Direct generation of entangled photon pairs in nonlinear optical waveguides
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We plot the mode dispersion relations and group velocities in a freestanding waveguide of per-
mittivity €1 = 1 and present details of the theory used in the main text. In particular, we discuss
the reflection and transmission coefficients for outgoing waves emanating from the waveguide ma-
terial, the decomposition of a light plane wave and a line-dipole field in cylindrical waves, and the
far-field limit of the electromagnetic Green tensor. Additionally, the modes of cylindrical, square,
and rectangular waveguides are compared.
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FIG. S1: Dispersion relation of guided modes. (a) Dispersion relations of the lowest-orders propagating modes in a
cylindrical waveguide of radius @ made of €; = 5 material and hosted in air (e, = 1). We consider the lowest-order solutions
with azimuthal and radial numbers m = 0—2 and [ = 1. Mode labels follow the notation TEq;, and TMg; for m = 0 (transverse
electric and magnetic modes, respectively), as well as EH,,; and HE,,,; for m # 0 (see Sec. 4.1.1 in the main text). (b) Group
velocities corresponding to the modes in (a). Black dashed lines in both panels indicate the light cones inside and outside the
waveguide.

S1. REFLECTION AND TRANSMISSION COEFFICIENTS OF INNER CYLINDRICAL WAVES AT
THE WAVEGUIDE INTERFACE

Following the notation introduced in Sec. 4.1 of the main text, we first note that m and ¢ are unchanged upon
reflection or transmission due to the cylindrical symmetry of the waveguide. The corresponding coefficients 7., 5/, and
tm,o'o for a cylindrical wave of electric field E{{ qmo and polarization o € {s,p} emanating from inside the waveguide
are defined through the expression

H J J
E = {El,qmo + TmVSUEl,qms + Tm,pUEl,qmpa R < a,

tm,soEH + tm,paEH R >a,

h,gms h,qmp>

*Electronic address: javier.garciadeabajo@nanophotonics.es


mailto:javier.garciadeabajo@nanophotonics.es

52

where the reflected waves El‘] qmo are regular propagating solutions inside the waveguide material j = 1, while the
transmitted fields E{L{ gmo are outgoing solutions in the host medium j = h. We now enforce the continuity of the
tangential components (i.e., perpendicular to f{) in both magnetic and electric fields, where the former is obtained from
the latter by using Faraday’s law (H S = (1/ik)V x /1 ) combined with the identity [1] k; E/? —vxE/"

J.amo j.amo J,amo j,qme’
valid for o # ¢’. This leads to the expressions

[Tm,saEi]’qu - tm,SUEhH,qms + Tm,;DUEIJ,qmp ,PUEH ] xR = _EquU' X R (Sla‘)

h,qmp

[CTW7SUE1J,qmp - tm,SUEhH,qmp + CrmmUElJ,qms - th’UEh,qms] X R = _CELqmo” X R7 (Slb)

where ( = \/€1 /€, and o # o’. By inserting the explicit expressions of the mode fields into Egs. (S1) and projecting on
¢ and z components, we readily find the secular matrix M and the linear equations for the reflection and transmission
coefficients given in Sec. 4.1. Waveguide modes are signalled by the zeros of det{M}, as discussed in Sec. 4.1.1 of the
main text. We show the dispersion relation and group velocity of the lowest-order modes for ¢; = 5 and e, = 1 in
Figure S1.

S2. DECOMPOSITION OF A LIGHT PLANE WAVE IN CYLINDRICAL WAVES

We work in frequency space w and consider a light plane wave propagating in a medium of permittivity e; with
ok
unit electric field éfe'*1 T of polarization o € {s,p} and wave vector ki = Q-+ k2. Here, Q = (Qus Qy) =(Q,¢q),

k1. = \/e1k? — Q2 +1i0% (with k = w/c and Re{ky.} > 0), and the polarization vectors are defined as éF = (—Q,% +
Q:9)/Q and & = (£Qk1. — Q*2)/k1Q. It is convenient to recast the dependence on R = (z,y) = (R, ©) by using

the orthogonality relation [;~ RdR Jn,(QR)Jm(Q'R) = 6(Q — Q')/Q together with the integral fOQW dp e QReime =
27i™ J,, (QR)e!™#<, from which we derive the Fourier expansion e/ @R = 3" im.J, (QR)e™(¥~%Q). Combining this
result together with the explicit forms of the polarization vectors given above, we can assimilate each of the m terms
in the Fourier transform of the plane wave field to a cylindrical wave and write

A+ ikT.r _ m-+1 —1mg0
€s; e ! - E :1 QEl ,tki.ms>

At iki‘r _ sm —impq
€,e™ ——E ie El,iklzmpv

m

where E‘1’7qm(7 is defined in Sec. 4.1 in the main text.

