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Abstract: Photonic engineered materials have benefitted
in recent years from exciting developments in computa-
tional electromagnetics and inverse-design tools. However, a
commonly encountered issue is that highly performant and
structurally complex functional materials found through
inverse-design can lose significant performance upon being
fabricated. This work introduces a method using deep
learning (DL) to exhaustively analyze how structural issues
affect the robustness ofmetasurface supercells, andwe show
how systems can be designed to guarantee significantly
better performance. Moreover, we show that an exhaustive
studyof structural error is required tomake strongguarantees
about the performance of engineered materials. The intro-
duction of DL into the inverse-design process makes this
problem tractable, enabling optimization runtimes to be
measurable in days rather than months and allowing
designers to establish exhaustive metasurface robustness
guarantees.

Keywords: deep learning; fabrication; robustness; super-
cell; tolerance.

1 Introduction

Optical metasurfaces are a class of engineered materials
(EnMats) that use large numbers of patterned sub-
wavelength structures to modify the electromagnetic

relationship of two interfacing media. By intelligently
designing a metasurface, engineers can functionalize the
surface and use it to manipulate light, producing a wide

variety of useful phenomena like polarization change,

anomalous reflection/refraction, and birefringence among

many others [1, 2]. In order to produce such phenomena,

the geometrical features of these metasurfaces must be

small relative to the operating wavelength λ. For optical
metasurfaces, this entails fabricating structures on the

nanoscale. Consequently, controlling light with sub-

wavelength structures demands very fine control over the

design and fabrication of nanometer-scale features, which

presents numerous challenges for the practical realization

of metasurface designs.
For several decades, the go-to method for research

nanofabrication has been electron beam lithography (EBL)
because of its comparatively low cost and high accuracy [3].
EBL uses a focused electron beam to bombard and expose
resist materials for chemical etching. Over the years this
techniquehasbeen refined to thepointwhere researchers can
successfully produce structures with feature sizes as small as
2–4 nm using certain resists like hydrogen silsesquioxane
(HSQ) and polymethyl methacrylate (PMMA) [4].

In step with the development of improved fabrication
techniques, designers have found new and improved
methods for discovering useful metasurface geometries.
For example, unit cells (also referred to as meta-atoms),
which are the building blocks of metasurfaces, had for
many years been designed using conventional shapes or
patterns (e.g., rectangles and ellipses). However, meta-
surface designers have found that unconventional unit
cells composed of more complex shapes arising organi-
cally from the application of genetic algorithms, evolu-
tionary computation, and topology optimization (TO) can
lead to significantly higher-performing metasurfaces
compared to those based on canonical geometries [5–13].
Unit cell designs often rely on electromagnetic resonances
in order to achieve the aforementioned properties, and,
unfortunately, that makes them quite sensitive to struc-
tural defects.
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The structural details of unit cells can be extremely
influential in forming their final electromagnetic behavior,
so an understanding on the part of designers of how these
structural details can change upon fabrication is extremely
important. For example, the minimum feature size (MFS),
also known as the critical dimension, of a nanostructure is
determined by many factors such as depth of focus, tem-
perature, dose, exposure time, etc. Fabrication within
±10% of the MFS is a standard target for quality fabrication
[3]. Thus, introducing tolerance analysis into the inverse-
design process for these metasurfaces is not only highly
desirable but represents an essential tool for the successful
creation of robust nanophotonic devices. However,
because metasurface designs must be evaluated with full-
wave solvers to measure their properties, the computa-
tional expense of these solvers is a major hurdle for any
kind of exhaustive tolerancing study. As a result, toler-
ancing is usually neglected in the inverse-design process
entirely or only included in the form of a local sensitivity
measurement that cannot exhaustively guarantee true
performance bounds.

The objective of this article is to provide a method for
exhaustively establishing the interaction of unit-cell-based
metasurface optical functionality and structural error
resulting frommanufacturing uncertainty. Our approach to
overcoming this challenge is to introduce a deep learning
(DL) step into the inverse-design problem. DL has made a
significant impact in nanophotonics and propagation in
recent years owing to its versatility and unparalleledmodel
generalization [14–17]. Numerous recent contributions
have applied DL to metasurfaces specifically, with use-
cases such as all-dielectric metasurfaces [18–21], chiral
metasurfaces [22], diffraction gratings [23, 24], and
absorbers [25], among many others. DL has also been
applied to metasurfaces in many different ways such as
electric field modeling [26], and inverse-design of many
kinds of metasurfaces through generative models and
latent space engineering [27–30].

