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We plot the mode dispersion relations and group velocities in a freestanding waveguide of per-
mittivity ε1 = 1 and present details of the theory used in the main text. In particular, we discuss
the reflection and transmission coefficients for outgoing waves emanating from the waveguide ma-
terial, the decomposition of a light plane wave and a line-dipole field in cylindrical waves, and the
far-field limit of the electromagnetic Green tensor. Additionally, the modes of cylindrical, square,
and rectangular waveguides are compared.
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FIG. S1: Dispersion relation of guided modes. (a) Dispersion relations of the lowest-orders propagating modes in a
cylindrical waveguide of radius a made of ε1 = 5 material and hosted in air (εh = 1). We consider the lowest-order solutions
with azimuthal and radial numbers m = 0−2 and l = 1. Mode labels follow the notation TE0l and TM0l for m = 0 (transverse
electric and magnetic modes, respectively), as well as EHml and HEml for m 6= 0 (see Sec. 4.1.1 in the main text). (b) Group
velocities corresponding to the modes in (a). Black dashed lines in both panels indicate the light cones inside and outside the
waveguide.

S1. REFLECTION AND TRANSMISSION COEFFICIENTS OF INNER CYLINDRICAL WAVES AT
THE WAVEGUIDE INTERFACE

Following the notation introduced in Sec. 4.1 of the main text, we first note that m and q are unchanged upon
reflection or transmission due to the cylindrical symmetry of the waveguide. The corresponding coefficients rm,σ′σ and
tm,σ′σ for a cylindrical wave of electric field EH

1,qmσ and polarization σ ∈ {s, p} emanating from inside the waveguide
are defined through the expression

E =
{

EH
1,qmσ + rm,sσEJ

1,qms + rm,pσEJ
1,qmp, R < a,

tm,sσEH
h,qms + tm,pσEH

h,qmp, R ≥ a,
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where the reflected waves EJ
1,qmσ′ are regular propagating solutions inside the waveguide material j = 1, while the

transmitted fields EH
h,qmσ′ are outgoing solutions in the host medium j = h. We now enforce the continuity of the

tangential components (i.e., perpendicular to R̂) in both magnetic and electric fields, where the former is obtained from
the latter by using Faraday’s law (HJ/H

j,qmσ = (1/ik)∇×EJ/H
j,qmσ) combined with the identity [1] kjEJ/H

j,qmσ = ∇×EJ/H
j,qmσ′ ,

valid for σ 6= σ′. This leads to the expressions[
rm,sσEJ

1,qms − tm,sσEH
h,qms + rm,pσEJ

1,qmp − tm,pσEH
h,qmp

]
× R̂ = −EH

1,qmσ × R̂, (S1a)[
ζrm,sσEJ

1,qmp − tm,sσEH
h,qmp + ζrm,pσEJ

1,qms − tm,pσEH
h,qms

]
× R̂ = −ζEH

1,qmσ′ × R̂, (S1b)

where ζ =
√
ε1/εh and σ 6= σ′. By inserting the explicit expressions of the mode fields into Eqs. (S1) and projecting on

ϕ̂ and ẑ components, we readily find the secular matrixM and the linear equations for the reflection and transmission
coefficients given in Sec. 4.1. Waveguide modes are signalled by the zeros of det{M}, as discussed in Sec. 4.1.1 of the
main text. We show the dispersion relation and group velocity of the lowest-order modes for ε1 = 5 and εh = 1 in
Figure S1.

S2. DECOMPOSITION OF A LIGHT PLANE WAVE IN CYLINDRICAL WAVES

We work in frequency space ω and consider a light plane wave propagating in a medium of permittivity ε1 with
unit electric field ê±σ eik±1 ·r of polarization σ ∈ {s, p} and wave vector k±1 = Q± k1z ẑ. Here, Q = (Qx, Qy) = (Q,ϕQ),
k1z =

√
ε1k2 −Q2 + i0+ (with k = ω/c and Re{k1z} > 0), and the polarization vectors are defined as ê±s = (−Qyx̂ +

Qxŷ)/Q and ê±p = (±Qk1z − Q2ẑ)/k1Q. It is convenient to recast the dependence on R = (x, y) = (R,ϕ) by using
the orthogonality relation

∫∞
0 RdRJm(QR)Jm(Q′R) = δ(Q − Q′)/Q together with the integral

∫ 2π
0 dϕ eiQ·Reimϕ =

2πimJm(QR)eimϕQ , from which we derive the Fourier expansion eiQ·R =
∑
m imJm(QR) eim(ϕ−ϕQ). Combining this

result together with the explicit forms of the polarization vectors given above, we can assimilate each of the m terms
in the Fourier transform of the plane wave field to a cylindrical wave and write

ê±s eik±1 ·r =
∑
m

im+1 e−imϕQ EJ
1,±k1zms,

ê±p eik±1 ·r = −
∑
m

im e−imϕQ EJ
1,±k1zmp,

where EJ
1,qmσ is defined in Sec. 4.1 in the main text.