S3. DECOMPOSITION OF THE FIELD DUE TO A LINE DIPOLE IN CYLINDRICAL WAVES
In Sec. 4.2 of the main text, we express the field produced by a line dipole p in a homogeneous medium €; as

Edlp(r Ry) = im Z Im QlRO) —imego [ %p +V(p- V)] H&l)(QlR) ei7rL<,oeiqz7

where the e'7% dependence is inherited from the modulation of the line dipole along z. We can express this field in terms
of cylindrical waves by projecting the dipole on the circular coordinate vectors 8* = (x £iy)/v2 = eT¥(R £ip)/V/2,
such that

p=pie" +p_é& +p.2

with coordinates

CD)

Pt =p~(f<ﬂFi$')/\/§,

p-
bz=p-

N)

Working out the p, contribution to E4P and comparing it to the cylindrical waves in Sec. 4.1, we find that it reduces
to (imp.Q1k%/k1)EX "qmp- Lhe py contributions are more involved, as they contain both p and s waves. More precisely,

the E4P field that they generate has a 2 component, which can be assigned to a p cylindrical wave o E1 a(mt1)p
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Adding and subtracting this wave to eliminate the z component, we find that the remaining R and (¢ components

reduce to a combination waves o E{i of s polarization. Combining these results, we can write the dipole field
,q(m=E1)s

as

Y

i —im b+ q . Ql
EYP(R,Ry) = 7k? Z Im (k1 Rg)e™ %0 [Z 7 (Efq(mﬂ)s + kE{{q(mﬂ)p) + 1pzk—E{{qmp
m ¥ 1 1

which is the expression reproduced in Sec. 4.2. In the algebraic manipulations needed to carry out these derivations,
we make intensive use of the relations

m 1

gcm = i(cmfl +Cm+1)a
1
C;n = i(cm—l - Cm-H)a
0o m—1 m+1
Cm - Cm + 20 Cm—l + 20 Cm+l

for the Bessel and Hankel functions C,,(#), which can be directly obtained from the recurrence relation C/,(0) =

£(m/0)Cpm(0) F Crns1 (0) [2].

S4. FAR-FIELD LIMIT OF THE ELECTROMAGNETIC GREEN TENSOR

Because the waveguide is translationally invariant along z, the Green tensor satisfies the identity
eikhr . ,
G(r,v',w) =G(r — 72, R ,w) —— ——e F2/Tg(3 R/, w), (S2)
knr>1 T

where the rightmost expression represents the far-field limit in the host medium, for which we implicitly define a
tensor g(#, R’,w) that depends only on the direction of r. In the derivation of this result, we have approximated
|[r — 22| & r — 22’ /r in the leading exponential, assuming that we have r > /. Translational symmetry also allows
us to represent the Green tensor in wave vector space along z and 2’ according to

d : !’
G(r.t'.) = [ 5% Gan(R R, g 1),
7r
where the two-dimensional Green tensor Gop (R, R/, ¢,w) has the far-field behavior
eiQhR
—_—
knR>1 \/QhR

with Qn = \/ki — ¢? + 10 defined in the same way as in Sec. 4.1 of the main text. Combining the above expressions,
we have

g2D(RaRl7q7w) S(R,RI,Q,W)

dq ei(QhR"qu) . R
o) s | o ¢ SRR 00)
hR> s h

We now work out the ¢ integral in the asymptotic limit by following the stationary-phase method. More precisely,
we approximate QnR + gz ~ knr — (k2 R/2Q3)(q — qo)? by its second-order Taylor expansion around the stationary
point defined by the vanishing of its first derivative —goR/Qo + z = 0 with Qo = \/k? — ¢5 (i.e., with go < kp, such
that (Qo,qo) || (R, z), and therefore, Qo = knR/r and go = knz/r). Since only the region very close to ¢o contributes
to the integral in the far-field limit, we can set ¢ = qg in the rest of the integrand and write

eikh’r —im/4

knR>1 274/ thz/T

S(f‘,, Rl7 q0, UJ),
(S3)

ikpr
» P A .23 2 e’ . 1. €
G(r,r',w) e hnz='/TQ(R, R’,qmw)/dqe o2k BE — 2 q—iknz /v