In this work, we present a tractable method for
exhaustive tolerance modeling and analysis of nano-
photonic structures by applying established DL tech-
niques. For our application, we employ a composite deep
neural network (DNN) model to predict the transmission
diffraction efficiencies of a dielectric supercell from silica
to air at a single frequency. Through this approach, we are
able to show how metasurface optimizations that perform
exhaustive tolerance analysis can provide strong perfor-
mance guarantees across a wide range of edge deviations.
This knowledge and the accompanying DL technique can
better inform the development of robust nanophotonic
devices.

This paper shows how using our DL augmented opti-
mization method one can increase the guaranteed first-
order diffraction performance of a supercell by more than
35% absolute efficiency over standard optimization
methods. We believe this approach will significantly
impact the current state-of-the-art in metasurface inverse-
design, with application to other functional materials more
broadly.

The remainder of the paper is divided into three sec-
tions as follows. Section 2 covers the supercell formulation,
our chosen method for estimating tolerance, and the DNN
model. Section 3 provides the results of the study,
including the training of the networks, optimization, edge
deviation study, and finally a performance comparison.
Section 4 concludes the paper with a discussion of the
results, their impact, and a look forward to the next steps.

2 Problem definition and approach

Metasurface performance can degrade when going from
design to manufacturing due to inevitable variations in the
desired geometry arising from fabrication process imper-
fections. This problem is especially noticeable with high-
performance metasurfaces due to their tendency to rely on
complex subwavelength structures.

Some geometric deviations which affect the MFS
are partially or entirely beyond the control of the
manufacturing process (e.g., edge roughness). On the other
hand, flaws such as structure erosion or dilation or unde-
sirable sidewall angles can arise as a result of over/under-
dosing and/or over/under-etching. These steps in the
manufacturing process can be controlled, so they are more
systematic in nature. Structures with very tight tolerances
can often be fabricated with the necessary precision, but
there is an associated cost. This cost can be measured in
terms of the process window—the acceptable ranges of
manufacturing parameters (i.e., dose, temperature, time,
etc.) that will produce a successful product [31]. Structures,
where the performance is less sensitive to variations in the
process, are desirable because they provide a larger win-
dow to the manufacturer [32]. This can reduce costs and
increase yield—important aspects in ensuring the
successful transition of a product to market and main-
taining profitability.

In an effort to accommodate smaller and smaller MFSs
for nanophotonic structures, recent work has also focused
on analyzing and counteracting sources of error on the
fabrication side. Sophisticated process analyses like three-
dimensional (3D)modeling of line edge roughness through
a molecular dynamics simulation or machine-learning-
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assisted analysis of stochastic lithography defects can lead
designers toward more realistic modeling of their meta-
devices [33, 34]. Others have tested the performance
consequences of process variation in other varieties of
photonic devices or used proximity effect correction to
eliminate process-specific defects [35, 36]. Yet another
consideration is that of scale. For example, recent work has
demonstrated that deep UV immersion lithography can be
used to produce an a-Simetasurface at thewafer-scalewith
an MFS under 100 nm while nevertheless maintaining an
MFS error of <10% [37]. The path forward for optical met-
asurfaceswhich use complex subwavelength features from
EBL tomore scalable nanofabrication techniques demands
either a relaxation of the MFS or increased tolerance of the
aforementioned manufacturing errors.

As discussed earlier, a number of different geometrical
deviations can arise during EBL fabrication.When it comes
to managing the process window, finding the acceptable
ranges of dosing and etching are two major factors. The
performance consequences of over/under dosing/etching
on nanophotonic structures have been studied for some
time now [8–10, 38]. For at least a decade, managing per-
formance sensitivity due to process variation has been
explored in the context of TO. Topology optimized struc-
tures have enough geometric flexibility that, when suc-
cessfully optimized, they have the potential to reach higher
performance values than conventional unit cell-based
supercell structures. However, this high performance is
often accompanied by an associated increase in geomet-
rical sensitivity, which is why researchers have sought out
methods to improve their stability. As a compromise
between achieving some increased tolerance, while
maintaining computational efficiency, the current state-of-
the-art in TO sensitivity analysis has been to introduce
additional gradients in one form or another. One such
approach has been to combine these gradients using a
weighted sum. At each iteration, in addition to evaluating
the nominal design, two other designs which represent
over and underdosing/etching are also evaluated. The
gradients computed for each of these are weighted and
then combined to forma single gradient. This approachhas
been shown to be effective for increasing the robustness of
photonic crystal waveguides [9], contiguous supercell
metasurfaces [10], and nanolenses [39].

