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Abstract: The possibility of arbitrary spatial control of
incident wavefronts with the subwavelength resolution
has driven research into dielectric optical metasurfaces
in the last decade. The unit-cell based metasurface
design approach that relies on a library of single ele-
ment responses is known to result in reduced effi-
ciency attributed to the inadequate accounting of the
coupling effects between meta-atoms. Metasurfaces with
extended unit-cells containing multiple resonators can
improve design outcomes but their design requires exten-
sive numerical computing and optimizations. We report a
deep learning based design methodology for the inverse
design of extended unit-cell metagratings. In contrast
to previous reports, our approach learns the metagrat-
ing spectral response across its reflected and transmitted
orders. Through systematic exploration, we discover net-
work architectures and training dataset sampling strate-
gies that allow such learning without requiring exten-
sive ground-truth generation. The one-time investment of
model creation can then be used to significantly acceler-
ate numerical optimization of multiple functionalities as
demonstrated by considering the inverse design of various
spectral and polarization dependent splitters and filters.
The proposed methodology is not limited to these proof-
of-concept demonstrations and can be broadly applied to
meta-atom-based nanophotonic system design and in real-
ising the next generation of metasurface functionalities
with improved performance.
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1 Introduction

State-of-the-art nanofabrication technologies with extraor-
dinary lateral resolution and high stitching accuracy now
enable the realization of wide area precision nanostruc-
tures. In combination with advanced deposition technolo-
gies which provide great control over film thickness and
uniformity, close and precise stacking of nanostructured
filmsis also possible. A wide range of material choices, e.g.,
plasmonic materials (Au, Ag etc.), high index dielectrics
(Si, Ge, GaAs, SiN, TiO, etc.), graphene and other 2D mate-
rials, phase change materials and transparent conducting
oxides complement the large number of spatial degrees of
freedom available in nanopatterning. The optical metasur-
face, a spatially heterogeneous array of nanoresonators is
one example of the devices that are now within the reach of
nanofabrication with the tantalizing possibility of full local
control of an incident wavefront’s properties (amplitude,
phase, spectrum or polarization state). Such exquisite con-
trol in conjunction with active tunability can enable a new
class of ultra-thin, actively controllable, optical devices
with a variety of functionalities like beam shaping [1],
lensing [2-4], beam steering [5-7], polarizing [8, 9] and
positively impact diverse applications like imaging [10],
sensing [11], holography [12, 13] and optical computing
[14].

However, for designing a broad class of nanophotonic
systems, including photonic crystals, metasurfaces, and
plasmonic structures, the motif of a unit cell with a single
resonator is predominantly employed owing to its sim-
plicity. For the optical metasurface, the so-called unit-cell
approximation creates a library that maps the geomet-
rical parameters of a resonator to the optical response
of a periodic metasurface consisting of this meta-atom.
The final design is then arrived at by simply stitch-
ing together various library elements. The limitations of
this design approach have been recently explored in the
nanophotonics literature [15-18]. Gigli et al. [19] demon-
strated the infeasibility of quasi-independent operation
with weak crosstalk for nanoresonators arrayed with a
sub-wavelength or even wavelength-scale distance. The
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limitations are most noteworthy in the case of beam shap-
ing and lensing applications. For instance, the numerical
calculations by Gigli et al. show that the efficiency of
the Huygens’ elements remains below 40% for monochro-
matic operation, even for meta-gratings with periods sig-
nificantly larger than the wavelength. This performance
reduction is now well known in the field and is ascribed to
inter-element electromagnetic coupling [20-22].

