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Figure S1. Transfer of CVD-grown SLG onto holey Si3N4 membranes. 

  



4 

 

 

 

Figure S2. Set-up for measuring PL spectra and PL lifetimes. 
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Figure S3. (a) PL decay of fluorescein thin film vacuum-deposited on SiO2/Si and 

SLG/SiO2/Si surfaces, respectively. Detection wavelength 525 nm (b) PL decay of R6G 

thin film deposited on SiO2/Si and graphene/SiO2/Si surface, respectively. Detection 

wavelength 596 nm. 

 

 

 

Figure S4. Variation of absolute PL intensity emitted from the device under (a) negative 

and (b) positive bias voltages. 
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Supporting Discussion 

Section I: Near field versus far field of an oscillating point dipole 

The electric field of an oscillating point dipole placed at the origin of the coordinate 

system may be written as [1]  
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with � = ��� × �� × �� , � =  ����� ∙ �� − �, ��  the unit vector in the direction of ", 

#$, #�  the permittivity of vacuum and the relative permittivity of the medium, 

respectively, and � = 2'/) = *
+ ,, ) the wavelength in the medium and , the refractive 

index of the medium. The first term represents the far field, the second the near field and 

the third the intermediate field of the dipole. The near field is identical to that of a static 

electric dipole. In the case of the fabricated device the graphene layer is clearly in the 

near field of the two molecules taking part in the FRET process. 

 

Section II: Range of Evanescent Wave Vectors generated by a Dipole Oscillating 

above the Graphene Sheet 

As the optical response of graphene is conveniently expressed as the response to an 

external vector potential in Fourier space it is useful to consider the latter for the case of 

a point dipole. In Lorenz gauge the vector potential fulfills the Helmholtz equation with 

the current density as the source: 

�∇. + �.�/��⃗� = 0$0�1��⃗�  (2) 

Given the current density of a point dipole 1��⃗� = −23�4�"� this means that the solution 

of eq. (2) is essentially given by the scalar Green´s function of the Helmholtz equation: 

/�"� = −23 5�
�� � ��	


�    (3) 

where a nonmagnetic medium in the frequency range of interest is assumed. 

To obtain the vector potential in the plane of the graphene sheet the angular spectrum of 

eq. (3) must be used which is given by Weyl’s identity [2] 
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with 8C = G�. − 89. − 8:.. This results in 

/�"� = 3 5�
H�� � ∬ ;�<=>9?=@:?=A|C|D �

=A
78978:

E
FE   (5) 

Neglecting any possible anisotropic polarizabilities a plane wave propagating parallel to 

the z direction, normal to the graphene sheet, and polarized in the x direction, will excite 

a horizontal dipole parallel to x in a quantum dot or molecule placed near the graphene 

sheet. Plane wave components of the vector potential parallel to 8⃗ will constitute the 

longitudinal vector potential and plane wave components parallel to 8⃗ the transverse one. 

For I = 89�9 / is therefore purely longitudinal and for I = 8:�: / is purely transverse. 

To either one of those cases corresponds a proper response function of the graphene, i.e. 

the longitudinal and transverse optical conductivity of graphene, respectively. We have 

neglected here the continuity conditions of the field components in order to focus on the 

range of 8 values which contribute to the integral of equation (5). It is convenient to 

convert eq. (5) into cylindrical coordinates: 
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where M, M=  are the azimuthal angles of the vectors �U, V� and �89, 8:�, respectively, 

�∥ = GU. + V., 8∥ = G89. + 8:. and T$ is the Bessel function of order zero. 

The two-dimensional Fourier transform of eq. (6) in cylindrical coordinates simply is 

/�8∥� = 3 5�
�� � ��RA|A|

=A
= � 5�+

�� � ��RA|A|
=A

    (7) 

For �|W| ≪ 1  the exponential will start to fall off at |28C| ≈ 1 |W|⁄ , i.e. 8∥ ≈
G|W|F. + �. ≈ 1 |W|⁄ , where z is the distance of the dipole to the graphene sheet. This 

determines the range of evanescent wave vectors 8∥ of the field generated by the 

oscillating dipole in the plane of the graphene sheet. 
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Section III: Doping Dependence of the Transverse and Longitudinal Optical 

Conductivity of Graphene in the Random Phase Approximation 

 

 

 

Figure S5: ];�^ $̂⁄ � − 1 (a,c,e,g) and _`�^ $̂⁄ � (b,d,f,h) of the longitudinal (a,b,e,f) 

and transverse (c,d,g,h) optical conductivities of graphene as a function of wavelength ) 

in the visible range and of the chemical potential 0, as predicted within the random phase 



9 

 

approximation1 for a = 300d  and 8∥ = 1/W$ , W$ = 10,`, 0.5,` , respectively. $̂ =
;./4ℏ. White dashed lines mark zero values. 

 

 

 

Figure S6:  

Real and imaginary parts of the optical conductivities of graphene at T=300K as a 

function of the chemical potential, within the random phase approximation, at the wave 

vectors in the evanescent range, 8∥ = 1/W$ , with W$ = 10,` and  W$, = 0.5,` , 

respectively. 
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