Another approach has handled the additional gradi-
ents as separate steps in the optimization. In this case, each
iteration consists of at least two steps—a local improve-
ment in the nominal performance, and then some local
optimization to reduce uncertainty and improve robust-
ness. This method has been used to develop robust

photonic waveguide components [40] and 3D photonic
crystal band-gap structures [41].

While the above techniques have yielded significant
improvements in nanophotonic robustness, the results
they produce cannot be said to be exhaustive, nor do they
intend to be. Indeed, the necessity of performing a full-
wave simulation at each step for each of these methods
places a significant limitation on the scope of the robust-
ness with which they can successfully imbue a design.

2.1 Metasurface parameterization

Here, we step away from TO in order to address the question
of how to make an exhaustive guarantee of metasurface
robustness. Because our designs are not parameterized per
pixel, we exchange the TO limitation in exhaustive robust-
ness for a limitation in structural flexibility.

Whereas a traditional TO supercell has the potential to
produce entirely contiguous structures, we chose to divide
our supercell into discrete unit cells (although our method
is flexible enough to handle contiguous supercells). This
partitioning helps to preserve the analogy with the more
traditional library-sourced supercells in the literature, as
developing a library of individual unit cells is necessary to
scale metasurfaces up for applications such as metalenses
[42–44]. Traditional metasurface designs select an
ordering of unit cells with different phase responses to tile
into the metasurface. This causes a transmitted wave to be
deflected anomalously into a chosen diffraction orderm. A
metasurface can be made to focus by engineering a phase
gradient that changes linearly from its center to the exte-
rior. The core of the focusing metasurface is the develop-
ment of supercells. Each supercell is composed of several
unit cells, with the combination of unit cells providing the
phase gradient needed. The diffraction angle is chosen
with Equation (1):

θ = sin−1(m λ/d) (1)

whered is the supercellwidth. This applies to all diffraction
orders m where θ ∈ R.

In [45], the authors demonstrated how supercell con-
struction is complicated by coupling effects between
adjacent unit cells which interfere with the supercell’s
diffraction efficiency. Indeed, constructing a supercell with
maximized efficiency from individually optimized unit
cells is often nontrivial. In the case of this study, such an
approach could also serve to obscure the source of losses
between fabrication error and coupling effects. As our goal
is to clearly identify losses in efficiency that are directly due
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to fabrication error, we simulate and optimize full super-
cells rather than individual unit cells.

For this work, we chose a freeform geometrical
parameterization for our unit cells which has been used
successfully in [46]. As shown in Figure 1, unit cell masks
are created using a fourfold symmetric spline surface
function defined in terms of several control points.

The spline surface function interpolates between the
control points, producing a smooth freeform surface that
can be manipulated by varying the control point heights.
In this work, each unit cell is defined by a 3 × 3 uniformly
spaced grid of control points in one quadrant which is
then translated to the other quadrants to enforce fourfold
symmetry (although twofold symmetry and completely
arbitrary geometries are also trivial to generate with this
approach). To produce a mask, the function is rasterized
and then a thresholding value is used to create the final
binary mask. Each unit cell is given a buffer of pixels

around its exterior to enforce discontinuity between the
unit cells. To ensure that unit cell structures have a real-
istic MFS, each cell is further refined using a series of
image processing techniques that enforce the desired
MFS. This process is performed for each unit cell before
they are combined together to form the final four-element
supercell. The spline-based structural parameterization
used in this study serves as a proof-of-concept, but the
techniques that follow can be extended to individual unit
cells, contiguous supercells, and metadevices based on
true 3D geometries [47].

For a chosen operationalwavelength of λ= 1.55 µm, the
supercell width was selected to be 4λ/3 (2067 nm). Unit
cells had equal side lengths of λ/3 (516.7 nm). Silicon was
chosen for the patterned layer and it is assumed to be on
top of an infinite SiO2 substrate. The Si pattern height was
chosen to be λ/2 (775 nm). Transmission through the
supercell was assumed in the +z direction from the sub-
strate into the air. This arrangement produces three
possible diffraction orders, −1, 0, and +1 at angles
of −48.6°, 0°, and 48.6°, respectively. Each supercell is
evaluated using a rigorous coupled-wave analysis (RCWA)
code, and diffraction orders were calculated based on
the fields exiting the structure [48]. The structures were
rasterized at a resolution of 256 px by 1024 px, leading to a
pixel side length of approximately 2 nm.

2.2 Tolerance analysis

There are many ways to model over/under dosing/etching
numerically, ranging from highly physics informed to
simpler image processing methods [9, 10, 49, 50]. Never-
theless, they all produce similar geometrical erosion
or dilation of a structure’s mask, also known as edge
deviation.