To overcome these limitations, local periodization
[22, 23] and global optimization techniques [21, 24] have
been explored and found to give performance improve-
ments. Specifically, metagratings capable of higher beam
bending angles in transmission [25-27] and reflection [28,
29] mode have been proposed. The idea behind these
metagratings is to break the symmetry of illumination
conditions and channelize light into diffraction orders by
engineering their scattering patterns. Such extended unit-
cell geometries, where high-index dielectric nanoantennas
feature multiple geometry-tunable resonances [30-33],
have enabled selective enhancement/suppression of sin-
gle diffraction order in both reflection and transmission
modes. A second aspect is that the extension of the unit cell
with multiple meta-atoms drastically enlarges the param-
eter space and consequently provides potential configura-
tions with improved device performance. While extended-
unit cell designs using the concept of meta-atom multipli-
cation donotinduce additional complexity for lithography-
based fabrications, the substantially increased number
of parameters makes the design methodology based on
physical intuition and parameter sweep impractical. The
presence of multiple diffraction orders in metagratings
and the absence of easily discernible empirical relation-
ships between geometries and optical properties make itan
especially challenging problem. Multiple separate inclu-
sions have an inherent frequency divergence that hinders
the high diffraction efficiency from wide frequency and
angle ranges, which are highly desirable for beam steering
applications. Asymmetric nanoantenna separation is also
strongly correlated to diffraction efficiency, which raises
the challenge of stringent fabrication precision.

In this article, we propose an improved learning based
nanophotonic structure discovery methodology for the
constrained inverse design of extended unit-cell metagrat-
ings. Inverse design with adequate accounting of fabri-
cation constraints is an optimization occurring in a con-
strained higher dimensional parameter space. The com-
putational cost of such optimization scales exponentially
with linear scaling in the parameter space dimensionality.
This is often termed as the “curse of dimensionality” in
the optimization literature [34]. This has opened a new
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computation-intensive front for nanophotonic research
[35-38]. Machine learning, in particular, deep learning
[39, 40] (DL), is being increasingly investigated for inverse
design problems in photonics [41-45]. DL based inverse
design [46] has been explored for a broader class of photon-
ics problems [41, 47]: nanoresonators [48, 49], plasmonic
structures [50-52], metasurfaces/metamaterials [50-66],
integrated photonics [67, 68] and topological photonics
[50-52, 61-66, 69]. As DL begins to be increasingly applied
in the inverse design of complex structures with high for-
ward simulation load, feasible datasets may be “small”
with potentially significant biasing due to the dataset con-
struction. Thus, there is a need for workflows that not only
emphasize efficient sample generation but also reduce the
burden involved in learned model creation.

We consider the complex multi-variable geometry of
rectangular unit-cells with multiple non-intersecting ellip-
tical nanopillars [33] for wide-band multi-order function-
alities. Previous reports [70-73] have limited the structure
discovery to a narrow-band wavelength-limited space (as
reported by Inampudi and coworkers [55, 72, 74, 75]) or
diffraction order limited space (as reported by Kiarashine-
jad and coworkers [73, 76, 77]). In creating good models,
we found that a systematic study of network architec-
tures and techniques to limit the amount of ground-truth
training data was essential. The learning methodology
typically employed in the literature has overwhelmingly
favored simple fully-connected feedforward neural net-
work architectures, randomly sampled training datasets
and model performance estimation using testing sets sam-
pled identically to the training dataset. The commonly
used feedforward architectures suffer from the well-known
issue of vanishing gradients which leads to a saturated
prediction performance with increasing network depth.
Residual layers implemented by Jiang and coworkers [78]
and Yeung and coworkers [79] are adopted here for address-
ing this shortcoming along with Dense network architec-
tures (DenseNet). Greedy sampling and centroid based
sampling strategies are compared to random dataset sam-
pling. The prediction performances of trained models on
unseen data are investigated by building surrogate models
and implementing them in surrogate-based evolutionary
optimization.

The paper is organized as follows. Following this
introduction, a detailed discussion of problem description
and design approach is presented in Section 2 including
problem encoding (subsection 2.2.1), ground truth gener-
ation (subsection 2.2.2) and learned model creation (sub-
section 2.2.3). Methods to estimate the global prediction
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capability of models via surrogate-assisted optimiza-
tion are discussed in subsection 2.2.4. The results and
discussion section (Section 3) begins with global pre-
diction abilities of the surrogate models. Surrogate
assisted optimizations are discussed in subsection 3.1
to design different spectral filters before concluding in
Section 4.