S3. DECOMPOSITION OF THE FIELD DUE TO A LINE DIPOLE IN CYLINDRICAL WAVES

In Sec. 4.2 of the main text, we express the field produced by a line dipole p in a homogeneous medium ε1 as

Edip(r,R0) = iπ
ε1

∑
m

Jm(Q1R0)e−imϕ0
[
k2

1p +∇(p · ∇)
]
H(1)
m (Q1R) eimϕeiqz,

where the eiqz dependence is inherited from the modulation of the line dipole along z. We can express this field in terms
of cylindrical waves by projecting the dipole on the circular coordinate vectors ê± = (x̂± iŷ)/

√
2 = e±iϕ(R̂± iϕ̂)/

√
2,

such that

p = p+ê+ + p−ê− + pz ẑ

with coordinates

p± = p · ê∓ = p · (x̂∓ iŷ)/
√

2,
pz = p · ẑ.

Working out the pz contribution to Edip and comparing it to the cylindrical waves in Sec. 4.1, we find that it reduces
to (iπpzQ1k

2/k1)EH
1,qmp. The p± contributions are more involved, as they contain both p and s waves. More precisely,

the Edip field that they generate has a ẑ component, which can be assigned to a p cylindrical wave ∝ EH
1,q(m±1)p.
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Adding and subtracting this wave to eliminate the z component, we find that the remaining R̂ and ϕ̂ components
reduce to a combination waves ∝ EH

1,q(m±1)s of s polarization. Combining these results, we can write the dipole field
as

Edip(R,R0) = πk2
∑
m

Jm(k1R0)e−imϕ0

[∑
±

p±√
2

(
EH

1,q(m±1)s ±
q

k1
EH

1,q(m±1)p

)
+ ipz

Q1

k1
EH

1,qmp

]
,

which is the expression reproduced in Sec. 4.2. In the algebraic manipulations needed to carry out these derivations,
we make intensive use of the relations

m

θ
Cm = 1

2(Cm−1 + Cm+1),

C′m = 1
2(Cm−1 − Cm+1),

C′′m = −Cm + m− 1
2θ Cm−1 + m+ 1

2θ Cm+1

for the Bessel and Hankel functions Cm(θ), which can be directly obtained from the recurrence relation C′m(θ) =
±(m/θ)Cm(θ)∓ Cm±1(θ) [2].

S4. FAR-FIELD LIMIT OF THE ELECTROMAGNETIC GREEN TENSOR

Because the waveguide is translationally invariant along z, the Green tensor satisfies the identity

G(r, r′, ω) = G(r− z′ẑ,R′, ω) −−−−→
khr�1

eikhr

r
e−ikhzz

′/rg(r̂,R′, ω), (S2)

where the rightmost expression represents the far-field limit in the host medium, for which we implicitly define a
tensor g(r̂,R′, ω) that depends only on the direction of r. In the derivation of this result, we have approximated
|r − z′ẑ| ≈ r − zz′/r in the leading exponential, assuming that we have r � r′. Translational symmetry also allows
us to represent the Green tensor in wave vector space along z and z′ according to

G(r, r′, ω) =
∫

dq

2π G2D(R,R′, q, ω) eiq(z−z′),

where the two-dimensional Green tensor G2D(R,R′, q, ω) has the far-field behavior

G2D(R,R′, q, ω) −−−−−→
khR�1

eiQhR

√
QhR

S(R̂,R′, q, ω)

with Qh =
√
k2

h − q2 + i0+ defined in the same way as in Sec. 4.1 of the main text. Combining the above expressions,
we have

G(r, r′, ω) −−−−−→
khR�1

∫
dq

2π
ei(QhR+qz)
√
QhR

e−iqz′S(R̂,R′, q, ω).

We now work out the q integral in the asymptotic limit by following the stationary-phase method. More precisely,
we approximate QhR + qz ≈ khr − (k2

hR/2Q3
0)(q − q0)2 by its second-order Taylor expansion around the stationary

point defined by the vanishing of its first derivative −q0R/Q0 + z = 0 with Q0 =
√
k2

h − q2
0 (i.e., with q0 < kh such

that (Q0, q0) ‖ (R, z), and therefore, Q0 = khR/r and q0 = khz/r). Since only the region very close to q0 contributes
to the integral in the far-field limit, we can set q = q0 in the rest of the integrand and write

G(r, r′, ω) −−−−−→
khR�1

eikhr

2π
√
khR2/r

e−ikhzz
′/rS(R̂,R′, q0, ω)

∫
dq e−iq2r3/2khR

2
= eikhr

r
e−ikhzz

′/r e−iπ/4
√

2π
S(R̂,R′, q0, ω),

(S3)

where the right-most expression is obtained by applying the integral
∫∞
−∞ dθ eiθ2 =

√
π e−iπ/4. Comparing Eqs. (S2)

and (S3), we find

g(r̂,R′, ω) = e−iπ/4
√

2π
S(R̂,R′, q0, ω), (S4)