Certain types of designs are less prone to sensitivity
than others. However, as will be shown, even designs with
relatively relaxed goals can be overly sensitive despite
being optimized for robustness in a nonexhaustive
manner. Capturing edge deviation with a granularity rele-
vant to a thorough sensitivity analysis produces a
demanding resolution requirement. Whereas previous
work has carried out inverse-design using only nominal
and extreme erosion/dilations, we found that relevant
fluctuations in the performance can occur due to very small
edge deviation increments between the extrema. Even at
the maximum resolution feasible due to our hardware
constraints, pixel-by-pixel changes (±0.0013λ or ±2 nm for
our problem) could still produce noticeable changes in a
design’s performance. Combining this level of detail with a

Figure 1: Process for creating unit masks using thresholding of
spline surfaces, buffering, and MFS filtering. Each unit cell is
assumed to be fourfold symmetric. After constructing these masks,
the unit cells are combined together in sets of four to create
supercells.
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wide range of target edge deviations can cause a dramatic
increase in the number of simulations required to test a
given design. Beyond the nominal performance and per-
formances at the extreme positive or negative edge
deviations, an exhaustive approach must evaluate a sig-
nificant number of designs in-between.

For a proof-of-concept demonstration, we imple-
mented binary mask erosion and dilation using standard
image processing algorithms. For n pixels of erosion or
dilation, the masks were iteratively modified using a
single-pixel square structuring element n times. Since our
goal was to measure changes on a per-pixel level, this
method made it easy to track edge deviation length.

2.3 Deep learning

To properly stress test the proposed process, we resolved to
test a very wide range of possible edge deviations, out to
±20 nm (±0.013λ). At our resolution, this corresponds to a
total of 21 variations of the base design which must be
simulated per supercell. Despite using a fast RCWA solver
to evaluate designs and their variants, the resolution and
variation count requirements of this problem present a
significant computational challenge, especially when
contextualized inside an optimization. A consequence of
more complex shape parameterizations than canonical
shapes such as rectangles and disks is that, in addition to

the improved performance opportunity [46], they are
simultaneously more challenging to optimize due to the
increased degrees of freedom. This supercell configuration
specifically has 36 degrees of freedom (nine control points
per unit cell) which dictates the supercell mask geometry.
We found that the optimizer NSGA-II converged after more
than 150,000 samples, a substantial number. Indeed, this
may be the lower end of how many function evaluations
may actually be needed to exhaustively optimize a problem
in 36 dimensions such as the aforementioned.

On the one hand, the scale of a supercell optimization
where each sample requires 21 different simulations
anticipates a total number of simulations in excess of
3,000,000; a number that would be utterly intractable with
commercial finite element (FEM) or finite difference time
domain (FDTD) solvers. However, the total number of
samples needed to train a neural network to approximate a
supercell simulation, even with edge deviations, is only a
fraction of that amount; on the order of ∼65,000 simula-
tions. This is the core motivation for introducing DL into
this problem.

As has already been discussed, there are many
different potential DL models available for estimating
electromagnetic phenomena, and even metasurface
behavior specifically. This work employs amodel similar to
others found in the literature and relies specifically on a
combination of the U-Net and convolutional neural
network (CNN) topologies [51, 52]. Figure 2 shows the full

Figure 2: Diagram of network topology, composed of two subnetworks. The first subnetwork (top) converts a binary supercell mask to electric
fields via a U-Net. Crosslinks from the U-net help ensure that the geometry of the structure is preserved in the E-fields. The second subnetwork
(bottom) converts electric fields to diffraction coefficients using a standard multi-layered CNN. Both subnetworks exploit mirror/anti-mirror
y-symmetry of the mask and fields to cut the size of the network by half. Each layer or set of layers is labeled to show its shape: y-pixels by x-
pixels by # of features.
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structure and details of the model, with subnetworks
labeled.

As shown in the figure, the first half of the network
(Si to E-field) converts a supercell binary mask to E-fields
within the Si pattern and is based on theU-Net architecture.
The U-Net architecture shares some structural similarities
with an autoencoder in that it compresses an input image
down to a latent space (or set of features) before decom-
pressing it back to an image. However, a key innovation of
the U-Net is the introduction of crosslinks which copy
values from the compression half of the U-Net to the
decompression half. Developed for image segmentation
and tagging purposes, the U-Net is useful for preserving
sharp geometrical features despite the compression pro-
cess, which makes it ideal for converting a binary mask to
E-fields.

