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Figure S1. Transfer of CVD-grown SLG onto holey Si3Ns membranes.
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Figure S2. Set-up for measuring PL spectra and PL lifetimes.
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Figure S3. (a) PL decay of fluorescein thin film vacuum-deposited on SiO2/Si and
SLG/Si0,/Si surfaces, respectively. Detection wavelength 525 nm (b) PL decay of R6G
thin film deposited on SiO2/Si and graphene/Si0»/Si surface, respectively. Detection

wavelength 596 nm.
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Figure S4. Variation of absolute PL intensity emitted from the device under (a) negative

and (b) positive bias voltages.



Supporting Discussion

Section I: Near field versus far field of an oscillating point dipole

The electric field of an oscillating point dipole placed at the origin of the coordinate

system may be written as [1]
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with § = (e, X p) X e,., { = 3e,.(e, * p) — p, e, the unit vector in the direction of r,
&, & the permittivity of vacuum and the relative permittivity of the medium,

respectively, and k = 2m /A = %n, A the wavelength in the medium and n the refractive

index of the medium. The first term represents the far field, the second the near field and
the third the intermediate field of the dipole. The near field is identical to that of a static
electric dipole. In the case of the fabricated device the graphene layer is clearly in the

near field of the two molecules taking part in the FRET process.

Section II: Range of Evanescent Wave Vectors generated by a Dipole Oscillating
above the Graphene Sheet

As the optical response of graphene is conveniently expressed as the response to an
external vector potential in Fourier space it is useful to consider the latter for the case of
a point dipole. In Lorenz gauge the vector potential fulfills the Helmholtz equation with

the current density as the source:
(V2 + kA = poprj () 2)

Given the current density of a point dipole j(#*) = —iwp8(r) this means that the solution

of eq. (2) is essentially given by the scalar Green’s function of the Helmholtz equation:
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where a nonmagnetic medium in the frequency range of interest is assumed.

To obtain the vector potential in the plane of the graphene sheet the angular spectrum of
eq. (3) must be used which is given by Weyl’s identity [2]
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with q, = \/k? — q% — q3. This results in
A@) = w5 p |7, eerrarrald) ~ dg.dg, 5)

Neglecting any possible anisotropic polarizabilities a plane wave propagating parallel to
the z direction, normal to the graphene sheet, and polarized in the x direction, will excite
a horizontal dipole parallel to x in a quantum dot or molecule placed near the graphene
sheet. Plane wave components of the vector potential parallel to ¢ will constitute the
longitudinal vector potential and plane wave components parallel to G the transverse one.
For q = q.e, A is therefore purely longitudinal and for q = q, e, A is purely transverse.
To either one of those cases corresponds a proper response function of the graphene, i.e.
the longitudinal and transverse optical conductivity of graphene, respectively. We have
neglected here the continuity conditions of the field components in order to focus on the
range of g values which contribute to the integral of equation (5). It is convenient to

convert eq. (5) into cylindrical coordinates:
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where ¢, ¢, are the azimuthal angles of the vectors (x,y) and (qy, qy), respectively,

1 =+/x%+y?% q, = /9% + q% and ] is the Bessel function of order zero.

The two-dimensional Fourier transform of eq. (6) in cylindrical coordinates simply is
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For k|z| <« 1 the exponential will start to fall off at |iq,| = 1/|z|, ie. g, =
V12|72 + k? = 1/|z|, where z is the distance of the dipole to the graphene sheet. This
determines the range of evanescent wave vectors g of the field generated by the

oscillating dipole in the plane of the graphene sheet.



Section III: Doping Dependence of the Transverse and Longitudinal Optical

Conductivity of Graphene in the Random Phase Approximation
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Figure S5: Re(a/0,) — 1 (a,c,e,g) and Im(a/0,) (b,d,f,h) of the longitudinal (a,b,e,f)
and transverse (c,d,g,h) optical conductivities of graphene as a function of wavelength 4

in the visible range and of the chemical potential y, as predicted within the random phase



approximation' for T = 300K and q; = 1/z,, zy = 10nm, 0.5nm, respectively. g, =

e?/4h. White dashed lines mark zero values.
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Figure Sé6:

Real and imaginary parts of the optical conductivities of graphene at T=300K as a
function of the chemical potential, within the random phase approximation, at the wave
vectors in the evanescent range, q; = 1/z, , with z; = 10nmand z, = 0.5nm ,

respectively.
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