay factors of an evanescent wave are α1 = [ε1x(β2/ε1y − k0
2)]1/2/k0 for y > 0, and α2 = −[ε2x(β2/ε2y 

− k0
2)]1/2/k0 for y < 0. The signs of these decay factors determine the confinement of the excited wave at the 

interface. When the decay factors have the same sign of values sgn(α1) = sgn(α2), the excited interface wave 

decays away from the interface, corresponding to a bound evanescent wave. The other regions with different signs 

sgn(α1) ≠ sgn(α2) denote unbound modes.  

B.3. Spinor representation for T-spin states: 

The electrical fields have the form E(x, y) = Ψ(y)e–ikx with the amplitude vector Ψ = E+e+ + E−e−, where e± = (ex ± 

iey) represent two opposite transverse spinors along the ±z-axis. We note that our representation of the spin 

component in terms of the electric field follows the Abraham representation of the momentum of light in an 

anisotropic medium [1, 2]. Because of the duality between electric and magnetic fields, all of the results in our 

work can be applied to the spinning of a magnetic field by considering uniaxial anisotropic materials with the 

permeability tensor [3]. The local T-spin density is defined as σz = (|E+|2 − |E−|2) / (|E+|2 + |E−|2) for a +x-propagating 

(β > 0) interface state, where E± = Ex ± iEy. The spin density map of σz1 and σz2 in the main text represents the 

spatial average of the local spin density along y-axis in the layer 1 and 2, respectively.  

 
Fig. S3. Wave quantities (β, α1, and α2) and spinor representations (σz1, σz2) for T-spin interface states. 
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