The second half of the network (E-fields to Diffraction
Coefficients) takes the interior E-fields and predicts
diffraction coefficients for the transmitted fields. This
subnetwork is a standard CNN that uses a series of
convolution layers to extract features from the image
before performing a regression on the resulting feature set.

A unique attribute of this work is the use of an inter-
mediate E-field representation that precedes the final
prediction of diffraction coefficients. This structure was
selected after experimentation with a wide variety of
alternate structures due to its comparatively low error. It is
worth noting that a very low error in the diffraction
coefficient is necessary as computing the efficiency will
tend to exaggerate any discrepancies due to its squaring of
the coefficient’s magnitude.

3 Results

3.1 Data and training

Successfully training a DNN requires the selection of the
right terms, which dictate the learning process, known as
hyperparameters. While there are some general guidelines
available for how to choose these (i.e., learning rate, min-
ibatch size, dataset size, etc.), ultimately the right choice
can vary from problem to problem.

For image-based computational electromagnetics DL
models, recent work has typically used training sets on the
order of 20,000 to 50,000 samples [18–20, 22, 23, 25]. For
our problem, we used RCWA to sample a total of 81,408
random supercell designs. 65,024 of these samples were
used for training while 16,384 were reserved for validation;
an 80:20 training to validation set ratio.

Beyond the 36 variables defining the supercell mask
control points, an additional variable representing the
erosion/dilation was randomly sampled as well. Each data
point was a set of three terms: a mask, E-fields (real and
imaginary), and diffraction coefficients (real and imagi-
nary). Because the network is constructed as a pair, both
subnetworks needed to be trained separately. The hyper-
parameters governing the learning can be seen in Table 1.
As is typical with DL models, their applicability from one
problem to the next is highly sensitive to the proper se-
lection of hyperparameters. These were selected through a
process of trial-and-error, a reality of DL development that
is itself a point of much research.

Some resources provided critical guidance in the se-
lection of our hyperparameters. For example, for some time
now it has been known that DL models can generalize
better when trained with smaller minibatch sizes [53].
Owing to the high-resolution requirements of fine-grained
tolerancing, the pair ofmodels took up substantialmemory
during training. Thus, we used a relatively small minibatch
size of 16 designs for both the Si to E-field and E-field to
Diffraction Coefficient networks. Another way GPU mem-
ory overuse was ameliorated was to exploit mirror sym-
metry in the y-plane of the supercell. This allowed us to cut
the data size in half and was achieved by introducing
special boundary conditions in the convolution layers
which mixed circular and reflection padding.

Figure 3A and B show the training progression of the
two networks for both the training and validation datasets.
In both cases, the learning rate was initialized to 1e−4 and
then made to decay with a scalar of 0.9925 at an interval of
200 iterations. This decay helped both the training and
validation mean-squared errors (MSEs) to converge to
smaller values at the conclusion of training. Before
training, all data were normalized to have a mean of 0 and
a variance of 1. Themodelwas developed and trained using
the PyTorch library on a machine with four Nvidia RTX

Table : Choices are shown for each hyperparameter. These
terms dictate the progression of the training process. The same
hyperparameters were used for training both halves of the
network.

Hyperparameter Values

Training set size ,
Validation set size ,
Initial learning rate e−
Learning rate decay .
Learning rate period  iterations
Minibatch size 
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2080 ti graphics cards, each providing 11 GB of RAM for a
total of 44 GB of GPU RAM.

To evaluate the accuracy of the networks, we
employed several error metrics. Additionally, the networks

had to be tested individually and in series. For the first
network which outputs E-fields, we evaluated two error
metrics for each design in the validation set: normalized
cross-correlation (NCC) and relative percent error. Both

Figure 3: MSE curves show the training of both
halves of the network.
(A) Si to E-field U-Net training convergence
curves. (B) E-field to diffraction efficiency CNN
training convergence curves. MSE for training
and validation sets are shown in both figures.
Training curves have been smoothed across
multiple minibatches to emphasize convergence
trends. (C) Normalized cross-correlation of the
maximum E-field predicted by the Si to E-field
network for the validation dataset, with amedian
value of 0.993 shown. (D) Percent errors for both
the Si to E-field network and E-field to diffraction
efficiency network tested with the validation set.
For the Si to E-field network, the relative error is
reported between prediction and ground truth
max E-field yielding a median value of 6.08%.
Diffraction efficiency errors are also reported but
as an absolute error. The E-field to diffraction
efficiency network alone has a median absolute
percent error of 0.76%, while the full network
chain has a median absolute percent error of
2.45%.
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metrics were evaluated by comparing the max E-field
within the structures. Figure 3C shows the NCC of the
validation set E-fields. Since an ideal value of NCC is 1 and
any value over 0.8 is considered good, a median NCC of
0.993 indicates that the network is a good predictor.
Because the interior E-fields are unbounded, a relative
errormetric ismore helpful in understanding the network’s
accuracy as opposed to an absolute error metric. Figure 3D
shows the validation set’s median relative percent error of
6.08%, which is in good agreement with similar networks
reported elsewhere in the literature [26]. For the second
network, which outputs diffraction efficiencies, we
compute an absolute percent error for each design.
Figure 3D shows this metric for both the second network by
itself and when put in series with the first network. These
arrangements both indicate very good agreement,
achieving median absolute errors of 0.76% and 2.45%,
respectively.

