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Abstract: In recent years, new functionality and unpre
cedented wavefront control has been enabled by the
introduction of bianisotropic metasurfaces. A bianisotro
pic metasurface is characterized by an electric response,
a magnetic response, and an electro-magnetic/magneto-
electric response. In general, these metasurfaces consists
of an array of metallic or dielectric particles located
within a subwavelength thick host medium, and are
approximated and modeled as infinitely-thin, idealized
sheet boundaries defined along a surface. An appropriate
sheet boundary condition which effectively models the
tangential field discontinuity due to the array of magne-
toelectric inclusions is the Generalized Sheet Transition
Condition or GSTC. Several forms of the GSTC appear in
literature. Here, we present each interpretation and show
how they are related. Synthesis approaches unique to
each form are overviewed. By utilizing the GSTC in met-
asurface design, new possibilities emerge which are not
possible with conventional design techniques incorpo-
rating only electric or only magnetic responses. Since the
metasurfaces are designed using bianisotropic boundary
conditions, they must be realized using particles which
contain magnetoelectric responses. This review article
discusses the design of metasurfaces using the GSTC, and
the bianisotropic particles used to realize GSTC’s. Further,
it discusses new and recent applications that have emer
ged due to bianisotropy, and future prospects in meta-
surface design using bianisotropic boundary conditions.
The intent is to provide a comprehensive overview of

metasurface design involving bianisotropy and for this
review article to serve as a starting point for engineers and
scientist that wish to introduce bianisotropy into meta-
surface design.

Keywords: bianisotropic; generalized sheet transition
conditions; GSTC; metasurface.

1 Introduction

Bianisotropic boundaries are surfaces consisting of electric,
magnetic, and magneto-electric surface susceptibilities.
These boundaries, and their scattering characteristics, have
been studied for a number of years. Early studies include
those by M. M. Idemen in the late 1980s [1], as well as C. L.
Holloway and E. F. Kuester’s work in the early 2000s [2–12]
that revived interest in this topic. However, only in the past
few years has the true potential of bianisotropic boundaries
been revealed by research community.

In recent years, extreme, reflectionless polarization
control [13–20], seamless impedance matching between
input and output fields [21, 22], as well as wide angle
refraction [23–28] havebeen demonstratedusing these sheet
boundaries. Scientific works have also revealed that arbi-
trary field transformations can be achieved with bianiso-
tropic boundaries consisting of complex electric, magnetic,
and magneto-electric susceptibilities involving loss and
gain. In addition, a wide range of local power conserving
wavefront transformations have been demonstrated by
controlling both the visible (propagating) and invisible
spectrum (surface waves) using lossless and passive, bia-
nisotropic sheet boundaries [28–40].

Over the past year, nonlocal designs that are passive
and lossless have been reported that overcome the local
power conservation restriction of earlier designs. These
boundaries require only global power conservation to
ensure passivity but allow perfect field transformation
[32, 37, 38, 41–52] or perfect mode conversion [53–56].
These passive and lossless designs truly allow unrestricted
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reciprocal and lossless field transformations. Multiband
designs [57–59] have also emerged allowing distinct field
transformations at different frequencies of operation.

The body of theoretical work and proof of concept
experimental demonstrations showing the extreme field
manipulation that is possible with bianisotropic sheet
boundaries has driven research toward practical
realizations and in turn revealed potential applications.
Various implementations have been and continue to be
proposed. These range from 3D geometries such as spirals
or omega particles [21, 60–62] to those that can be
implemented using planar fabrication approaches [14,
63–66]. Planar designs have included cascaded patterned
metallic or dielectric claddings [67–69] that support
zeroth order coupling between the sheets for the manip-
ulation of visible (propagating) electromagnetic spectrum
as well as those that support higher order coupling that
manipulate both the visible and invisible (evanescent)
spectrum. Nonreciprocal particles [70–75] and all die
lectric bianisotropic particles [76, 77] have also been
reported.

In summary, bianisotropic sheet boundaries are ush-
ering in a new generation of ultra-thin electromagnetic
devices with revolutionary capabilities. Research in this
area opens new opportunities in applications areas that
require electromagnetic devices with very small form fac
tors and conformal shapes [78]. The added degrees of
freedom afforded by bianisotropic sheet boundaries prom-
ise conformal electromagnetic and optical systems that can
be seamlessly integrated into various platforms. These
include ultra-thin, flat panel antennas [79–81] with arbitrary
aperture distributions [36, 37, 55], compact mode converters
[56], transitions and couplers, conformal cloaking mem-
branes [82–88], as well as ultra-thin cameras, detectors, and
high-resolution 3D holographic displays.

This review article will present the bianisotropic
boundary conditions, several synthesis methods used to
utilize them in metasurface design, and several magneto-
electric particle options that can be used to realize the
metasurfaces designed from these boundaries. Further-
more, this review article will chronicle recent work in the
use of bianisotropic boundaries in electromagnetic design.
The technological advancements will be highlighted, and
future prospects discussed.

The article begins with Section 2 which derives the
generalized sheet transition conditions (GSTC). Section 3
outlines various synthesis methods used to design biani-
sotropic metasurfaces. Section 4 provides designs for
magnetoelectric particles used to realize bianisotropic
metasurfaces. Section 5 then provides a chronology of
scientific works on bianisotropic metasurfaces taken from

literature. Section 6 presents prospects in the field of bia-
nisotropic metasurfaces. Finally, in Section 7 the paper is

concluded. Note, an ejωt time convention is assumed and
suppressed throughout the paper.

2 Bianisotropic boundary
conditions inmetasurface design

2.1 Generalized sheet transition conditions
(GSTC)

Consider an infinite planar metasurface separating two
dielectric half spaces of intrinsic impedance η1 and η2
(see Figure 1). The normal to the metasurface is denoted by
the unit vector ẑ, and therefore, the metasurface spans the
xy-plane at z = 0. The metasurface consists of a periodic
arrangement of polarizable bianisotropic particles sepa-
rated by a subwavelength period. Assuming the metasur-
face can be homogenized, we will derive a bianisotropic
sheet boundary condition which models the metasurface
as a sheet of electric and magnetic polarization currents
and relates these to the tangential field discontinuities.
To begin, Maxwell’s equations are written with their
transverse and normal components separated [89]

∇t × E
→

t = −ẑKz − jωμ0ẑHz

∇t × ẑEz + ẑ × ∂

∂z
E
→

t = −K→t − jωμ0H
→

t

∇t × H
→

t = ẑJz + jωϵ0ẑEz

∇t × ẑHz + ẑ × ∂

∂z
H
→

t = J
→

t + jωϵ0 E
→

t

(1)

Figure 1: Metasurface geometry. The metasurface consists of a
periodic arrangement of polarizable magnetoelectric particles
separated by a sub-wavelength period.
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where E
→

t and H
→

t are the transverse components of the
electric and magnetic field, J

→
t and K

→
t are the tangential

electric and magnetic surface current densities, ω is the
angular frequency of the excitation, and μ0 and ϵ0 are the
permeability and permittivity of free space. The operator
∇t = ( ∂

∂xx̂ + ∂
∂yŷ). Enforcing (1) along a sheet boundary at

z = 0, which supports the surface current densities

J
→ = δ(z)( J→st + ẑJsz)
K
→ = δ(z)(K→st + ẑKsz) , (2)

yields

ΔE
→

× ẑ = K
→

st − ∇t( Jsz
jωϵ0

) × ẑ

ẑ × ΔH
→ = J

→
st − ẑ × ∇t( Ksz

jωμ0
) (3)

where

ΔE
→ = E

→⃒⃒⃒⃒⃒0+
z=0− = E

→(x, y, z = 0+) − E
→(x, y, z = 0−)

ΔH
→ = H

→⃒⃒⃒⃒⃒0+
z=0− = H

→(x, y, z = 0+) − H
→(x, y, z = 0−) (4)

are the tangential field discontinuities in the electric and
magnetic fields across the surface. Next, the surface cur-
rents are related to the surface polarization density and
surface magnetization as

J
→ = δ(z)( J→st + ẑJsz) = jωP

→
sδ(z)

= jω(P→st + ẑPsz)δ(z)
K
→ = δ(z)(K→st + ẑKsz) = jωμ0M

→
sδ(z)

= jωμ0(M→st + ẑMsz)δ(z)
(5)

Substitution of (5) into (3) gives

ẑ × ΔE
→ = −jωμ0M

→
st − ẑ × ∇t(Psz

ϵ0
)

ẑ × ΔH
→ = jωP

→
st − ẑ × ∇tMsz

(6)

The result (6) has been derived by Ideman in [1]. The
boundary condition in (6) links the discontinuities in the
macroscopic averaged total fields (the incident field plus
the fields due to the array of polarizable particles) to the
surface electric polarization and magnetization densities.
These densities are a consequence of averaging a distri-
bution of electric and magnetic dipoles [90–92].

P
→

s = N〈 p→ee〉 + N〈 p→em〉

M
→

s = N〈 p→mm〉 + N〈 p→me〉

(7)

In (7), the units of P
→

s andM
→

s are Coulomb/meter and Amp,

N is the number scatterers per unit area, and p→ represents
the dipole moment averaged over a unit cell area of S.