2 Problem description and
design approach

2.1 The extended unit-cell metagrating

The building block of the metagratings proposed in this
work is an extended unit cell that is composed of two non-
identical non-intersecting elliptical TiO, nanopillars. The
configuration results in the coexistence of multipoles of
high orders when arranged in a periodic fashion. A typical
symmetric 2D grating, when subjected to normally inci-
dent polarized white light, splits the beams into different
diffraction orders uniformly at angles depending on the
wavelength and lattice constants (Figure 1A). However,
engineering the multipolar interference in an extended
unit-cell allows us to control the power distribution in dif-
ferent orders and wavelengths. Building on the seminal
works of Shibanuma and coworkers [80], tunable con-
trol of directional scattering has been proposed with the
help of cylindrical dimers [30], touching dimers [31], ellip-
tical dimers [33] and prismoid-circular dimers [33]. The
extended unit cell adapted in this work takes inspiration
from the metasurface geometry proposed by Khaidarovand
coworkers [33]. In their work, Khaidarov and coworkers
considered a unit-cell that consists of asymmetric elliptical
dimers in a single unit cell. They have demonstrated that
such asymmetric arrangement of elliptical nano-antenna
can control the power distribution into various diffraction
orders. Such arrangements can help achieving a variety
of wavelength and polarization-dependent functionalities
like filtering [32], beam deflection [81], beam splitting etc.

The optical behavior of a typical extended unit-cell
metagrating is shown in Figure 1B-iii. The spectral behav-
ior of two other metagratings designed by periodically
extending only one of the constituent meta-atom is shown
in Figure 1B-i and ii. Both constituent meta-atoms are
observed to be giving a peak diffraction efficiency in (0,0)t
transmission order at wavelength 450 and 560 nm, respec-
tively, with negligible efficiency in other orders; whereas,
the extended unit-cell gives diffraction peaks in the (0,0)th,
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(0,—1)th and (1,0)th orders at 450, 500 and 700 nm, respec-
tively. The E-field distributions for these marked diffraction
peaks are shown in Figure C-i—Figure 1C-i—v. For single-
atom unit cells (Figure 1C-i and ii), fundamental electric
dipole modes can be observed inside the resonators which
can be determined with the help of Mie theory in the limit of
large index contrast [82]. However, for extended unit-cells
(Figure C-iii—Figure 1C-iii—v), hybrid modes are observed
which do not show an easily discernible relationship with
individual particle resonators. This coexistence of multi-
poles leads to the asymmetrical farfield scattering patterns
shown in Figure D-i—Figure 1D-i-v.

2.2 Design approach

As noted in subsection 2.1, the behavior of an extended
unit-cell meta-atom cannot be easily expressed in terms of
the optical behavior of constituting resonators when con-
sidered inisolation. The proposed inverse design process is
carried out by an optimization algorithm that searches the
full geometrical parameter space of the extended unit-cell
with the help of a learning based prediction model. Using
a prediction model in place of an EM solver significantly
accelerates the numerical optimization with reduced com-
putational cost, but requires a one-time computational
investment for ground-truth dataset generation and subse-
quent DNN model training. Due to the high dimensionality
of the problem, special care is given in smart-sampling
the parameter space and design of efficient network archi-
tectures. The DL enabled surrogate optimization process
can be divided into three steps: (1) choosing a suitable
problem encoding; (2) ground truth generation; (3) choos-
ing a model architecture and learned model creation; and
(4) inverse design using the learned model. In this section,
each of these steps is described briefly with further details
provided in the supporting document.

2.2.1 Problem encoding

The geometry considered here (Figure 1A) is an extended
unit cell [32] metagrating consisting of two elliptical TiO,
nano-pillars on an SiO, substrate. Each elliptical pillar can
be represented by the following set of geometrical parame-
ters: coordinates of the center (x and y coordinates), major
and minor radii (7)o, and Iy, respectively) and angle of
inclination (@) (as shown in the inset of Figure 1A). The geo-
metrical parameters of the two elliptical nanopillars; the
lattice periodicities along the x and y directions (P, and
P, respectively); and, the metasurface thickness (t) form
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Figure 1: The extended unit cell metagrating and its optical response.