As will be discussed in the next section on optimiza-
tion, training our network to have a low absolute DE error
was crucial to making this solution work. Even under
simpler conditions, applying a state-of-the-art evolu-
tionary optimizer to a DNN can often be met with
challenges. However, our taskwasmade significantlymore
difficult than is typical in nanophotonic DL because the
high-resolution requirement (necessitated by tolerance
analysis) scaled up the network size dramatically. This
made training slower and more difficult. Nevertheless, our
training regimen was successful in producing a suitable
network for use in optimization.

3.2 Optimization and filtering

With the networks trained, we approached the inverse
design of exhaustively robust supercells using a multi-
objective evolutionary algorithm (MOEA). MOEAs are a
category of optimizers designed to characterize the tradeoff
between two or more objective functions at the same time
[54]. Rather than identifying a single solution as is typical
for a single objective optimizer, the goal of amultiobjective
optimizer is to produce a family of solutions, called a
Pareto set, that represent the best tradeoff between the
objectives. Like their single objective counterparts, MOEAs
are typically global optimizers. This study relies on this
global characteristic to overcome the inherent multi-
modality which arises when using more complex supercell
parameterizations and which challenges TO-based
inverse-design. For this work, the NSGA-II optimizer was

selected due to its popularity and proven applicability to a
wide range of problems [54].

For this study, two cost functions were used to explore
the space of possible supercells, summarized in Equa-
tion (2). First, the nominal diffraction efficiency DE0 is used
to search for designs that are performant in the base case.
Second, a worst-case change is computed by taking the
difference of the diffraction efficiencies DEi of all possible
variations of the structure with its nominal diffraction ef-
ficiency. By optimizing against these two costs, we can
clearly show a tradeoff between nominal performance and
guaranteed performance under edge deviation.

cost1 = −DE0

cost2 = maxi>0|DE0 − DEi| (2)

However, combining optimization with DL is not
without its challenges. Because DL models can only be
used to produce good approximations of an objective
function, there are often multiple subdomains of inputs to
the neural network which will produce artificially attrac-
tive cost values. Therefore, pairing neural networks with
optimization can regularly lead to situations where inac-
curacies of the network are exploited by the optimizer.
Fortunately, there are different methods to overcome this
problem. First, neural networks can be integrated into
MOEAs to form a surrogate-assisted optimization. This has
the advantage of adapting the neural network to better fit
the objective function where it matters. Another option—
the one chosen for this work—is to filter the cost values as
they are computed. By comparing the network’s prediction
with the full-wave solution at just the nominal case, de-
signs which have inherently high error can be filtered from
the set. Because there are so many more variations to be
tested than just the nominal performance for any given
supercell, there is still a substantial speedup to be had from
this approach. If a design’s nominal performance exceeds
somemaximum error value (2% in our case), then that cost
can be modified according to Equation (3):

cost1, filt = −DE0 + fail ∗ 1e6 (3)

This method exposes and disincentivizes those input
subdomains of the objective function which have large
MSE in a way that will guide the optimizer away from them
and towardwell-fit solutions. It is of note that this issue can
arise evenwith networks that have relatively high accuracy
(e.g., <5% error in absolute DE). Furthermore, by testing
nominal designs and culling those with high error, it is
possible to short-circuit the exhaustive test with the DNN
on such samples, which can afford further time savings.
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3.3 Edge deviation study

Multiobjective optimization of the spline-cut supercells
for nominal diffraction efficiency and stability reveals
very important robustness characteristics of optimized
supercells. Figure 4 summarizes the differences that can
result from selecting supercell designs with or without an
exhaustive performance guarantee. Within the Pareto
front, there is a clear trend where the highest efficiency
designs are unstable against perturbations, but lower
efficiency designs can be more stable. While this differ-
ence would be expected to a certain extent, we can now
explicitly quantify this tradeoff. Indeed, as shown in
Figure 4E, the improvement in guaranteed performance
can be significant, on the order of >35% absolute
diffraction efficiency. The degree of the improvement
depends on the extent of perturbation considered.