〈 p→〉 = 1
S
∫ p→ds (8)

The dipole moment associated with each particle is
proportional to the local field acting on the particle and its
polarizability tensor

[ p→e

p→m
] = [ p→ee + p→em

p→me + p→mm
] =
⎡⎣ αee αem

αme αmm

⎤⎦⎡⎣ E→loc

H
→

loc

] (9)

Each of the polarizability tensors (the electric αee, the
magnetic αmm, the magnetoelectric αme, and the electro-

magnetic αem polarizability tensor) in (9) are of dimension
3 × 3. For example, the electric polarizability tensor is

αee =

⎡⎢⎢⎢⎣
αxx
ee αxyee αxz

ee

αyx
ee αyyee αyz

ee

αzx
ee αzyee αzz

ee

⎤⎥⎥⎥⎦ (10)

where the notation αuv
ab denotes the u component of the

dipole response a due to the v component of the excitation
field b (note, a, b = e,m and u, v = x, y, z). Substituting the
results of (7)–(10) back into (6) gives

ẑ × ΔE
→ = −jωμ0N 〈 αmm 〉 ·H

→
t, loc − jωμ0N 〈 αme 〉 ·E

→
t, loc

−( 1
ϵ0
)ẑ × ∇t[N 〈 αee 〉 ·ẑEz, loc + N 〈 αem 〉 ·ẑHz, loc]

ẑ × ΔH
→ = jωN 〈 αee 〉 ·E

→
t, loc + jωN 〈 αem 〉 ·H

→
t, loc

−ẑ × ∇t[N 〈 αmm 〉 ·ẑHz, loc + N 〈 αme 〉 ·ẑEz, loc]
(11)

where the notation E
→

t, loc = [Ex, loc,Ey, loc,0]T , H→t, loc = [Hx, loc,

Hy, loc,0]T , ẑEz, loc = [0,0,Ez, loc]T , and ẑHz, loc = [0,0,Hz, loc]T .
Thus, to make use of (6) for an array of polarizable
magnetoelectric particles, the local field E

→
loc, H

→
loc acting

on each particlemust be obtained. The localfield cannot be
the macroscopic averaged total fields since these fields are
discontinuous in the plane of the particle by (6). The local
field must be continuous and well defined. The local fields
polarizing the particle are defined to be the incident field
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plus the field due to the array of particles excluding the
particle of interest. Kuester et al. in Ref. [2] find the local
field by assuming that the array of particles can bemodeled
as a sheet of continuous electric andmagnetic polarization
density distributions (obtained by averaging the dipole
moments of the particles as in (7)) from which the polari-
zation and magnetization in a small disk of radius R sur-
rounding the particle of interest has been removed. The
fields due to this punctured sheet are calculated by finding
the fields due to the entire sheet of polarization densities
(without the hole removed) and subtracting from it the
fields (averaged over the disk area) due to a uniformly
polarized and magnetized disk of radius R. The result is a
continuous and well defined local field which is a function
of the macroscopic averaged field allowing (7)–(9) to be
written as

[ P
→

s

M
→

s

] =
⎡⎢⎣ ϵ0χee

̅̅̅̅ϵ0μ0
√ χem̅̅̅̅̅

ϵ0/μ0

√
χme χmm

⎤⎥⎦[ E
→

av

H
→

av

] (12)

where χab are the surface susceptibilities, have units of me-
ters, and can be interpreted as the actual polarizability
multiplied by a correction factor called the interaction con-
stant β accounting for the effects of the array on the local field
(cχab = Nαabβ, where c is the corresponding free space ma-
terial constant coefficient of (12)). Note, Kuester, in Ref. [2],
calls the surface susceptibilities (χab) effective polarizability
densities (α

eff
ab ), however, this notation causes confusion as

thequantities are not polarizabilities relatingdipolemoments
to fields but rather quantities relating surface densities to
fields. He later switched notation to the correct one of surface
susceptibilities ([9], Eq. (1) for example). In (12), the free space
material constants ensure (6) is dimensionally correct.
Kuester derives the interaction constants in Ref. [2] at least for
the electric and magnetic susceptibilities. Note, the averaged
fields in (12) are defined as

E
→

av = 1
2
[E→⃒⃒⃒⃒⃒

z=0+ + E
→⃒⃒⃒⃒⃒

z=0−]
H
→

av = 1
2
[H→⃒⃒⃒⃒⃒

z=0+ + H
→⃒⃒⃒⃒⃒

z=0−] (13)

Using (12) gives the result derived by Kuester (although we
have generalized his result to include magnetoelectric
susceptibilities as Kuester originally did not).

ẑ × ΔE
→ = −jωμ0χmm · H

→
t, av − jω

̅̅̅̅
ϵ0μ0

√
χme · E

→
t, av

−ẑ × ∇t[χee · ẑEz, av +
̅̅̅̅̅
μ0/ϵ0√

χem · ẑHz, av]
ẑ × ΔH

→ = jωϵ0χee · E
→

t, av + jω
̅̅̅̅
ϵ0μ0

√
χem · H

→
t, av

−ẑ × ∇t[χmm · ẑHz, av +
̅̅̅̅̅
ϵ0/μ0

√
χme · ẑEz, av]

(14)

It should be noted that (14) appeared in Ref. [9] incorrectly
without the free space material constants. The suscepti-
bilities are a more natural parameter to use as they easily
generalize to nonlinear (higher order χ()) and time-
modulated cases. The result (14) is known as the General-
ized Sheet Transition Condition or GSTC. In essence a GSTC
connects the tangential field discontinuities across a sur-
face to the averaged fields of both sides of the surface
through material (surface) proportionality constants.
These proportionality constants are sometimes referred to
as effective polarization densities as in Ref. [2], or surface
susceptibilities as in (14), or even surface impedances as in
(22). These different nomenclatures all come from the same
model with their own interpretations. We discuss these
models, their origins and interpretations, and the synthesis
techniques built from them next.

2.2 Particle polarizability model

In Ref. [20], Niemi derives the interaction constants for all
components including the magnetoelectric polarizabil-
ities. The interaction constant is derived in the sameway as
Kuester, namely, by finding the fields of a sheet of
continuous polarization densities with a hole at the center
and adding to it the incident field [20, 93].

E
→

loc = E
→

inc + βe · p
→

e

H
→

loc = H
→

inc + βm · p→m (15)

The interaction constants β, which model the effect of the
array on the local field, are found as

βe = −Re{jωη0

4S
(1 − 1

jkR
)e−jkR}It

+ j(η0ϵ0μ0ω3

6π
− η0ω

2S
)It

βm = βe
η2
0

(16)

Note in (16), Re[ ] denotes the real part operator, k is the free

space wavenumber, and It = I − ẑẑ is the transverse unit
dyadic. The interaction constants are a function of the
chosen disk radius R. In (16), R = a/1.438 (S = a2 is the unit
cell area) and hence the hole only encompasses a single
dipole. The interaction constants were derived for normal
incidence but are valid also for small oblique angles of
incidence [93]. From (9), (15), and (16), one could construct
effective polarizabilities and form a matrix equation
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similar to (12) only now relating the dipole moments to the
incident fields as

[ p→e

p→m
] =
⎡⎢⎣ α̂ee α̂em

α̂me α̂mm

⎤⎥⎦[ E
→

inc

H
→

inc

] (17)

Relating the dipole moments to the incident field rather
than the average fields as in (12) allows for a direct syn-
thesis formulation for stipulated incident, reflected, and
transmitted fields. In this case, the effective polarizability
densities take a more complex form and are related to the
individual particle polarizabilities as

α̂ee = (It − αee · βe − αem · βm · (It − αmm · βm)−1 · αme · βe)−1

·(αee + αem · βm · (It − αmm · βm)−1 · αme)
α̂em = (It − αee · βe − αem · βm · (It − αmm · βm)−1 · αme · βe)−1

·(αem + αem · βm · (It − αmm · βm)−1 · αmm)
α̂me = (It − αmm · βm − αme · βe · (It − αee · βe)−1 · αem · βm)−1

·(αme + αme · βe · (It − αee · βe)−1 · αee)
α̂mm = (It − αmm · βm − αme · βe · (It − αee · βe)−1 · αem · βm)−1

·(αmm + αme · βe · (It − αee · βe)−1 · αem)
(18)

To design an array, the reflected and transmitted fields in
terms of the dipole moments must be obtained. The
induced dipole moments in (17) correspond to averaged
electric and magnetic current sheets with the surface

averaged current densities J
→

s = jω p→e/S andM
→

s = jω p→m/S.
The reflected field can be found as the field radiated by
these currents [20].

E
→

ref = −jω
2S
[η0 p→e − ẑ × p→m] (19)

Similarly, the field transmitted can be found as [20]

E
→

trans = E
→

inc − jω
2S
[η0 p

→
e + ẑ × p→m] (20)

By defining the reflected, transmitted, and incident fields
and making use of (17), one can synthesize the needed
polarizabilities (see Section 3.5). Then appropriate particle
designs can be utilized to realize the necessary polariz-
abilities by relating their polarizabilities to the effective

polarizability densities as in (18). For particle designs and
their polarizabilities, see Section 4.

2.3 Sheet impedance model

The GSTC can be recast into a form involving sheet im-
pedances and admittances. By ignoring normal surface
polarization andmagnetization densities, Psz =Msz = 0, the
GSTC in (14) can be written as

ẑ × ΔE
→ = −jωμ0χmm · H

→
t, av − jω

̅̅̅̅
ϵ0μ0

√
χme · E

→
t, av

ẑ × ΔH
→ = jωϵ0χee · E

→
t, av + jω

̅̅̅̅
ϵ0μ0

√
χem · H

→
t, av (21)

By defining an electric sheet admittance (Y = jωϵ0χee),

a magnetic surface impedance (Z = jωμ0χmm), and dimen-

sionless electromagnetic coupling (χ = jω ̅̅̅̅ϵ0μ0
√ χem) and

magnetoelectric coupling (γ = jω ̅̅̅̅ϵ0μ0
√ χme) tensors, we can

relate the surface current densities established on the meta-
surface to the average tangential electric and magnetic field.