S4

where q0 = khz/r. We use this relation in the main text to find an explicit expression for g(r̂,R′, ω) based on the
far-field limit of the outgoing cylindrical waves generated by a line dipole placed inside the waveguide for the particular
case of q = 0 (normal emission) with S(R̂,R′, ω) ≡ S(R̂,R′, q = 0, ω). Gathering the results in Secs. 4.2 and 4.3,
together with Eq. (S4), we obtain

g(r̂,R′, ω) =k2
∑
m

i−mJm(k1R
′) eim(ϕ−ϕ′)

[
tm,pp ẑ⊗ ẑ + 1

2
∑
±
tm±1,ss ϕ̂⊗ (ϕ̂± iR̂)

]
,

whose components in the {R̂, ϕ̂, ẑ} frame depend on ϕ and ϕ′ only through the difference ϕ− ϕ′, thus reflecting the
cylindrical symmetry of the system.
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FIG. S2: Comparison of circular, square, and rectangular waveguide geometries. (a) Normalized dispersion relation
of guided modes in circular (solid-blue curves), square (red-dotted curves), and rectangular (yellow-dotted curves) waveguides,
which are parametrized according to the schemes in panel (b), so that their cross-sectional areas are all fixed to a common
effective value πa2

eff . In panel (a), only the lowest-order modes that correspond to those presented in Figure S1(a) for the
circular waveguide are presented, while the arrows labeled by (c) and (d) indicate the wave vectors at which the intensity
profiles (see logarithmic color scale) of the lowest-order modes are investigated in the corresponding panels below for specific
values of qaeff = 1 (c) and qaeff = 2 (d), with the normalized frequency indicated in the top-right corner of each panel.
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S5. RECTANGULAR WAVEGUIDES

While the cylindrical waveguide geometry offers a natural symmetry that facilitates an analytical description of
waveguide modes, and thus also their free-space excitation and nonlinear interaction, the proposed down-conversion
scheme applies generally to other waveguide geometries. Rectangular waveguides in particular are among the most
widely explored morphologies in the context of SPDC, and constitute a more realistic choice for materials with
a large anisotropic χ(2) nonlinearity such as lithium niobate [3, 4]. In Figure S2(a), we compare the dispersion
relations of rectangular (dashed-yellow curves) and square (dotted-red curves) waveguides with that of the cylindrical
waveguide (solid-blue curves), also presented in Figure S1(a). The specific geometries considered in each case are
shown schematically in Figure S2(b), where the radius a and the lateral size b characterize the circular and rectangular
geometries, respectively, while an effective radius aeff is introduced in such a way that the cross-section area πa2

eff is
the same in all of them. We extract the normalized dispersion relation of rectangular and square waveguides from the
local density of optical states calculated by using the boundary-element method (BEM) [5], which is found to be only
weakly dependent on the specific edge rounding considered. The lowest-order mode supported by the square waveguide
emerges in the same energy range as the associated mode in the cylindrical waveguide (cf. the overlapping dotted-red
and solid-blue curves), while a rectangular waveguide with an aspect ratio AR = 2 lifts the twofold degeneracy of the
same mode in the confinement plane. The qualitative similarities exhibited in the waveguide dispersion relations are
reflected in the intensity profiles presented in Figure S2(c) at the guided mode frequency indicated in each panel for
a selected wave vector q such that qaeff = 1. Peaks in the circular and square geometries occur at the approximately
same frequency ωaeff/c ≈ 0.88, while the rectangular waveguide supports resonances above (ωaeff/c = 0.84) and below
(ωaeff/c = 0.95), corresponding to horizontal and vertical cross-sectional confinement, respectively. In Figure S2(d),
we plot the intensity profile associated with the second lowest order modes at qaeff = 2, which are all characterized
by a minimum in the center of the waveguide profile. In this particular instance, the circular mode displays a lower
frequency compared to the other shapes. The similarity of the dispersion relation and mode profiles exhibited by
these selected geometries indicates that the SPDC scheme introduced in the main text for cylindrical waveguides can
be generally applied to other waveguide morphologies.

[1] F. J. García de Abajo, A. Rivacoba, N. Zabala, and P. M. Echenique, Phys. Rev. B 68, 205105 (2003).
[2] DLMF, NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/, Release 1.1.3 of 2021-09-15, f. W. J. Olver,

A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl,
and M. A. McClain, eds., URL http://dlmf.nist.gov/.

[3] H. Jin, F. Liu, P. Xu, J. Xia, M. Zhong, Y. Yuan, J. Zhou, Y. Gong, W. Wang, and S. Zhu, Phys. Rev. Lett. 113, 103601
(2014).

[4] Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, Adv. Mater. 32, 1806452 (2020).
[5] F. J. García de Abajo and A. Howie, Phys. Rev. B 65, 115418 (2002).

http://dlmf.nist.gov/

	Reflection and transmission coefficients of inner cylindrical waves at the waveguide interface
	Decomposition of a light plane wave in cylindrical waves
	Decomposition of the field due to a line dipole in cylindrical waves
	Far-field limit of the electromagnetic Green tensor
	Rectangular waveguides
	References