(A) Schematic of the extended unit-cell metagrating and scattering patterns of a metagrating dividing lights equally among orders when
subjected to white light. Both transmitted and reflected diffraction orders are shown. (B) Comparison of diffraction efficiencies of three
metagratings across different diffraction orders. The metagratings are constructed by periodically extending (i) first constituent meta-atom
in a unit-cell, (ii) second constituent meta-atom in a unit-cell and (iii) both meta-atoms in an extended unit-cell. Peak diffraction efficiencies
are marked. (C) E field distributions and (D) scattering power patterns corresponding to marked points in B are shown.

a 13-dimensional parameterized vector. Fixing the xand y  higher dimensional parameter space defined by these con-
position of the center of one of the ellipses to (0,0) allows straints. However, this solution space may also contain
us to reduce the dimensionality of the solution space by 2.  some structures that are infeasible for nanofabrication.

The individual parameters in the parameter vector Additionally, some parameter combinations may result in
are constrained to lie between their minimum and max- the intersection of the ellipses. Although the structures
imum values and the solution space is a region in the with intersecting ellipses may be feasible for fabrication,



DE GRUYTER

their optical response may greatly differ from the response
of structures without such intersections. Therefore, subre-
gions of the solution space are excluded from consideration
which contains designs that are infeasible for nanofab-
rication (which violate lithographic constraints [83] like
minimum feature size) and those that lead to intersect-
ing ellipses. Specifically, the minimum value of major and
minor radii was set to 50 nm and, to avoid redundancy,
Tmajor 1S @lways taken greater than r;,.,. To maintain ade-
quate spacing between ellipses, the ellipses a first scaled
to buffer ellipses (indicated by dotted blue lines in the inset
of figure: schematic A) such that ry,,ge, = repipse+ 10 nm for
both major and minor radii. Geometries with intersecting
buffer ellipses are left out; which not only ensures a min-
imum gap of 20 nm between ellipses but also eliminates
structures with intersecting ellipses. The buffer ellipses
should also not intersect the lattice rectangle; thus provid-
ing adequate distance (20 nm) between neighboring unit
cells.

The observations in this work are limited to visible
wavelength (400-700 nm) and the periodicities of struc-
tures are set between 600 and 1000 nm. Only for the
periodicities higher than 800 nm we get diffraction into
the second order and that too for a shorter range of wave-
lengths (e.g., 400-500 nm for the largest periodicity of
1000 nm). For all other periodicities and wavelengths,
diffraction is only up to the first order. Thus, we limit the
observation up to the first diffraction order only. There-
fore, we consider 18 diffraction orders (9 in transmission
and 9 in reflection) for a single polarization at a given wave-
length. Considering two linear polarizations (s and p) and
discretizing the visible spectrum (4 = 400-700 nm) with
32sample wavelengths with 10 nm spacing, we get 36 spec-
tral responses at each of the 32 discrete wavelengths. These
numbers constitute the “output” of any learned model.
There are various choices for representing this “output”;
the approach in this paper is to represent it as a 3D tensor of
shape (18,2,32) (see Figure 1B). This choice was motivated
by the observation that although the spectral responses of
any particular order are smooth functions of wavelength,
the splitting various orders at any given wavelength was
not very smooth. Cascading them to a 1D tensor causes
discontinuities at the points of succession; making the
training performance suffer. A 3D tensor representation
(Figure 1B) of dimensionality (18,2,32) as chosen in this
work not only avoids those discontinuities but also helps
to exploit the correlations among output parameters. Addi-
tionally, this encoding allows us to use a deconvolution
layer toward the end of the network (as shown in Figure 1B)
which helps in reducing the number of network trainable
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parameters. A detailed comparison between the two encod-
ing choices is provided in Section S-1.1 of the supporting
document.