[ J
→

s

K
→

s

] = [Y χ
γ Z

][ E
→

t, av

H
→

t, av

] (22)

This form of bianisotropic boundary conditions is known
as the impedance boundary condition (IBC). The tensors

Y , Z, χ, and γ are collectively known as the constituent
surface parameters. Note, (22) can also be expressed as [91]

ẑ × E
→

av = Zee · [ẑ × ΔH
→] + Kme · [ẑ × ΔE

→]
ẑ × H

→
av = Kem · [ẑ × ΔH

→] + Ymm · [ẑ × ΔE
→] (23)

where Zee,  Kme,Kem, and Ymm are the related to the inverses
of the tensors appearing in (22). Each tensor in (22) and (23)
are of dimension 2 × 2, for example, the electric surface
impedance tensor is

Zee =
⎡⎢⎣Zxx

ee Zxy
ee

Zyx
ee Zyy

ee

⎤⎥⎦ (24)

and hence the tangential average fields appearing in (22)
are of dimension 2 × 1. The IBC has also been extended to
include the normal constituent surface parameters [94].
In this case, each vector in (22) contains three compo
nents and each tensor contains nine components. These
3-dimensional constituent surface parameter tensors are
expressed as equivalent spatially dispersive 2-dimensional
constituent surface parameters [95]. The spatially disper-
sive 2-dimensional constituent surface parameters can be
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used to mimic nonreciprocal phenomena from ordinary
reciprocal materials. The inclusion of normal constituent
surface parameters can be exploited to significantly
expand the scope of the electromagnetic phenomena that
can be engineered with reciprocal materials [89, 94, 96].
However, in most cases, modeling of only the in-plane
surface material parameters is sufficient as argued in
Ref. [91] since by uniqueness theorems, the tangential field
components are sufficient to define the full field vectors.
By relating the desired scattering parameters to the con-
stituent surface parameters, one can obtain the description
of the required constituent surface parameters (see Sec-
tions 3.2 and 3.3). Alternatively, one can construct an in-
tegral equation around the IBC and synthesize the
constituent surface parameters needed to achieve a desired
field transformation (see Section 3.4). Then, printed circuit
techniques [97] can be used in conjunction with multi-
sheet realizations of bianisotropic particles (see Section
4.3) to realize the constituent surface parameters.

2.4 Susceptibility model

Omitting normal polarization densities, (14) can be written
as

ẑ × ΔE
→ = −jωμ0χmm · H

→
t, av − jω

̅̅̅̅
ϵ0μ0

√
χme · E

→
t, av

ẑ × ΔH
→ = jωϵ0χee · E

→
t, av + jω

̅̅̅̅
ϵ0μ0

√
χem · H

→
t, av (25)

The tensors in (25) are the electric, χee, the magnetic, χmm,

the electromagnetic, χem, and the magnetoelectric, χme,
surface susceptibility tensors. Each of these tensors is of
dimension 3 × 3. For example, the electric susceptibility
tensor is

χee =

⎡⎢⎢⎢⎣
χxxee χxyee χxzee
χyxee χyyee χyzee
χzxee χzyee χzzee

⎤⎥⎥⎥⎦ (26)

Thus, knowing the tangential electric and magnetic field
on both sides of the surface, use of (25) allows one to solve
for the surface susceptibilities required to achieve the field
transformation (see Section 3.1). Then, polarizable parti-
cles which realize the susceptibilities can be obtained by
relating the susceptibilities to the effective polarizability
densities as [91]

χee =
1
ϵ0
C
−1
p · [α̂ee + jω

2η0
α̂em · (SIt − α̂mm

jω
2η0
)−1

· α̂me]
χem = 1̅̅̅̅ϵ0μ0

√ C
−1
p · [α̂em + jω

2η0
α̂em · (SIt − α̂mm

jω
2η0
)−1

· α̂mm]
χme =

̅̅
μ0

ϵ0

√
C
−1
m · [α̂me + jωη0

2
α̂me · (SIt − α̂ee

jωη0

2
)−1

· α̂ee]
χmm = C

−1
m · [α̂mm + jωη0

2
α̂me · (SIt − α̂ee

jωη0

2
)−1

· α̂em]
Cp = SIt − α̂ee

jωη0
2

+ ω2

4
α̂em · (SIt − α̂mm

jω
2η0
)−1

· α̂me

Cm = SIt − α̂mm
jω
2η0

+ ω2

4
α̂me · (SIt − α̂ee

jωη0

2
)−1

· α̂em

(27)

and then relating the effective polarizability densities
to the individual particle polarizabilities as in (18).
For particle designs and their polarizabilities, see
Section 4.

3 Metasurface synthesis methods

3.1 Synthesis using the polarizability
model: reflection and transmission to
effective polarizabilities

The polarizabilities of the particles necessary to achieve a
particular field transformation can be synthesized directly
[20] starting from the polarizabilitymodel. Assuming plane
wave incidence, (15)–(17) can be combined and written as

E
→

r =−jω
2S
[(η0α̂ee − α̂em · Jt)− ẑ ×(α̂me − 1

η0
α̂mm · Jt)] · E→inc

E
→

t =(1− jω2S[(η0α̂ee − α̂em · Jt)+ ẑ×(α̂me − 1
η0

α̂mm · Jt)]) · E→inc

(28)

where Jt = ẑ × I and I is the 2 × 2 unit dyadic. The meta-
surface is synthesized by stipulating the incident, reflected,
and transmitted fields and solving (28) for the required
polarizabilities. Then particles can be chosen according to
(18). Several uses of this synthesis approach will also be
highlighted in Section 5 (see Table 2).
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3.2 Synthesis using the sheet impedance
model: S-parameter to constituent
surface parameters

When the metasurface shown in Figure 1 is illuminated by
an incident plane wave, scattering parameters (S-parame-
ters) can be defined as the ratio of the scattered electricfield
into region n to the incident electric field from region m

Snm =
⎡⎢⎣ Sxxnm Sxynm
Syxnm Syynm

⎤⎥⎦ (29)

Treating all possible excitation/response combinations,
(29) is generalized to

S = [ S11 S12
S21 S22

] (30)

The S-parameters S11 and S22 are the reflection coefficients
when viewed from regions 1 and 2, respectively. Similarly,

theS-parameters S21 andS12 are the transmissioncoefficients
when viewed from regions 1 and 2, respectively. The S-pa-
rameters in (30) can be related to the constituent surface
parameters of the IBC in (22) from Refs. [15, 65]

⎡⎢⎢⎢⎣ S11 S12

S21 S22

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣
Y
2
− χn
2η1

+ I
η1

Y
2
− χn
2η2

+ I
η2

−Zn
2η1

+ γ
2
− n

Zn
2η2

+ γ
2
+ n

⎤⎥⎥⎥⎥⎥⎥⎥⎦

−1

·

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−Y
2
− χn
2η1

+ I
η1

−Y
2
+ χn
2η2

+ I
η2

−Zn
2η1

− γ
2
+ n

Zn
2η2

− γ
2
− n

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(31)

where

I = [ 1 0
0 1

],  n = [0 −1
1 0

]
Note, the notation ab juxtapositioning two tensors means
to multiply the matrix representation of the tensors using
the usual rules of matrix multiplication. Inversely, the
constituent surface parameters can be defined in terms of
the S-parameters as [15, 65]

⎡⎢⎣Y χ

γ Z

⎤⎥⎦ = 2

⎡⎢⎢⎢⎢⎢⎢⎣
I
η1

− S11
η1

− S21
η2

I
η2

− S12
η1

− S22
η2

n + n S11 − n S21 −n + n S12 − n S22

⎤⎥⎥⎥⎥⎥⎥⎦

·

⎡⎢⎢⎢⎢⎢⎢⎣
I + S11 + S21 I + S12 + S22

n
η1

− n S11
η1

+ n S21
η2

− n
η2

− n S12
η1

+ n S22
η2

⎤⎥⎥⎥⎥⎥⎥⎦
−1 (32)

Using (32) one can synthesize a metasurface’s constituent
surface parameters, and using (31), one can analyze a given
metasurfaces response to plane wave fields. Network
parameter matrix representations which can be cascaded
allow multilayer metasurfaces made from stacks of biani-
sotropic sheets and dielectric spacers to be analyzed or
synthesized (see Section 4.3). Examples of metasurfaces
synthesized using this approach will be presented in Sec-
tion 5 (see Table 2).

3.3 Synthesis using the sheet impedance
model: wave matrices to constituent
surface parameters

Another approach to synthesize the constituent surface
parameters is to relate them to wave matrices [66]. Wave
matrices relate the forward and backward propagating
fields in region 1 to those in region 2 (see Figure 1) in the
following manner (+means forward traveling modes, from
region 1 to region 2, and −means backward traveling
modes, from region 2 to region 1)⎡⎢⎢⎣ E→+

1

E
→−

1

⎤⎥⎥⎦ =
⎡⎢⎢⎣M11 M12

M21 M22

⎤⎥⎥⎦
⎡⎢⎢⎣ E→+

2

E
→−

2

⎤⎥⎥⎦ (33)

The relationship between the wave matrices and the scat-
tering parameters is⎡⎢⎢⎣M11 M12

M21 M22

⎤⎥⎥⎦ =
⎡⎢⎣ I 0
S11 S12

⎤⎥⎦
⎡⎢⎢⎣ S21 S22
0 I

⎤⎥⎥⎦
−1

(34)

The wave matrix for a bianisotropic sheet consisting of the

constituent surface parameters Y , Z, γ, and χ is
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⎡⎢⎢⎢⎣M11 M12

M21 M22

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣
Y
2
+ χn
2η1

− I
η1

Y
2
− χn
2η1

+ I
η1

Zn
2η1

+ γ
2
− n −Zn

2η1
+ γ
2
− n

⎤⎥⎥⎥⎥⎥⎥⎦
−1

·

⎡⎢⎢⎢⎢⎢⎢⎣
−Y
2
− χn
2η2

− I
η2

−Y
2
+ χn
2η2

+ I
η2

−Zn
2η2

− γ
2
− n

Zn
2η2

− γ
2
− n

⎤⎥⎥⎥⎥⎥⎥⎦ (35)

By relating (34) and (35), the constituent surface
parameters can be obtained in terms of the desired S-
parameters.