r Ve

where the right-most expression is obtained by applying the integral ffooo dfei?” = Jme ™/ Comparing Egs. (S2)
and (S3), we find
efiﬂ'/4

g(f'a Rlaw) = m S(R7Rlvq03w)a (84)
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where gy = kpz/r. We use this relation in the main text to find an explicit expression for g(#, R’,w) based on the
far-field limit of the outgoing cylindrical waves generated by a line dipole placed inside the waveguide for the particular
case of ¢ = 0 (normal emission) with S(R,R’,w) = S(R,R’,q = 0,w). Gathering the results in Secs. 4.2 and 4.3,
together with Eq. (S4), we obtain

. / 1 A
A / _ 1.2 e— / ( — ) A~ N - ~ ~ .
B(E R @) =k D1 () 70 ltm,pz®z+22ijtmﬂ,ssso®(soilR) :

whose components in the {R, $,2} frame depend on ¢ and ¢’ only through the difference ¢ — ¢’, thus reflecting the
cylindrical symmetry of the system.

2.0
a
® Circular waveguide Square waveguide Rectangular waveguide
1.5} b
21 b/10 b
-
%: 10 -1 b/10
S]
0.5 |
’ Qeff = A aeﬁ%b/\/?r aeﬂ%b/VQﬂ'

min 108, [EF max

FIG. S2: Comparison of circular, square, and rectangular waveguide geometries. (a) Normalized dispersion relation
of guided modes in circular (solid-blue curves), square (red-dotted curves), and rectangular (yellow-dotted curves) waveguides,
which are parametrized according to the schemes in panel (b), so that their cross-sectional areas are all fixed to a common
effective value ma2g. In panel (a), only the lowest-order modes that correspond to those presented in Figure S1(a) for the
circular waveguide are presented, while the arrows labeled by (c) and (d) indicate the wave vectors at which the intensity
profiles (see logarithmic color scale) of the lowest-order modes are investigated in the corresponding panels below for specific
values of qacs =1 (¢) and qaes = 2 (d), with the normalized frequency indicated in the top-right corner of each panel.



S5
S5. RECTANGULAR WAVEGUIDES

While the cylindrical waveguide geometry offers a natural symmetry that facilitates an analytical description of
waveguide modes, and thus also their free-space excitation and nonlinear interaction, the proposed down-conversion
scheme applies generally to other waveguide geometries. Rectangular waveguides in particular are among the most
widely explored morphologies in the context of SPDC, and constitute a more realistic choice for materials with
a large anisotropic x(?) nonlinearity such as lithium niobate [3, 4]. In Figure S2(a), we compare the dispersion
relations of rectangular (dashed-yellow curves) and square (dotted-red curves) waveguides with that of the cylindrical
waveguide (solid-blue curves), also presented in Figure S1(a). The specific geometries considered in each case are
shown schematically in Figure S2(b), where the radius a and the lateral size b characterize the circular and rectangular
geometries, respectively, while an effective radius aeg is introduced in such a way that the cross-section area ma2; is
the same in all of them. We extract the normalized dispersion relation of rectangular and square waveguides from the
local density of optical states calculated by using the boundary-element method (BEM) [5], which is found to be only
weakly dependent on the specific edge rounding considered. The lowest-order mode supported by the square waveguide
emerges in the same energy range as the associated mode in the cylindrical waveguide (cf. the overlapping dotted-red
and solid-blue curves), while a rectangular waveguide with an aspect ratio AR = 2 lifts the twofold degeneracy of the
same mode in the confinement plane. The qualitative similarities exhibited in the waveguide dispersion relations are
reflected in the intensity profiles presented in Figure S2(c) at the guided mode frequency indicated in each panel for
a selected wave vector ¢ such that qa.g = 1. Peaks in the circular and square geometries occur at the approximately
same frequency waegr/c = 0.88, while the rectangular waveguide supports resonances above (waeg/c = 0.84) and below
(waegr/c = 0.95), corresponding to horizontal and vertical cross-sectional confinement, respectively. In Figure S2(d),
we plot the intensity profile associated with the second lowest order modes at qa.g = 2, which are all characterized
by a minimum in the center of the waveguide profile. In this particular instance, the circular mode displays a lower
frequency compared to the other shapes. The similarity of the dispersion relation and mode profiles exhibited by
these selected geometries indicates that the SPDC scheme introduced in the main text for cylindrical waveguides can
be generally applied to other waveguide morphologies.
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