2.2.2 Ground-truth generation

As discussed in 2.2.1, the design space is a continuous
hypercube in the 11-dimensional continuous solution
space (H). The imposed constraints reduce the solution
space to a “feasible” continuous solution space (F) with
irregular boundaries (Figure S-2C-i). First we generate
a discrete version of the feasible solution space F;
(Figure S-2C-ii) by adequately sampling F as follows:
X,y —100,200, ...,700,  Tpaiors Fminor — 50,100, ... , 450,
6 —0°,45°,...,135°, PX,Py — 600, 800, 1000 and t — 500,
600, 700, 800 with the lengths measured in nanometers.
Once generated, samples are selected from F, and labeled
for training the networks. Training and testing datasets
include both the input (X) and the associated outputs (Y)
(outputs are termed as “labels”). The labeling process
(ground truth generation) is a computationally expensive
process. While building a prediction model, a smart
selection of datasets (i.e., choosing the X array) could
lead to a reduction in this burden or lead to a better model
for the same computational burden. Three criteria are
needed to be considered when selecting samples (X) from
the design space; informativeness, representativeness and
diversity [84]. The conventional ways of sampling are the
random sampling [85] (uniform sampling probabilities
assigned to all the regions of the solution space) and Latin
Hypercube (LHC) sampling [86] (stratifies the input prob-
ability distributions). However, due to the irregularities in
the distribution of the infeasible designs, LHC sampling
does not lead to a representative sampling in our case. In
this work, we explore three smart sampling strategies: (1)
greedy sampling, (2) k-means clustering and (3) k-medoids
clustering to generate the train/test datasets and compare
them with random sampling. See Section S-1.2 of the
supporting document for further details.

2.2.3 Learned model creation

Three network architectures have been explored in this
work and are compared with the most prevalent feedfor-
ward architecture; (1) ResNet architecture which is built
by cascading multiple residual blocks (a residual block
uses a single skip connection in a deep neural network);
(2) DenseNet-1 architecture where the network is built by
cascading dense blocks (a single dense block consists of
two skip layers); and (3) DenseNet-II architecture where
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skip layers are repeated throughout to connect the hidden
layers. The architectures are shown in Figure S-2B of the
supporting document. In each of these network architec-
tures, the number of hidden layers is increased up to 24 to
find the best network configuration. The results are docu-
mented in Section S-1.3 of the supporting file. Based on the
result given in Figure S-1D, the number of layers is fixed to
13 for feedforward network architectures and 24 for other
architectures for the rest of the article. Unless otherwise
mentioned, the dense layers consist of 288 neurons.

An extensive comparison of performance was carried
out for all combinations of network architectures and sam-
pling strategies discussed above and are documented in
Section S-2 of the supporting document. A DenseNet-II net-
work architecture trained with samples selected with the
help of k-means clustering strategy is observed to be having
a greater prediction ability as compared to other combina-
tions. This prediction model is referred to as “Surrogate-1”
in the further part of this work. In order to showcase its
efficacy, this model is compared with another prediction
model “Surrogate-2” which uses a feed-forward network
architecture trained with randomly selected samples.

2.2.4 Surrogate-assisted evolutionary optimization

A DE optimization is employed in this work for the inverse
design of the metagratings where a randomly initialized
set of solutions (called the “population”) are taken and
nature inspired techniques like mutation and crossover
are performed to produce a new set of solutions [87, 88].
In our previous works [89, 90], where DE was used to opti-
mize nanophotonic structures, the optical response was
obtained using a forward solver (S*). In this work, we sub-
stitute the forward solver with the above discussed DNN
based prediction models Surrogate-1 and Surrogate-2 and
the associated DE optimization models are referred to as
DEgrogate-1 @1d DEgyroeate-2» T€SpPECtively. Figure 2C shows
the block diagram of the surrogate optimization. The DE
optimization searches for a design that closely matches
a targeted response (specified across orders, wavelengths
and input polarization). The fitness (1) in the optimization
is calculated by taking the mean of squared error between
the obtained transmittance (s) and target spectra (z) as
given below.

N,
1 [
= 2NON,1.ZZ

i=1 j=1 k=1

N;

[s(i, j, k) = (i, j, I, @

where N, = 18 and N, = 32 are the number of diffraction
orders (both reflection and transmissions) and wavelength
samples, respectively.
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3 Results and discussions