The real power of the wave matrix approach, how-
ever, lies in its ability to easily model cascades of sheets
and dielectric spacers. For example, a common way to
realize a bianisotropic boundary is the three-sheet or
four-sheet method (which allows arbitrary polarization
conversions), as shown in see Section 4.3. The three-
sheet realization of a bianisotropic boundary consists of a
stack of three electric sheet admittances each separated
by dielectric spacers, as shown in Figure 2. The wave
matrix associated with the cascaded metasurface in
Figure 2 is,

⎡⎢⎢⎢⎣M11 M12

M21 M22

⎤⎥⎥⎥⎦ = (t1 ⊗ I + η1
2
e ⊗ Y 1)(ϕ2 ⊗ I)

·(t2 ⊗ I + η2

2
e ⊗ Y2)(ϕ3 ⊗ I)

·(t3 ⊗ I + η3

2
e ⊗ Y3)

(36)

The first term in parenthesis is associated with the first
dielectric interface and sheet admittance. The second term
represents the phase delay of the first dielectric spacer.
Similar associations follow for the remaining terms. The
operator ⊗ denotes the Kronecker tensor product, defined as

An×m ⊗ Bp×l =
⎡⎢⎢⎣ a11B ⋯ a1mB

⋮ ⋱ ⋮
an1B ⋯ anmB

⎤⎥⎥⎦
np×ml

 . (37)

The definitions of the various tensors in (36) are

ti = 1
T

⎡⎣ 1 R

R 1

⎤⎦, R = ηi+1 − ηi
ηi+1 + ηi

, T = 2ηi+1
ηi+1 + ηi

I =
⎡⎣ 1 0

0 1

⎤⎦,  e = ⎡⎣ 1 1

−1 −1

⎤⎦, ϕi =
⎡⎣ ejϕi 0

0 e−jϕi

⎤⎦ (38)

The total wave matrix of (36) is written in terms of the
desired S-matrix in (34) to synthesize the necessary sheet
admittances. Equating (34) and (36) results in the following

design process [66]: First, the middle sheet admittance, Y2

is solved for as

e ⊗ Y2 = 1
a2
((e ⊗ I)S1S−12 (e ⊗ I) − (et1ϕ2t2ϕ3t3e) ⊗ I)

(39)

where a2 satisfies η2
2 (et1ϕ2eϕ3t3e) = a2e. Then, the outer

sheet Y 1 is found in terms of Y2 from

e ⊗ Y 1 = 1
a1
(S1S−12 (e ⊗ I) − (t1ϕ2t2ϕ3t3e) ⊗ I

−η2
2
(t1ϕ2eϕ3t3e) ⊗ Y2)(I ⊗ (I + a12

a1
Y2)−1) (40)

where a1 and a12 are given by η1
2 (eϕ2t2ϕ3t3e) = a1e and

η1η2
4 (eϕ2eϕ3t3e) = a12e. And finally, the outer sheet Y3 is
found in terms of Y2 from

e ⊗ Y3 = 1
a3
(I ⊗ (I + a23

a3
Y2)−1)((e ⊗ I)S1S−12

−(et1ϕ2t2ϕ3t3) ⊗ I − η2

2
(et1ϕ2eϕ3t3) ⊗ Y2) (41)

where a3 and a23 are given by η3
2 (et1ϕ2t2ϕ3e) = a3e and

η2η3
4 (et1ϕ2eϕ3e) = a23e. The preceding expressions provide

Figure 2: A metasurface consisting of three cascaded electric sheet
admittances designed to realize a stipulatedSmatrix (reprintedwith
permission from [66]).
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an analytical approach to solve for the required sheet ad-
mittances to realize bianisotropic boundaries using three
cascaded electric sheets. Several uses of this synthesis
approach will be highlighted in Section 5 (see Table 2).

3.4 Synthesis using the sheet impedance
model: integral equation to constituent
surface parameters

An integral equation can be constructed from the Sheet
Impedance Model of (23) in terms of the unknown surface

electric and magnetic current densities, J
→

s andM
→

s [34, 37,
85, 98]

ẑ × E
→inc

av = −ẑ × E
→sca

av + Zee · J
→

s − Kem ·M
→

s

ẑ × H
→inc

av = −ẑ × H
→sca

av + Kem · J
→

s − Ymm ·M
→

s

(42)

where E
→inc

av and H
→inc

av are the incidentfieldsand E
→sca

av and H
→sca

av

are the scattered fields found through spatial convolution of
the appropriate current density with the corresponding
Green’s function. For example, in 2-dimensions (out of plane
wavenumber is zero) and for a finite bianisotropic meta-
surface of width w defined along the y-axis, these are

E
→sca

z (x, y) = −η0k0
4

∫
w/2

−w/2
J
→

z(y′)H(2)
0 (k0 ⃒⃒⃒y − y′

⃒⃒⃒)dy′
H
→sca(x, y) = −1

4η0k0
(k20 + ∂

2

∂y2
)

∫
w/2

−w/2
M
→

y(y′)H(2)
0 (k0 ⃒⃒⃒y − y′

⃒⃒⃒)dy′
(43)

whereH( 2)
0 () is the Hankel function of the second kind and

of order zero. By applying the method of moments tech-
nique [99], the integral equation can be transformed into a
linear matrix equation as [34]⎡⎢⎣ [Vinc

e ][Vinc
h ]
⎤⎥⎦ = [ [Ze] + [Zee] −[Kem]

[Kem] [Zm] − [Ymm] ][ [Ie][Im]] (44)

where [Vinc
e ] and [Vinc

h ] are the moment method voltage
vectors for the incident electric and magnetic fields, [Ze]
and [Zm] are the coupling matrices between basis and
testing expansion functions placed along the bianisotropic
sheet, and [Zee], [Kem], [Kem], and [Ymm] are diagonal
matrices of the constitutive surface parameters associated
with the total fields in the last two terms of each line of (42)[Vtot

e ] = [Zee][Ie] − [Kem][Im][Vtot
h ] = −[Ymm][Im] + [Kme][Ie]

(45)

Given the desired total fields on the left hand side of (45),
the integral equation in (42) can be solved for the unknown
current densities [37, 81].

Recall that a common way to realize a bianisotropic
boundary is the three-sheet method (see Section 4.3). The
three-sheet realization of a bianisotropic boundary con-
sists of a stack of three electric sheet impedances (layers 1,
3, and 5) each separated by dielectric spacers (layers 2 and
4), as shown in Figure 3. For a 2-dimensional metasurface
(sheet admittances vary only along one coordinate) illu-
minated with TE-polarized waves, (44) can be written for
the three-sheet metasurface in Figure 3 as [37, 57]⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[Vinc, 1
e ][Vinc, 2
e ][Vinc, 3
e ][Vinc, 4
e ][Vinc, 5
e ]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[Z11
e ] [Z12

e ] [Z13
e ] [Z14

e ] [Z15
e ][Z21

e ] [Z22
e ] [Z23

e ] [Z24
e ] [Z25

e ][Z31
e ] [Z32

e ] [Z33
e ] [Z34

e ] [Z35
e ][Z41

e ] [Z42
e ] [Z43

e ] [Z44
e ] [Z45

e ][Z51
e ] [Z52

e ] [Z53
e ] [Z54

e ] [Z55
e ]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[Z1
ee] 0 0 0 0

0 [Z2
vol] 0 0 0

0 0 [Z3
ee] 0 0

0 0 0 [Z4
vol] 0

0 0 0 0 [Z5
ee]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[I1e][I2e][I3e][I4e][I5e]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(46)

where [Z2
vol] = diag[( jωϵ0(ϵr2 − 1))−1] and [Z4

vol] =
diag[( jωϵ0(ϵr4 − 1))−1] and diag[] refers to the construction

Figure 3: A three-sheet metasurface consisting of three cascaded
electric sheet admittances designed to realize a stipulated S-matrix.
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of a diagonalmatrix with the argument appearing repeated
along the diagonal. The superscripts indicate the various
layer numbers. Thus, the matrices [Zij

e] represent the
coupling between basis (currents) on layer j and testing
functions (observations) on layer i. Defining the desired
total fields on layers 1 (incident side of metasurface) and
5 (transmitted side of metasurface), the unknown sheet
impedances [Z1

ee] and [Z5
ee] can be replaced by[Vtot, 1

e ] = [Z1
ee][I1e][Vtot, 5

e ] = [Z5
ee][I5e] (47)

This leaves only [Z3
ee] left undetermined. To determine

these unknown sheet impedances, an iterative technique
that was originally introduced in Ref. [57] for dual band
metasurfaces can be applied by choosing the second fre-
quency a few hertz above the first. The process results in
the description of the electric sheet impedances of layers 1,
3, and 5 necessary to achieve the desired field trans-
formation defined in (47). The advantage of adopting the
integral equation modeling technique over the approaches
in III.B or III.C is that the integral equation modeling
method accounts accurately for transverse coupling be-
tween elements within each layer and layer-to-layer
coupling. It also accounts for the finite dimensions of the
metasurface. Other approaches do not model the trans-
verse coupling and solve the problem by including con-
ducting baffles separating unit cells (see Refs. [50, 100] for
example). The integral equation approach avoids the need
for any of these unit cell separators. Several uses of the
integral equation modeling technique will be presented in
Section 5 (see Table 2).

3.5 Synthesis using the susceptibility
model: reflection and transmission to
surface susceptibilities

One approach for direct synthesis of the tangential sus-
ceptibilities can be found in Refs. [90–92] and will be
summarized here. Equation (25) can be written in matrix
form as

⎡⎢⎢⎢⎣
ΔHy

ΔHx

ΔEy

ΔEx

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣
χ̃xxee χ̃xyee χ̃xxem χ̃xyem
χ̃yxee χ̃yyee χ̃yxem χ̃yyem
χ̃xxme χ̃xyme χ̃xxmm χ̃xymm

χ̃yxme χ̃yyme χ̃yxmm χ̃yymm

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣
Ex, av

Ey, av

Hx, av

Hy, av

⎤⎥⎥⎥⎦ (48)

In (48), the ′∼′ symbol denotes normalized susceptibilities
which are related to the unnormalized susceptibilities as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
χxxee χxyee χxxem χxyem
χyxee χyyee χyxem χyyem
χxxme χxyme χxxmm χxymm

χyxme χyyme χyxmm χyymm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

j
ωϵ0

χ̃xxee
j

ωϵ0
χ̃xyee

j
k0
χ̃xxem

j
k0
χ̃xyem

−j
ωϵ0

χ̃yxee
−j
ωϵ0

χ̃yyee
−j
k0
χ̃yxem

−j
k0
χ̃yyem

−j
k0
χ̃xxme

−j
k0
χ̃xyme

−j
ωμ0

χ̃xxmm

−j
ωμ0

χ̃xymm

j
k0
χ̃yxme

j
k0
χ̃yyme

j
ωμ0

χ̃yxmm

j
ωμ0

χ̃yymm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(49)

Whenwritten in this form, (48) is the same as (22) apart from
a factor of jω, and thus the following synthesis approach is
similar to that in Section 3.2. The matrix equation in (48)
represents 16 unknowns and four equations and thus is
underdetermined. The 16 unknowns can either be solved for
directly by defining four total field transformations the
metasurface is to perform simultaneously or must be
reduced to four unknowns to make the system determined.
For a single field transformation (one involving one set of
incident, reflected, and transmitted electric and magnetic
fields), only four susceptibilities are required for the general
case of both x and y polarization states (if only one polari-
zation state is considered, then only two susceptibilities are
required). Several ways to reduce (48) to determined forms
can be found in Refs. [90–92].