In Figure 4A, all the samples from optimization are
plotted with respect to their Nominal and Guaranteed +1
DE, as predicted by the DNN. The Pareto front, which is the
optimal tradeoff between these two objectives, is marked
with a dashed green line. The extrema for each objective,
marked a and c, demonstrate howmuch difference there is
between a design selected for performance-only and
robustness, respectively.

Also included is point b, selected as the maximum of a
different objective. Figure 4B recontextualizes the samples
from the optimization on a new y-axis which shows a
weighted sum of the nominal +1 DE with the extreme
perturbation (±20 nm) +1 DEs. While design b does ulti-
mately achieve a higher guaranteed +1 DE than design a, it
is clear that there are even more robust solutions like
design c.

Figure 4: Robustness tradeoff analysis.
(A) Multiobjective study of supercell nominal performance versus loss under ±20 nmof perturbation. The nominal performance of each design
is the y-axis, and the guaranteed performance is the x-axis. The Pareto front is marked with a dashed green line—an ideal design would lie in
the upper-right corner of the plot. Three designs marked a, b, and c show the best selection against different metrics: Best nominal, best
weighted, and best guarantee+ nominal, respectively. (B) Replotting the samples from (A) with a new y-axis now showing theweightedmetric.
(C) Comparison of edge deviation curves for options a, b, and c, including prediction made by DNN and validation from RCWA solver. Paying a
loss of 4.5% in absolute diffraction efficiency for the nominal case can lead to an improvement of 35% absolute diffraction efficiency in the
guarantee. (D) Supercell masks for the three designs shown. (E) Table comparing the performance difference between the three designs in
terms of nominal +1 DE and guaranteed +1 DE. Design found using the neural-network-predicted guarantee (c) achieves a substantial boost in
guaranteed performance over a traditionally optimized design (a).
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Figure 4C is an edge deviation plot that shows how
these three designs compare to each other, as predicted by
the DNN and validated with RCWA. For example, with just
±5 nm of perturbation, design a’s performance degrades to
such an extent as tomake it interchangeablewith designs b
or c in terms of guaranteed performance. Indeed, the full
curve showing the falloff trends for the two designs in-
dicates just how much better design c does across the
board, culminating in a >35% absolute performance gain
over at 10 nm of perturbation. All that for <4.5% loss in
nominal performance makes design c a potential prefer-
ence in terms of overall performance.

This study affirms what has been shown in other
studies, that a naïve single objective optimization of
nominal performance will not only yield unstable results
but significantly worse guaranteed performance as well.
However, this work expands upon this result by showing,
for the first time, that establishing exhaustive metasurface
robustness requires fine-grained sampling of variations.
Considering a weighted metric of the nominal case and
extreme perturbations provides some advantage over
purely nominal-performance focused optimization. How-
ever, failures in the edge deviation curve can occur at
scales missed by this kind of analysis. Therefore, designers
who want to guarantee performance over a range of
edge deviations can take advantage of the proposed
DL-augmented technique to affect optimizations that ach-
ieve exhaustive tolerancing.

3.4 Speedup performance summary

A thorough analysis of the performance of this approach is
presented in Table 2. The expected time that would be taken

by a purely RCWA version of our study is listed in one
column, with timing for our DL augmented study shown
next to it. A speedup column further clarifies the improve-
ment we get over just RCWA.

In this analysis, we include the initial time investment
required to collect data and train the networks as part of the
total time attributed to the DL augmented approach. This
extra time is often not included nor discussed in other DL
papers involving optimization in nanophotonics, but it
makes a significant difference in realistically understand-
ing the overall utility of the technique. For example, the
speedup for a single optimization without accounting for
the initial time investment is 14.8 times faster than RCWA
alone. However, when the real-time investment is
included, this amount is reduced to a 4.37 times speedup.

In reality, oftentimes a single optimization is not
enough to solve a problem. In the course of collecting
results for the studies in this paper, for example, we ran no
fewer than 6 DL augmented optimizations. From this point
of view, our full study’s actual speedupwas 10.6 times over
a purely RCWA-based study. We envision this technique
providing a more powerful platform for studying robust-
ness in general than a purely full-wave approach.

Additionally, the speedup reported is the lower bound
of what is achievable using our technique, even including
the startup time cost. Our choice of RCWA represents a
best-case choice for full-wave solver speed. If this solver
were replaced with FEM or FDTD techniques, the speedup
would significantly increase.