The numerical experiments were performed in the Keras
DL platform with a Tensorflow backend on a workstation
with an Intel™ i9-7920X CPU with an NVIDIA™ GeForce
GTX 1080 GPU card with 128 GB memory. The source code
for the implementation, datasets and saved models has
been made publicly available at [91]. For ground-truth gen-
eration and exact fitness estimation of structures for use
in evolutionary algorithms, the Stanford Stratified Struc-
ture Simulator [92] (S*) was used, which uses the Rigorous
Coupled Wave Analysis (RCWA) technique along with the
S-matrix algorithm to solve Maxwell’s equations in lay-
ered periodic structures. In the S* solver, the number of
basic functions parameters was set to 50. For the results
presented in this section, the prediction error of a trained
model (the mean of squared errors (MSE) between the true
and predicted output values for members of the test set) is
considered. Models with prediction error values less than
5e-4 were found to give a satisfactory performance (see
Figure S-5 in the supporting document for more details).
An extensive comparison of performance was carried
out for all combinations of network architectures and sam-
pling strategies discussed above and are documented in
Section S-2 of the supporting document. A DenseNet-II
network architecture trained with samples selected from
F, with the help of k-means clustering strategy (referred
to as “Surrogate-1”) is statistically observed to be having
a greater prediction ability as compared to other combi-
nations. Figure 3A and B shows the prediction ability of
Surrogate-1 on two unseen testing datasets of size 50 K
selected from F; and (F — F,), respectively. In order to
showcase its efficacy, this prediction model is compared
with another prediction model “Surrogate-2” which uses a
feed-forward network architecture trained with randomly
selected samples. The training dataset size is increased
from 40 to 400 K for both configurations. All experiments
were repeated for 10 times and the distribution of predic-
tion error is plotted in Figure 3A-i and B-i. A clear advan-
tage of prediction quality in Surrogate-1 is observed over
Surrogate-2 with mean error, as well as the error variance
across multiple runs, are both noticeably lower. Although
increasing training dataset size (S.;,) beyond 80 K fur-
ther reduces the prediction error in test set Fg, in test set
(F —F,) it gives a saturated performance, thus making 80K
a suitable training dataset size. To illustrate, Figure 3A-ii
and B-ii show two example structures drawn from both
test sets and their actual and predicted optical response.
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Figure 2: Design of experiments for DL based structure discovery of extended unit cell metagratings.

(A) Schematic of the extended unit cell metagrating and its optical response which results in splitting the incoming normally incident beam
into various diffraction orders. The structure consists of two elliptical TiO, nano-pillars on SiO, substrate (Insets show the top and
perspective views of a single unit cell and the geometrical parameters). (B) A “learned” deep neural network (DNN) model of the structure
which predicts the power splitting in various orders over a wavelength range for a given member geometry. (C) Flowchart of learning based
surrogate differential evolution (DE) optimization for extended unit-cell metagrating design.

The training dataset size was set to 80 K. Noticeable dif- optimization searches for a design that closely matches
ferences are observed in the prediction of different models a targeted response (specified across orders, wavelengths
with Surrogate-1 outperforming Surrogate-2. and input polarization). In all the DE optimizations, the

Further, both surrogate models are implemented in population size is fixed to 110 and the initial populations
designing a surrogate assisted DE optimization. The DE are randomly selected. The DE schemes implemented here
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Figure 3: Comparison of the prediction performance on unseen data for two combinations of sampling strategies and network architectures

(k-means + DenseNet-l and Random + Feedforward) on two test sets

of size 50,000 selected from (A) (F,) and (B) (F — F,), respectively.

Statistical comparison of prediction error along with the prediction of one example structure is shown for both cases. (C) Comparison of both
trained models’ performances as surrogates in DE optimization. Statistics of multiple runs of DE optimization (100 iterations) for a target
design of a polarization-independent color filter (red) are shown. The best surrogate fitness (fitness predicted by surrogates; see Eq. (1)) and
the actual fitness values at the end of multiple optimization runs are shown. (D) and (E) Typical progression of fitnesses (with iteration
number) for DEg,ogate.1 @8Nd DEg,,ro0a1e.25 TESPECtively. For surrogate optimizations, the actual fitnesses (solid lines) and corresponding

surrogate fitnesses (dotted lines) are shown.

are DE/rand/1/bin (mutant is derived through one differ-
ence operation between two random solutions and a binary
crossover takes place between parent and mutant solution
vector to generate the offspring) for exploration. A good
convergence rate is observed with mutation rate (m,) = 0.4
and crossover probability (c,) = 0.5. All the DE runs are
observed to be converging after 100 iterations, making it
the termination criterion. The fitness (1) in the optimization
is calculated as discussed in Eq. (1). Specifically, for illus-
tration, the design of a polarization-independent “Red”
color filter is considered under the condition of normal
incidence. For this target, Eq. (1) assume the following
form:
2 N,

D D [s(1, j, k) — CMF,eq ()1,

j’]lk—

1

@

where CMF, 4 is the CIE color matching function for red
color (sampled at 32 wavelengths).