The S-parameters can then be directly related to the
susceptibilities [92]. First (48) can be written as

Δ = χ̃ · Av (50)

Thematrices Δ andAv can be formed in terms of the desired
S-parameters as

Δ=

⎡⎢⎢⎢⎢⎢⎢⎣
−N2

η1
+N2S11

η1

+N2S21
η2

−N2

η2

+N2S12
η1

+N2S22
η2

−N1N2 −N1N2S11 +N1N2S21 N1N2 −N1N2S12 +N1N2S22

⎤⎥⎥⎥⎥⎥⎥⎦

Av = 1
2

⎡⎢⎢⎢⎢⎢⎢⎣
I +S11 +S21 I +S12 +S22

N1

η1
−N1S11

η1
+N1S21

η2

−N1

η2

−N1S12
η1

+N1S22
η2

⎤⎥⎥⎥⎥⎥⎥⎦
(51)
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where

Sab =
⎡⎢⎣ Sxxab Sxyab

Syxab Syyab

⎤⎥⎦, I = [ 1 0

0 1
]

N1 = [0 −1
1 0

], N2 = [ 1 0

0 −1]
Substitution of (51) into (50) allows the normalized sus-

ceptibilities χ̃ to be obtained bymatrix inversion. Examples
of metasurfaces designed using this synthesis approach
will be presented in Section 5.

4 Magnetoelectric particle design
and realization of bianisotropic
boundaries

Design of a metasurface using bianisotropic boundary
conditions and the associated synthesis techniques results
in descriptions for either the surface susceptibility tensors

χab, the constituent surface parameter tensors Y , γ, χ and Z,

or the effective polarizability density tensors α̂. Thus,
appropriate magnetoelectric particles which exhibit the
propermagnetoelectric responsemust bedesigned to realize
these parameters. This section reviews some reciprocal and
nonreciprocal magnetoelectric particle designs which can
be used to realize bianisotropic metasurfaces. Each particle

can be characterized by its polarizability tensors αab which
relate the particle’s dipole moment to its local excitation as
in (9). Toobtain thesepolarizabilities the particle is analyzed
in isolation and thus the local field exciting the particle is
simply the incident field only. Thus, each particles polariz-
abilities will be obtained by considering a plane wave
excitation.

We will present four canonical magnetoelectric parti-
cles and their polarizability tensors. Following this, planar
3-sheet and 4-sheet realizations ofmagnetoelectric particles
will be presented. Finally, implementations of all-dielectric
magnetoelectric particles and planar all-dielectric re-
alizations will be presented.

4.1 Reciprocal magnetoelectric particles

The reciprocal class of magnetoelectric particles includes
the Omega particle and the Chiral particle. Reciprocal
magnetoelectric particles are characterized by the Ons-
ager–Casimir symmetry relations [60, 61, 101–104]

αee = α
T
ee, αmm = α

T
mm, αme = −αT

em (52)

where the operator ‘T’ denotes matrix transpose. The po-
larizabilities of each of the particles presented in this
subsection will adhere to (52). We begin with the reciprocal
Omega particle.

4.1.1 Omega particle

The Omega magnetoelectric particle [61] consists of the
combination of a resonant dipole conjoined to an in plane
small loop antenna, as shown in Figure 4a. As shown in
Figure 4b, when the particle is excited with an electric field
parallel to the dipole axis, electric currents are induced in
the dipole arms leading to non-zero αxxee (the ratio of Einc,x to
pe,x). By continuity of current, the current also flows
through the loop inducing a magnetic dipole moment in

the ŷ-direction and leading to a non-zero αyxme. Similarly in
Figure 4c, when the particle is excited by a ŷ-directed
magnetic field, current is induced in the loop by magnetic
induction. By Lenz’s law, the induced magnetic dipole due
to this current is in the opposite direction of the incident

magnetic field leading to a non-zero αyymm. By continuity of
current, current also flows in the dipole arms leading to

non-zero αxyem. Because the particle contains no nonrecip-
rocal components, the magnetoelectric responses must be
of equal magnitude, however, they are directed opposite

one another. Hence, αyxme = −αxyem, indicating reciprocal
Omega operation (see Table 1). The Omega particle pre-
serves polarization as the induced electric dipole moments
are always parallel to the exciting electric field, and hence
the Omega particle does not possess chiral properties. The
polarizability tensor for the Omega particle appearing in
Figure 4 is given as

⎡⎣ αee αem

αme αmm

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎣
αxxee 0 0

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
0 αxyem 0

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎣
0 0 0

−αxy
em 0 0

0 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
0 0 0

0 αyymm 0

0 0 0

⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(53)

The Omega particle’s magnetoelectric terms are located on
the off-diagonalmatrix entries. The remaining terms of (53)
can be obtained through coordinate rotations of the parti-
cle (see Table 1). Analytical expressions for all particle
polarizabilities αuvab of the Omega particle in (53) can be

found in Ref. [60].
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Another realization of an Omega particle is the wire–
loop topology shown in Figure 5. The wire and loop are
electrically isolated. The wire controls the electric response,
and the loop controls the magnetic response. When the
configuration is symmetric as in Figure 5a, the net magnetic
flux through the loop created by the wire is zero, and hence
no magnetoelectric coupling. However, when the wire is
offset with respect to the loop as in Figure 5b, the net flux is
non-zero and by magnetic induction, current flows in the
loop generating a magnetic dipole. The magnetoelectric
coupling is tunable through the degree of asymmetry
introduced by the offset. The polarizability matrices are the
same as (53) and analytical expressions for the polarizabil-
ities can be found in Ref. [21].

4.1.2 Chiral particle

The Chiral magnetoelectric particle [61] consists also of
conjoinedelectric dipole and loopantennas, as in the case of

theOmegaparticle.However, a 90° twist is added to the loop
antenna to bring it out of plane with the dipole (see
Figure 6a). This simple change makes the particle chiral, as
the particle now exhibits mirror asymmetry. As seen in
Figure 6b and c, the induced magnetic (electric) dipole
moment is now orthogonal to the incident magnetic (elec-
tric) field for the case of electric (magnetic) excitation lead-
ing to non-zero αxxem and αxxme, and hence the Chiral particle
rotates the polarization of the incident field upon excitation.
Materials made from Chiral particles are therefore said to be
Gyrotropic. The polarizability tensor for the Chiral particle
shown in Figure 6 is

⎡⎣ αee αem

αme αmm

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎣
αxx
ee 0 0

0 0 0

0 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
αxx
em 0 0

0 0 0

0 0 0

⎤⎥⎥⎥⎦⎡⎢⎢⎢⎣
−αxxem 0 0

0 0 0

0 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
αxx
mm 0 0

0 0 0

0 0 0

⎤⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(54)

Note, the Chiral particle is described by the relationship
αxxem = −αxxme (see Table 1). The Chiral particle’s magneto-
electric terms are located along the main diagonal of the
magnetoelectric polarizability matrices. The remaining
terms of (54) can be obtained through coordinate rotations
of the particle (see Table 1). Analytical expressions for the
particle polarizabilities αuvab of the Chiral particle in (54) can

be found in Ref. [60].

4.2 Nonreciprocal magnetoelectric particles

The nonreciprocal class of magnetoelectric particles in-
cludes the Tellegen–Omega particle and the Moving–Chiral

Figure 4: Omega bianisotropic particle
(reprinted with permission from Ref. [61]).
(a) The Omega bianisotropic particle
geometry. (b) Induced dipole moments
under electric excitation. (c) Induced dipole
moments under magnetic excitation.

Figure 5: Wire–loop Omega bianisotropic particle. The wire is
isolated from the loop by an air-gap (reprinted with permission from
Ref. [21]).
(a) Symmetric wire–loop configuration only contains electric and
magnetic responses and is notmagnetoelectric. (b) By introducing an
offset (asymmetry), the net magnetic flux through the loop created by
the wire is non-zero leading to tunable magnetoelectric coupling.
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particle. These particles are realized by including biased
ferrite inclusions in the particles. Nonreciprocal magneto-
electric particles are characterized by the Onsager–Casimir
relations [72, 101–104].

αee(H→a) = α
T
ee(−H→a),

αmm(−H→a) = α
T
mm(H→a),

αme(H→a) = −αT
em(−H→a) (55)

where H
→

a represents the external biasmagneticfield. Thus,
the particles are only reciprocal under bias field inversion
and nonreciprocal otherwise. We begin with the nonre-
ciprocal Tellegen–Omega particle.

