Photonic Topological Lifshitz Interfaces: supplemental
document

XIANJI P1A0," JONGHWA SHIN,? NAMKYOO PARK'"

"Photonic Systems Laboratory, Dept. of Electrical and Computer Engineering, Seoul National University, Seoul
08826, Korea

2Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology,
Daejeon 34141, Korea

*Corresponding author: nkpark@snu.ac.kr

A. Gaussian curvature and gap dynamics of IFS
A.1. Gaussian curvature of IFS

In differential geometry, the Gaussian curvature of a surface is defined as K = kx>, where 1 and x; are the principal
curvatures at the given point. In the main text, we focus on the IFSs &2/ &, + k2/ & + k.2 / &- = k¢?, especially for
uniaxial anisotropic materials, namely & # &, = .. The Gaussian curvature of an elliptical IFS (&, > 0, &, = &. > 0,
Fig. Sla) is
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while the curvature for a hyperbolic IFS (ex <0 and ¢, = &. > 0, Fig. S1b) is
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In the main text, we apply a geometric indicator G = K/|K]| to represent the geometrical topology of IFSs.

Fig. S1. Schematics of principal curvatures «;, x, for (a) elliptical and (b) hyperbolic IFSs.
A.2. Wavevector gap of [FS

In the main text, we introduce the concept of wavevector gap (4k.) for the x-propagating interface states in the k.-
k, two-dimensional (2D) IFC diagrams (Fig. 1b). Analogous to the energy gap in a k-w dispersion diagram
describing the forbidden range of the frequency w, each IFS at a constant frequency has a forbidden regime of
propagating states. The position and magnitude of Ak, depends on the material constants. For example, the 4k, of
an elliptical IFS spans the outside of the ellipse along the k.-axis: Adk.: {kx | kv<—ke, kx<k.}, where k. = |g,|ko is the
magnitude of the vertex of the elliptical IFC in the ky-axis. The type-I hyperbolic IFS has a single span of Aky: {(k
| —kn < kx < ky} with kj, = |ey|ko, while no Ak, for the type-II hyperbolic IFS. For metallic media, the 4k, spans all
the range of k. in consideration except for the origin point.

For an interface, 4k, is defined as the overlap of A4k, in environmental layers. The propagation constant of the
pure T-spin state Spure lies inside the gap Aky: {k: | ke <k« < kn}, where &y = |e1y|ko and k. = |e2,|ko are the magnitude
of the vertices of the hyperbolic-I and the elliptical IFCs, respectively (Fig. S2a). The material constants of this
example structure for the pure T-spin states are €1, =—0.5, €1, = 2.5, £2: = 0.5, and &2, = 1.5. In the metal-dielectric
interface, the propagation constant of the mixed T-spin state also lies inside the gap Ak:: {k: | kx<-ke, kx<k.}, where
ke = |ey|ko (Fig. S2b). We choose an example structure for the excitation of mixed T-spin waves with &1, =-2.0, &1,
=-2.0, &2:=0.5, &2, = 1.5 (Fig. S2b).
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Fig. S2. Wavevector gaps of IFCs for (a) pure T-spin states and (b) mixed T-spin states.
B. Wave quantities for bound interface states

In the main text, we focus on a transverse magnetic (TM) mode that propagates along the interface (x-axis)
between two nonmagnetic (1 = o) anisotropic media with permittivity tensors € and €. For each medium, we
assume uniaxial anisotropic medium for the formulation of the permittivity tensor with ¢, = ¢ (Fig. S3).

B.1. Dispersion relation of the x-propagating interface state

The dispersion relation of this TM interface mode is
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where ¢;,,- is the component of the permittivity tensor and ko is the free-space wavenumber.

B.2. Transverse field-decay factors for evanescent interface states

The transverse decay factors of an evanescent wave are a1 = [e1(%e1, — ko*)]"*/ko for y > 0, and az = —[e2:(fe2y
— ko®)]"?/ko for y < 0. The signs of these decay factors determine the confinement of the excited wave at the
interface. When the decay factors have the same sign of values sgn(ai) = sgn(a2), the excited interface wave
decays away from the interface, corresponding to a bound evanescent wave. The other regions with different signs
sgn(ai) # sgn(az) denote unbound modes.

B.3. Spinor representation for T-spin states:

The electrical fields have the form E(x, y) = ¥(y)e ™ with the amplitude vector ¥ = E.e+ + E_e-, where e = (e, £
ie,) represent two opposite transverse spinors along the +z-axis. We note that our representation of the spin
component in terms of the electric field follows the Abraham representation of the momentum of light in an
anisotropic medium [1, 2]. Because of the duality between electric and magnetic fields, all of the results in our
work can be applied to the spinning of a magnetic field by considering uniaxial anisotropic materials with the
permeability tensor [3]. The local T-spin density is defined as o, = (|E+* — |E-]*) / (|E+* + |E-]?) for a +x-propagating
(f > 0) interface state, where E:. = E, + iE,. The spin density map of .1 and o, in the main text represents the
spatial average of the local spin density along y-axis in the layer 1 and 2, respectively.
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Fig. S3. Wave quantities (5, a;, and a,) and spinor representations (o, o-,) for T-spin interface states.
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