Figure 3C shows the comparative performance of
DEgyrogate-1 @A DEgyio0ate, fOr this target. Each DE opti-
mization was repeated 10 times with random initializations
and the statistics of the best fitnesses obtained at the end
are plotted in Figure 3C. As the surrogate models use DNN
predictions of optical responses, the predicted fitness may
vary from actual fitness. Therefore, the actual fitness of
the best solutions was also calculated for DEg;yogate1 @nd
DEgyrogate-2 and plotted. It can be observed that DEgyyogate-1
outperforms DEg qeqte., NOticeably for the same training
dataset size of 80 K.

The surrogate optimizations perform the search in
an approximated fitness landscape. In regions of the
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parameter space where the prediction capability of the
model is poor, there will be a large divergence between
actual fitness and predicted fitness. Figure 3E and F shows
two typical progressions of an optimization run as indi-
cated by the best obtained fitness value at the end of each
iteration for DEgyoeate.1 @Nd DEgyrogate-25 TESPECtively. The
exact fitness of the best individual is also plotted to indi-
cate the divergence between the exact and the approximate
fitness landscapes at various junctures of the optimiza-
tions. It was observed that the optimizations were con-
verging within 100 iterations. In the case of DEgygate-1
and DEgy;oeate-2» the actual fitness is observed to be diverg-
ing from predicted fitness; suggesting the degradation in
performance. This divergence is caused as the optimiza-
tion makes the population evolve to solutions where the
predicted fitness is low, but the prediction is inferior. As
observed in Figure 3E and F, in case of DEgygate.15 the
divergence is less as compared to DEg;ogq¢e., SUggEStING a
better global prediction ability which results in enhanced
optimization capability of DEgy;qgate.1- SOlutions with best
fitness in the exact fitness landscape are considered as best
fit solutions.

Incident polarized

4—-/Wh - h&

s-pol Target

(E,)

Best spectra by DEg,,,,o0e-1 (Ds1)
Best spectra by DEg,,,.p000-2 (D)

** Acronyms are used to identify the color patches.
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3.1 Design of spectral filters and color
splitters

In this section, surrogate DE optimization is employed
for the inverse design of the following functionalities (for
normal incidence); (1) polarization-insensitive RGB color
filters; (2) polarization-dependent RGB color filters; and,
(3) RGB color splitters. The performance (spectral behav-
ior and color purity) of best-fit solutions obtained with
surrogate optimizations (DEgyyogate.1 @0d DEgyyyogate.2) are
compared.

For the polarization-insensitive spectral filters
(schematic configuration shown in Figure 4A), Eq. (1)
assume the following form:

2 N,
1

=5 2, 2 150, j. k) — CME(, kP,

Aj=1 k=1

®)

where the target CMFs are same for both polarizations;
i.e., CMF(1,k) = CMF(2,k). The results of the inverse
design process for all three primary RGB filters are com-
pared across DEg;ocate-1 @0d DEgyyogate., in Figure 4B-D.
It is seen that the designs found by DEgsgate1 OUtPEL-

(T) I:l Best structure given by

DESurmgate-I
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Figure 4: Inverse design of polarization independent transmission mode spectral filters using DEg;ogate1 @0d DEgyp0gate-2-
(A) Configuration of an example spectral filter. (B), (C) and (D) Transmission spectra of best fit spectral filters obtained by DEg,;ogae.1 and

DEsyrogate-2 fOF designing polarization independent blue, green and red

color filters. Inset patches show the colors represented by the

spectra in CIE 1931 color space. The unit cell structures obtained with both techniques are shown in color coding for all cases.
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form DEgy;ogqe.» With an improved level of polarization
insensitivity and color purity.

For the polarization-dependent spectral filters (sche-
matic configuration shown in Figure 5A), the fitness is
again given by Eq. (3), but the target CMF is different
for each polarizations (i.e., CMF(1, k) # CMF(2, k)). It is
seen that the designs found by DEgeae.1 OUtperform
DEgyrogate-> With higher level of polarization dependence.