4.2.1 Tellegen–Omega particles

The Tellegen–Omega particle [72] is shown in Figure 7. The
particle geometry consists of a pair of orthogonal dipoles
with a small spherical ferrite bead at the wire junction. The
particle is located in the xy-plane. An external magnetic

field, H
→

a, directed along the ẑ-direction biases the ferrite
bead to magnetization saturation. When an x̂-directed
electric field is incident upon the particle, electric current is
induced in the dipole positioned along the x̂-direction
leading to a non-zero αxxee polarizability. The induced cur-
rent excites a magnetic field according to Ampere’s Law.
The ŷ-component of the magnetic field excites the ferrite
bead inducingmagnetic dipolemoments in both the x̂- and

ŷ-directions leading to non-zero αxxme and αyxme polarizabil-
ities. By magnetic induction, electric current is excited in

the ŷ-directed wire leading to non-zero αyxee .
Now consider the particle being excited with an

x̂-directed high frequency magnetic field. Magnetic mo-
ments are excited in the ferrite sphere in both the x̂- and

ŷ-directions leading to non-zero αxxmm and αyxmm. The mag-
netic moments in turn excite electric currents in both the
wires by magnetic induction leading to non-zero αxxem and

αyxem. Due to the particle symmetry and bias field of the

ferrite sphere, αxxme = αxxem and αyxme = αyxem and hence the

particle is Tellegen (αem = αTme). In this case, the polariz-
ability tensors are

⎡⎣ αee αem

αme αmm

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎣
αxx
ee 0 0

αyx
ee 0 0

0 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
αxx
em 0 0

αyx
em 0 0

0 0 0

⎤⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎣
αxx
em 0 0

αyx
em 0 0

0 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
αxx
mm 0 0

αyx
mm 0 0

0 0 0

⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(56)

The remaining terms of (56) can be obtained by considering
excitations in the ŷ-direction (see Table 1). Note, ẑ-directed
excitations do not apply since the particle is uniaxial due to

Figure 6: Chiral bianisotropic particle
(reprinted with permission from Ref. [61]).
(a) The Chiral bianisotropic particle
geometry. (b) Induced dipole moments
under electric excitation. (c) Induced dipole
moments under magnetic excitation.

Figure 7: Tellegen–Omega nonreciprocal magnetoelectric particle
(reprinted with permission from Ref. [72]).
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the applied bias. Analytical expressions for the particle
polarizabilities αuvab of the Tellegen–Omega particle in (56)

can be found in Ref. [72].

4.2.2 Moving–Chiral particles

The Moving–Chiral particle [72] is shown in Figure 8.
The particle geometry is similar to the Tellegen–Omega
with a 90° twist added to the dipole arms. The twist
makes the particle mirror-asymmetric leading to
chirality [61, 105]. Similar to the Chiral particle, the
induced dipole moments are now orthogonal to the
exciting field. To see this, consider an x̂-directed electric
excitation which produces current in the longer wire
segment of wire B. A non-zero αxxee is observed. The cur-
rents in the shorter wire segment excites the ferrite in-
clusion, generating both an x̂- and ŷ-directed magnetic
dipole moments (only this time the moments are
directed opposite to that of the Tellegen–Omega particle

due to the twist) and hence non-zero αxxme and αyxme. By
magnetic induction again, electric currents are excited

in wire A leading to non-zero αyxee .
Next consider an x̂-directed incident magnetic field.

The incident magnetic field excites the ferrite sphere
inducing both x̂- and ŷ-directedmagnetic dipolemoments

leading to non-zero αxxmm and αyxmm. By magnetic induction
current is induced in both wires leading to non-zero αxxem
and αyxem. Due to the twist, the magnetoelectric polariz-
abilities are directed in the opposite direction to one

another. Hence, αxxem = −αxxme (Chiral) and αyxem = −αyxme

(Moving). The polarizability tensors for the Moving–
Chiral particle are

⎡⎣ αee αem

αme αmm

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎣
αxxee 0 0

αyxee 0 0

0 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
αxx
em 0 0

αyx
em 0 0

0 0 0

⎤⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎣
−αxx

em 0 0

−αyx
em 0 0

0 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
αxx
mm 0 0

αyx
mm 0 0

0 0 0

⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(57)

The remaining terms of (57) can be obtained by considering
excitations in the ŷ-direction (see Table 1). Analytical ex-
pressions for the particle polarizabilities αuvab for the Mov-

ing–Chiral in (56) can be found in Ref. [72].
A summary of the transverse magnetoelectric polariz-

abilities of the presented canonical particles is provided in
Table 1. The normal polarizabilities of the reciprocal particles
are not shown. Note, the nonreciprocal particles are uniaxial
due to the bias field and hence do not contain normal po-
larizabilities. From the table, it is easy to verify (52) and (55).

4.3 Three-sheet and four-sheet
implementations of bianisotropic
particles

Bianisotropic responses can also be realized as a series of
cascaded sheet admittances [15, 65, 66, 106]. For an intui-
tive understanding of how this works, let us first consider a
quasi-static magnetic field interacting with an isotropic
metasurface consisting of a symmetric cascade of three
sheets (see Figure 9). A ŷ-directed magnetic field generates
circulating electric currents on the outer sheets (Ys1), thus
creating an equivalent magnetic current. However, the
magnetic field does not interact with themiddle sheet (Ys2)
since the induced currents are canceled due to symmetry.
Conversely, all three sheets will interact with a ẑ-directed
electric field. Therefore, the outer sheets can be designed to

Table : Summary of transverse magnetoelectric polarizabilities of
canonical particles.

αxx
em αyy

em αxy
em αyx

em αxx
me αyy

me αxy
me αyx

me

Omega   �α α   �α α
Chiral α α   �α �α  

Pure Tellegen α α   α α  

Pure Moving   �α α   α �α
Tellegen–Omega α α �α α α α �α α
Moving–Chiral α α �α α �α �α α �α

Figure 8: Moving Chiral nonreciprocal magnetoelectric particle
(reprinted with permission from Ref. [72]).
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realize a desired magnetic response, and the middle sheet
adjusted to independently control the electric response.
This enables independent control over both the electric and
magnetic response. This is similar to how symmetry in the
symmetric wire–loop particle enables independent control
of the electric and magnetic responses.

To realize an isotropic omega response, the cascade of
three sheets should be asymmetric (the outer sheets are not
equal). To realize full bianisotropic surface parameters, the
three sheets should also be anisotropic [15]. This will cause
the electric response to couple to themagnetic response since
the cancellation shown in Figure 9 will not fully occur,
similar to the asymmetric wire loop combination. A transfer
(ABCD) orwavematrix approach canbe employed todevelop
a relation between the cascaded sheet admittances (repre-
senting the patterned sheets) of the metasurface and its
S-parameters. This transfer matrix approach relates the total
field in regions 1 and 2 (seeFigure 1) through theABCDmatrix⎡⎢⎣ E→1

H
→

1

⎤⎥⎦ = ⎡⎢⎣A B
C D

⎤⎥⎦⎡⎢⎣ E→2

H
→

2

⎤⎥⎦ (58)

whereA,B,C, andD are each 2× 2matrices relating the x̂ and
ŷ field components. For example, the transfer matrix for the
metasurface consisting of three cascaded patterned sheets
(sheet admittances) shown in Figure 10 can be written as⎡⎢⎣A B

C D

⎤⎥⎦ =
⎡⎢⎢⎣ I 0

n Ys1 I

⎤⎥⎥⎦
⎡⎢⎢⎣ cos(βd)I −j sin(βd)ηdn
j sin(βd)η−1d n cos(βd)I

⎤⎥⎥⎦
·

⎡⎢⎢⎣ I 0

n Ys2 I

⎤⎥⎥⎦
⎡⎢⎢⎣ cos(βd)I −j sin(βd)ηdn

j sin(βd)η−1d n cos(βd)I

⎤⎥⎥⎦
⎡⎢⎢⎣ I 0

n Ys3 I

⎤⎥⎥⎦
(59)

Here, ηd = ̅̅̅̅̅
μd/ϵd
√

is the wave impedance of the inter-sheet

dielectric layers, βd = ω
̅̅̅̅̅
μdϵdd
√

is the electrical thickness

of the dielectric layers (i.e. propagation delay), and Ysn is
the admittance of the nth sheet (see Figure 10). Once again,
η1, η2 are the wave impedances on the incident (region 1)
and transmitted (region 2) side of the metasurface,
respectively. The scattering matrix of the metasurface can
then be related to the sheet admittances through the ABCD
matrix.

⎡⎢⎢⎣ S11 S12
S21 S22

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣
−I B n

η2

+ A

n
η1

D n
η2

+ C

⎤⎥⎥⎥⎥⎥⎥⎦
−1⎡⎢⎢⎢⎢⎢⎢⎣

I
B n
η2

− A

n
η1

D n
η2

− C

⎤⎥⎥⎥⎥⎥⎥⎦ (60)

By equating the scattering parameters of (31) and (60), one
can relate the constituent surface parameters of a biani-
sotropic metasurface to the sheet admittances comprising
it. Therefore, the sheets can be systematically designed to
achieve arbitrary bianisotropic surface parameters, or
desired transmission and reflection characteristics,
limited only by reciprocity and passivity.

In fact, four sheets are needed to realize the full 4 × 4
scattering matrix in (30). There are 32 entries in the scat-
tering matrix but if one applies lossless and reciprocal
constraints, there are only 10 distinct entries of the scat-
tering matrix. These 10 distinct entries can be realized
using four sheets, since each sheet can provide three en-
tries [107]. Therefore, three sheets are insufficient if one is

Figure 9: A cascade of three sheet admittances can realize
independent electric and magnetic responses.

Figure 10: (Reprintedwith permission fromRef. [15]) (a)Metasurface
consisting of patterned plasmonic sheets (anisotropic sheet
admittances) separated by optically thin dielectric layers. The
metasurface can be designed to exhibit electric, magnetic, and
chiral constituent surface parameters. (b) An example of a designed
bianisotropic metasurface that acts as an asymmetric circular
polarizer atmm-wave frequencies. This unit cell converts an incident
right-handed circular polarization to left-handed circular polariza-
tion, but completely reflects incident left-handed circular
polarization.
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to realize a full scattering matrix. The same ABCD matrix
cascading approach can be extended to the four-sheet
case, and equality between (31) and the four-sheet version
of (59) (add an additional sheet and dielectric spacer) and
(60) can bemade. Adding a fourth sheet can also provide a
wider bandwidth, as has been shown in Refs. [14, 15, 66].