This DL augmented approach to metasurface design
opens the doors to more complex studies in the future. As
shown in Figure 5, further increases to optimization count
or a number of variation tests per supercell make the
problem even harder to solve, which increasingly favors

Table : Performance comparison of robustness study with andwithout DL augmentation. The columns show timings for different parts of the
study. The field description column explains what each step is. The RCWA and DL columns each record thetime taken for the different
approaches at each step. Finally, the speedup column reports the improvement in time taken by using the DLmethod for each step. Evenwhen
factoring in training time, the DL augmented approach affords a substantial speedup over the standardmethod.Moreover, as shown in rowsG
and H, the performance advantage DL affords increases substantially with further optimizations and increases in the number of variations
tested for each design.

Field
description

RCWA DL Speedup

A Single sample time (serialized) . s . s .
B Data collection sample time (includes internal fields) N/A . s N/A
C Data collection total time N/A . days = , samples * B[DL] N/A
D Training time N/A . days N/A
E Full supercell evaluation (including variants) . s = ( * A[RCWA]) . s = (A[RCWA] +  * A[DL]) .
F Optimization (>, function evaluations) >. weeks >. days .
G Total time (one optimization) >. weeks = F[RCWA] >. days = C[DL] + D[DL] + F[DL] .
H Total time (six optimizations) > months =  * F[RCWA] > weeks = C[DL] + D[DL] +  * F[DL] .
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our DL method. With finer resolved structures and/or
additional tolerance considerations (e.g., edge roughness
and sidewall angle), the number of variation tests required
per unit cell would increase combinatorically, offering
speedups on the order of 20–30 times over a purely full-
wave approach.

4 Conclusions

We have successfully implemented an approach for
establishing exhaustive metasurface performance gua-
rantees which uses DL to overcome the fundamental
computational challenges associated with rigorous toler-
ancing of nanoscale structurally functionalized materials
with specific application to metasurface design. Ensuring
that a metasurface is robust to edge deviation is a chal-
lenging problem because of the fine-grained perturbation

study required to assess each design. The performance of
these structures can be sensitive to variation even at the
finest scale of EBL edge deviations (e.g., 2 nm), which in
turn demands a consummately small sampling period to
avoid aliasing over drops in performance.

This challenge is exacerbated by optimization. Per-
formance at the nominal and extreme values of edge de-
viation has a higher upper bound when the performance
between them is allowed to dip. Thus, to find designs that
can make firm guarantees about performance within a
range of edge deviations, many samples must be taken for
each design.

By frontloading the problem (i.e., sampling for a
dataset and training a model), it is possible to nevertheless
perform the necessary amount of sampling in order to
make these guarantees and thereby render optimizing for
guaranteed performance viable. Training a model to ach-
ieve a low MSE is also critical to making the optimization
successful, as high model error can be a major limitation
for optimizing using DL.

We showed that by including guaranteed performance
as an objective in an MOEA optimization, it is possible to
extract a Pareto front that characterizes the tradeoff be-
tween designs with the highest nominal performance and
those with the best guarantee. We demonstrate that an
exhaustively robust design selected using guaranteed
performance as part of the metric yielded a substantial
increase of more than 35% in the guaranteed absolute
performance over a design selected only for having the best
nominal performance. Moreover, this robust design suf-
fered a minimal loss in nominal performance of <4.5%.

Compared to a purely full-wave study, we achieved a
more than 10 times speedup, bringing the study down from
what would be more than an eight-month effort to a little
over three weeks. We believe this development provides a
path forward for improving the state of the art in engineered
nanomaterial robustness, andweanticipate that themethod
will be adaptedbeyond the scope of thismanuscript to other
nanophotonic devices and EnMats as well.

4.1 Future work

Many possible next steps exist to extend this work further.
To overcome the necessity to filter designs during optimi-
zation, the learning process could be integrated directly into
the optimizer. As a now surrogate-assisted optimizer, the
model may converge to even higher performances than
previously discovered. Other improvements might include
developing a smaller DNN model, applying a more physi-
cally realistic erosion/dilationmodel to the data generation,

Figure 5: Speedup curves using DL augmentation versus pure full-
wave solvers.
(A) Speedup when increasing the number of variation tests required
by each supercell. (B) Speedup when increasing the number of total
evaluations performed in an optimization.
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extending the complexity of the supercell parameterization
to includemore control points per unit cell, and training the
model to generalize across more types of fabrication errors
(edge roughness, sidewall angle, etc.).
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