For designing RGB color splitters for s-polarized inci-
dent light (schematic configuration shown in Figure 6A),
the fitness term in Eq. (1) assume the following form:

3 N,
1
BNA;;[S(I 1,k) — CMF(, k1%, (4)

where the target CMFs are different for each order.
For an RGB color splitter where blue, green and
red colors are transmitted in T, T;9 and T_j,
orders, respectively (Figure 6A), CMF(1, k) = CMF,,.(k),
CMF(2, k) = CMF g, (k) and CMF(3, k) = CMF,4(k). The
inverse design of this color splitter was carried out using
DEgyrogate-1 @ DEgyoae., @and the results are compared
in Figure 6B. A clear advantage of DEgy;gate.1 iS Observed
over DEg,yoeate- in all cases.

ZZZZZ Best spectra by DEgrogate-2 (Ds2) L

** Acronyms are used to identify the color patches.

BeSt spectra by DESumogate 1 (Dsl)

DE GRUYTER

Comparing the spectral results of optimized structures
in Figures 4, 5 and 6, it can be inferred that DEg ogate-1
is able to follow the target curve better than DEg;oeate-2
resulting a better fitness; which indicates a better predic-
tion ability of DEgyyogate.1- From the comparison of these
colors, it can be observed that in most of the cases, struc-
tures optimized with DEg;, .. Showcase a better color
purity as compared to DEgy;yqgate.o; @part from some anoma-
lies in Figure 6B (red). In this exceptional case, although
DEgrogate2 8ives structures with better color purity, the
transmission peak of structure given by DEg;ocae 1S
observed to be considerably small (~0.15).

The proposed method involves a one-time investment
in model creation but significantly reduces the computa-
tional time of any optimization objective. The surrogate
optimization routine adapted in this work involves a single
call (for the best fit solution) to the electromagnetic forward
solver in a single iteration; unlike traditional optimizers
where the forward solvers evaluate the whole population.
The surrogate optimization is found to speed-up the opti-
” is the

population size (110 in our case). A detailed account of

H H [ »” H . [
mization process by “N,,,” times; where “N,,
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Figure 5: Inverse design of polarization dependent transmission mode spectral filters using DEg,; ogates @Nd DEgogate-a-

(A) Configuration of an example spectral filter. (B), (C) and (D) Transmission spectra of best fit spectral filters obtained by DEg,;ogate.1 and
DEgyrrogate-2 for designing polarization dependent (B) blue-green, (C) green-red and (D) red-blue color filters. Inset patches show the colors
represented by the spectra in CIE 1931 color space. The unit cell structures obtained with all three techniques are shown in color coding for

all cases.
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Figure 6: Inverse design of transmission mode color splitters using DEg,,;oeate.s @Nd DEgyocates-
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timing at different junctures of model creation and surro-
gate optimization are given in Section S-4 of the supporting
document. The proposed algorithm is thus useful as the ini-
tial investment in model creation can be amortized across
several different optimization objectives.

4 Conclusions

In conclusion, we demonstrate the advantage offered
by densely connected neural network architectures and
judicious dataset sampling strategies for learning based
nanophotonic structure discovery. In particular, we con-
sider learned models for use in surrogate-assisted evolu-
tionary optimization. The inverse design of optical devices
to meet a targeted spectral performance is a general
problem and we speculate that the findings of this study
can be adopted in inverse design scenarios beyond the
example chosen here. Beyond DE considered here, there is
a vast array of evolutionary optimization methods used in
photonics and it is anticipated that learning based accel-
eration could be of interest. Although the scope of this
work was restricted to parameterized geometry represen-
tation and moderate input dimensionality, we speculate
on the extension to other problems. Using the methods
of dimensionality reduction via the use of autoencoder
networks [73, 93], the use of nonparameterized geometry
representation can broaden the applicability of this work.

Our previous works [66, 94], have explored differ-
ent combinations of surrogate models and evolution-
ary computing by which one can trade off optimality
and computational load. In this work, we have consid-
ered surrogate-only optimization. When compared with
DEgcwas DEsyrrogate1 dramatically reduces the computa-
tional load but underperforms in terms of optimality.
Specifically, choosing surrogate models exclusively for the
candidate selection step in evolutionary optimization is
recommended in some situations [66, 94].
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