4.4 All-dielectric bianisotropic particles

An all-dielectric reciprocal Omega-type bianisotropic
nanoparticle is shown in Figure 11 [77]. The cylindrical
dielectric puck of radius D and height H has a hole drilled
into it of depth D0 and height H0 breaking the symmetry of
the nanoparticle. It is well known that cylindrical nano-
particles can exhibit electric and magnetic dipolar reso-
nances which can be described through effective electric
and magnetic dipole moments [108]. By introducing the
partially drilled hole and breaking the symmetry of the
particle, a magnetoelectric response is created. The polar-
izabilities of the reciprocal Omega-type bianisotropic par-
ticle when illuminated by the plane waves indicated in
Figure 11 are given as [77]

p±
x

ϵ0
= αeeE

inc
x ± αemZ0H

inc
y

Z0m±
y = αmeE

inc
x ± αmmZ0H

inc
y

(61)

In (61), p±x and m±
y are the x̂- and ŷ-directed electric and

magnetic dipole moments of the nanoparticle when illu-

minated by the x̂- and ŷ-directed incident electric, Einc
x , and

magnetic, Hinc
y , fields, respectively. Note, when the + is

chosen in the ± symbol, the illumination is from below,
whereaswhen the − sign is chosen, the illumination is from
above. Because of the broken symmetry, p+x ≠ p−x and m+

y ≠

m−
y which can be explained as due to electro-magnetic/

magnetoelectric coupling and hence non-zero αem and αme.
Values for the polarizabilities in (61) are provided in
Ref. [77].

An all-dielectric analog of the three-sheet and four-
sheet implementations of Section 4.3 are presented in
Ref. [67] and shown in Figure 12. Each layer of the multi-
layer stack consists of a high-contrast, subwavelength
dielectric grating rotated by some angle θ with respect to a
global cartesian coordinate system. By using effective
medium theory, each layer can be homogenized into an
anisotropic layer following from

1
ϵ⊥

= f
ϵ1

+ 1 − f
ϵ2

ϵ∥ = fϵ1 + (1 − f )ϵ2
(62)

where ϵ⊥ and ϵ∥ are the effective permittivity of the grating
in the direction perpendicular and parallel to the direction
of dielectric contrast, ϵ1 and ϵ2 are the permittivity of the
two materials used to fabricate the grating, and f is the fill
fraction of the grating. Stacking the effective homogenized
anisotropic layers produces a bianisotropic response
analogous to the stack of anisotropic electric sheets case in
Figure 10. Typically, each grating provides a narrower
range of constitutive surface parameters, therefore more
layers (thicker stacks) are required in designs.

Figure 11: All-dielectric reciprocal Omega-type bianisotropic nano-
particles (reprinted with permission from Ref. [77]).

Figure 12: All-dielectric stacks of high contrast gratings (reprinted with permission from Ref. [67]).
(a) Each grating is homogenized into an anisotropic layer using effective medium theory. By controlling the fill fraction within each layer, the
anisotropic effective permittivity canbe controlled. Stacks of the effective anisotropic layers providebianisotropic responses analogous to the
three electric sheet implementations of bianisotropic boundaries.
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5 Capabilities and recent
applications of bianisotropic
boundaries

The examples, taken from scientific works in open litera-
ture, of this section are a collective representation of the
state of the art in metasurface design using bianisotropic
boundary conditions. The synthesis approach and reali-
zation used in each example, can be traced back to the
previous sections and are summarized in Table 2.

5.1 Polarization control

The first application of bianisotropic metasurfaces was in
polarization control. Several bianisotropic metasurfaces
for polarization control have been reported in literature
[13–20]. As an illustrative example, consider a reflection-
lessmetasurface that rotates an arbitrary linearly polarized
plane wave by 90° upon transmission [15]. Thus, the
desired scattering matrix is

S11 = 0, S21 = ejϕ[0 −1
1 0

] (63)

By inserting (63) into (32), the constituent surface param-
eters are obtained as

⎡⎢⎣Y χ
γ Z

⎤⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣
−2jη−1

0 tanϕ 0 −2 secϕ 0

0 −2jη−1
0 tanϕ 0 −2 secϕ

2 secϕ 0 −2jη0 tanϕ 0

0 2 secϕ 0 −2jη0 tanϕ

⎤⎥⎥⎥⎥⎥⎥⎦ (64)

Comparison of (64) with Table 1 shows the metasurface
is isotropic and chiral. The metasurface was realized
using the techniques of Section 4.3 and is shown in
Figure 13.

Next consider the same polarizer designed using the
particle polarizabilitymodel [20] (see Section 2.2). Since the
metasurface is isotropic and chiral, the same metasurface
should be able to be realized using the chiral particle of
Section 4.1.2. Starting from the polarizability model and
noting (63) can be written as

E
→

r = 0, E
→

t = AJt · E
→

inc (65)

where the factor A = ejϕ, the particle’s polarizabilities can
be found by setting the first of (28) and the co-polarized
component of the second to zero while setting the cross-
polarized component the second to A. The solution results
in the description of a Chiral particle

α̂coee =
S

jωη0
α̂co
mm, α̂

co
mm = η0S

jω
, α̂co

me = −α̂coem = −A S
jω

(66)

and is shown in Figure 14. Note, the superscript ‘co’ re-
fers to the main diagonal entries of the polarizability
tensors.

5.2 Impedance matching, antireflection,
and absorption

Another useful application of bianisotropic metasurfaces
is seamless impedance matching and antireflection [21,
22], or absorption [109]. Consider the work presented in
Ref. [22]. A metasurface which focuses an incident plane
wave from air into a medium with a high dielectric con-
stant, in this case water with a relative permittivity of
78−j11.7 (simultaneous impedance matching and wave-
front manipulation) is shown in Figure 15. The metasur-
face was designed using the wave matrix approach of
Section 3.3 and realized using the three-sheet method of
Section 4.3. The detailed results of the design process can
be found in Ref. [22]. As the figure shows, the metasurface
simultaneously performs impedance matching and
focusing into the water medium. By impedance matching
with the metasurface and thus avoiding the reflection at
the interface, the measured transmission efficiency has
been increased by over 20% over the case of no matching
metasurface.

Table: Summary of boundary conditions, synthesis approach, and
realization technique.

Example
(Section )

GSTC model
(Section )

Synthesis
approach
(Section )

Realization
(Section )

A C, B B, A C, A
B C, C C, B C, A
C A B C
D D E A
E C D C
F C B A
G C B C
H C C C
I C D C
J C D x
K C B x
L C C x
M C D C
N D * x
O C B x
P A * D
Q B A A

x, example not realized in referenced publication; *, synthesismethod
not reviewed in Section .
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As another example, consider the work presented
in Ref. [21]. A metasurface was designed as a wideband
impedance matching layer between two dielectric half
spaces of differing permittivities of ϵr1 = 35 and ϵr2 = 10. In
Figure 16a, a unit cell of the infinite periodic metasurface is
shown. Thewire–loop unit cell consists of a Rogers RO3010
substrate with a loaded wire printed on one side and a
loaded loop printed on the reverse side. The center of the
wire is offset with respect to the center of the loop to create
the magnetoelectric response. The reflection and trans-
mission coefficients of the matching layer are shown in
Figure 16b. It is observed that thematching layer achieves a
minimum reflection coefficient of −10 dB over the wide-
band of 1–22 GHz.

5.3 Multifunctional metasurfaces

Bianisotropic metasurfaces can also be designed for
multifunctional control of the wavefront [110–113] or po-
larization state [19, 69, 112, 114]. In Ref. [69], multifunc-
tional polarization converters are made from cascaded
subwavelength gratings (see Figure 12). One example is a
dual-band, dual-functionmetasurface which functions as
a left-handed symmetric circular polarizer for one band
and a left-handed asymmetric circular polarizer at the
other higher band. In another work [19], an LP-to-CP
polarizer that operates in two bands is reported for Sat-
Com applications. In the lower band, LP is converted to
LHCP, while in the upper band, LP is converted to RHCP.

An example of multifunctional wavefront control can
be found in Ref. [110]. There, a bianisotropic metasurface
operating at 10.5 GHz was designed to function as a beam
deflector when illuminated by an LHCP wave, and a
reflective focusing lens when illuminated by an RHCP
wave (see Figure 17). The metasurface elements were
designed such that the polarization-dependent responses
were decoupled with minimal interference between re-
sponses, by incorporating higher order resonances and
patch/loop structures. The elements consist of two iden-
tical layers of these elements backed by a ground plane.
The interplay between the two layers forms a Fabry–Perot
resonance and thus enhances the phase accumulation.

Figure 13: (Reprinted with permission from
Ref. [15]). Metasurface exhibiting
polarization rotation near 10 GHz.
(a) Schematic of the unit cell. For clarity, the
z axis is scaled by a factor of three so that
all four sheets are visible. (b) Bottom sheet
(Ys4) of the fabricated polarization rotator.
(c) Transmission coefficient for an incident
plane wave traveling in the +z direction.
Measured data are denoted by solid lines,
whereas simulated are denoted by dashed
lines. For clarity, the measured data are
frequency shifted by +0.20 GHz in the plot.
(d) Measured cross-polarized transmission
coefficient as a function of frequency and
incident linear polarization. The angle θ
refers to the angle between the x and y axes
of the incident linear polarization. It can be
seen that the cross-polarized transmission
coefficient is near 0 dB, independent of θ.

Figure 14: Geometry of single Chiral particle for reciprocal twist
polarizer (reprinted with permission from Ref. [20]).
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Given that the structure is asymmetric, it can be modeled
as a bianisotropic boundary. Measured results of the
multifunctional metasurface, shown in Figure 17, can be
found in Ref. [110].

In Ref. [113], multifunctional reflectors are designed
which utilize the propagating spatial harmonics of a
periodic metasurface to create multifunctional meta-
surfaces. These metasurfaces can simultaneously control
reflection from and into several directions in space.
Examples of three channel retroreflectors and three
channel power splitters which can send specified
amounts of power into the three diffraction order di-
rections are demonstrated.

5.4 Generalized Brewster effect

Bianisotropicmetasurfaces can also be used to generalize
the Brewster effect [26]. Under the generalized Brewster
effect, incident waves are totally transmitted with no re-
flections for both polarizations and for arbitrary inci-
dence angles (see Figure 18a). In Ref. [26], the authors
find total transmission with no reflections from meta-
surfaces with only electric and magnetic susceptibility
requires complex susceptibilities and hence require
particles exhibiting loss and gain. However, by including
magnetoelectric coupling, the metasurface can realize
the generalized Brewster effect from purely passive and

Figure 15: (Reprinted with permission from Ref. [22]). Antireflection focusing from air into 5 cm (λ/2.5) depth in water.
(a) A perspective view of the metasurface using eight unit cells distributed in a circular ring form. Cells occupying the same background color
are identical. (b) A photograph of the fabricated metasurface: a quarter of the metasurface is enlarged on the right. (c) A photograph of the
experimental setup. (d) The normalized magnetic field intensity along the focusing depth with and without the metasurface (MS) from
simulation (Sim.) and experiment (Exp.). The arrow indicates the full width at halfmaximum (FWHM)of 0.16λ. (e) and (f) The simulated (top) and
measured (bottom) magnetic field intensity at the x–z plane (e) without and (f) with the metasurface. (g) and (h) The simulated (top) and
measured (bottom) magnetic field intensity at the 5 cm-deep focal plane (x–y plane) (g) without and (h) with the metasurface. The water is
simulated with a complex relative permittivity ε2 = 78 − 11.7j.
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lossless metasurfaces. An example of a bianisotropic
metasurface designed to exhibit the Brewster effect at

θa = 30° is shown in Figure 18. The full-wave simulated
electric field amplitude distribution is shown in
Figure 18b and the angular dependance is shown in
Figure 18c. As can be seen, the metasurface exhibits
generalized Brewster angle for both polarizations at
θa = 30°. Due to the inclusion of bianisotropy, the meta-
surface was made lossless and passive.

5.5 Perfect reflection

An application of metasurfaces that has also received
attention recently is the concept of perfect reflection. Here,
we define perfect reflection as the transformation of an
incident wavefront into a desired reflected wavefront
without the generation of additional undesired radiation.
Such perfect transformation typically requires complex
sheet impedances [37]. Since the real part of the sheet
impedance represents loss and/or gain, which results in
inefficient designs or the need for active components, there

Figure 16: (Reprinted with permission from Ref. [21]). (a) Finite wire
and split-ring bianisotropic Huygens’ unit cell printed using 1 oz
copper (36 μm) on a 0.635 mm Rogers RO3010 substrate placed in a
1.58 mm air gap between two dielectric half-spaces with relative
permittivities ϵr1 = 35 and ϵr2 = 10. The wire is offset by −203 μm
compared to the symmetric case. (b) Magnitude of the reflection and
transmission of the bianisotropic Huygens’ metasurface unit cell
with copper and dielectric loss.

Figure 17: (Reprinted with permission from Ref. [110]). Scattering of
a wave impinging on the interface under an arbitrary angle (θa),
with conventional Fresnel transmission and reflection for the case of
the bare interface (left) and with reflectionless (Brewster)
transmissionwhen a properly designedmetasurface is placed at the
interface (right).

Figure 18: (Reprinted with permission from Ref. [26], © The Optical
Society). (a) Scattering of awave impingingon the interface under an
arbitrary angle (θa), with conventional Fresnel transmission and
reflection for the case of the bare interface (left) and with
reflectionless (Brewster) transmission when a properly designed
metasurface is placed at the interface (right). (b) Full wave simulated
electric field amplitude distribution and (c) angular response of the
reflectance and transmittance for polarization-independent
xz-plane Brewster metasurfaces with the general parameters
(ϵr, a, ϵr,b) = (1, 3) for generalized Brewster angle at θa = 30°.
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is a desire to perform the transformation with a purely
reactive sheet. Authors have approached this problem in a
variety of ways [37, 38, 41–44, 115, 116].

For example, in Ref. [32, 37], the authors solve the
problem by beginning with the local metasurface design
(requiring loss and/or gain) with a complex sheet
impedance above a grounded dielectric substrate and find
the scattered field amplitude and phase in the radiative
near field using the integral equation modeling technique
of Section 3.4 (see Figure 19c). Setting a targeted field
distribution in the radiative near field as the optimization
goal, they discard the real part of the initial complex-
valued sheet impedance and optimize the remaining
reactances such that the targeted field distribution is

achieved using only the reactances. In other words, the
amplitude and phase of the radiative near field is shaped
with only a single fully reactive electric layer by intro-
ducing surface waves which add to the total field on the
metasurface in a way that leads to a passive and lossless
metasurface. Observation of the fields along a plane in the
radiative near field avoids the difficulty of reconstructing
evanescent components through optimization. Thus, by
optimizing the fields at one wavelength away from the
surface, only the radiated fields are considered. The
resulting sheet reactances are nonintuitive (see
Figure 19c) and produce the same radiative near fields
(see Figure 19d) and far field patterns as the design
involving complex sheets.

Figure 19: (Reprinted with permission from Ref. [32]). (a) The perfectly reflecting metasurface. The geometry is finite in the transverse
directions and infinite and invariant in the axial direction (2D electromagnetics problem). (b) Phase plots of the incident and scattered fields.
(c) Comparison of original complex-valued sheet impedance (right half) and optimized reactive sheet impedance (left half). (d) Comparison of
nearfields observed at a plane 1λ above themetasurface as scattered by the complex-valued sheet (‘Complex’), the complex-valued sheetwith
resistances discarded (‘React’) and the optimized reactive sheet (‘Opt React’).
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5.6 Perfect wide-angle refraction

In addition to perfect reflection, perfect wide-angle
refraction is also possible [23–25, 41, 48]. Consider the
work in Ref. [24] where a wire–loop unit cell topology is
used to achieve reflectionless wide-angle refraction of a
normally incident plane wave to a refraction angle of 71.8°
with respect to the surface normal. By specifying the
TE-polarized desired incident, reflected, and transmitted

fields in both regions 1 (below the metasurface) and 2
(above the metasurface),

Et, 1 = Ex, 1(y, z) = E0,1e−jk0 cosθinze−jk0 sinθiny

Ht, 1 = Hy, 1(y, z) = 1
Z0,1

E0,1e−jk0 cosθinze−jk0 sinθiny

Et, 2 = Ex, 2(y, z) = E0,2e−jk0 cosθoutze−jk0 sinθouty

Ht, 2 = Hy, 2(y, z) = 1
Z0,2

E0,2e−jk0 cosθoutze−jk0 sinθouty

(67)

Figure 20: (Reprinted with permission from Ref. [24]). (a) Proposed omega-bianisotropic wire–loop geometries for (leftmost) single-cut loop,
(second from left) double-cut loop, (third from left) triple-cut loop, (fourth from left) shifted wire. (b) TE refraction design full-wave simulation,
electric field distribution of one period via periodic simulation in HFSS at 20 GHz. (c) Physical period of the TE refraction design.
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Figure 21: (Reprinted with permission from Ref. [50]). (a) Schematics of a metasurface converting a normally incident plane wave into a
transmitted surface wave with the propagation constant βy and the growth rate αy . (b) Schematics of a metasurface converting a surface wave
into an inhomogeneous plane wave propagating in the normal direction with the propagation constant β′z. (c) Schematic of the COMSOL
models used for simulating the conversion with asymmetric three-layer structure. Port 1 launches the normally incident plane wave. Port 2
either launches or accepts the surface wave. Port 3 only accepts the excited surface wave. (d) Snapshot of themagnetic field for ametasurface
with 10 periods, the growth rate is αy = 0.001k with Port 2 on. The arrows depict the directions of power flow density. The metasurface is
represented by an omega-bianisotropic combined sheet and propagation constant of the surfacewave equalsβy = 1.05k. (e) Imaginary part of
the impedancematrix as functionsof the y-coordinate. (f) Zoomingof the three-layermetasurfacewithmetallicwalls (implementedwith vias in
upper) separating individual unit cells, n is the number of unit cells per super cell, Zi (i = 1, 2, 3) is the electric surface impedance of the
corresponding sheet.
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where

Z0,1 = η
cos θin

, Z0,2 = η
cos θout

, 
⃒⃒⃒⃒
E0,2

⃒⃒⃒⃒ = ̅̅̅
Z0,2

Z0,1

√ ⃒⃒⃒⃒
E0,1

⃒⃒⃒⃒
the IBC (22) can be used to derive the constituent surface
parameters necessary for wide-angle refraction as

Zse =−j[12Im{E1,x +E2,x

H2,y −H1,y
}]− j[KemIm{E2,x −E1,x

H2,y −H1,y
}]

Ysm =−j[1
2
Im{H1,y +H2,y

E2,x −E1,x
}]+ j[KemIm{H2,y −H1,y

E2,x −E1,x
}]

Kem = 1
2

Re{E2,xH
∗
1,y −E1,xH

∗
2,y}

Re{(E1,x −E2,x)(H2,y −H1,y)∗}
(68)

where Im[ ] denotes the imaginary part operator. To realize

these constituent surface parameters, either a three-sheet

implementation or an offset wire–loop unit cell can be

used. When the wire is offset with respect to the loop or the

loading of the loop is offset with respect to the loop, as

shown in Figure 20a, the parameters of (68) can be realized.

A metasurface was built from these unit cells (shown in

Figure 20c) and simulated using HFSS. The results in

Figure 20b show the metasurface is performing the wide-

angle refraction. In Ref. [24], the authors also design a

wide-angle refracting metasurface for TM polarization and

obtain measurements from fabricated samples.

5.7 Perfect leaky wave to surface wave
transformations

Another perfect transformation enabled by bianisotropic
metasurfaces is the perfect conversion of a surface wave to
a leaky wave [49] or the near-perfect conversion of the
converse, a propagating wave into a surface wave [50]. In
Ref. [51], plane wave to surface wave couplers, which can
perform both functions (either plane wave to surface wave
or surface wave to leaky wave), are reported. Here, we re-
view the work of [50]. The Omega-bianisotropic metasur-
face converts an incident planewave into a surfacewave as
depicted in Figure 21a. The metasurface is excited from
above by a normally incident plane wave (Port 1 in
Figure 21c). An input surface wave is launched from Port 2
in Figure 21c. The combined input surface wave and con-
verted surface wave from the incident plane wave are
absorbed by Port 4 in Figure 21c. The input surface wave is
necessary to obtain a reactive and symmetric impedance
matrix representing the metasurface. The design process
results in the impedance matrix elements shown in
Figure 21e. The metasurface is realized as a stack of three
sheets (see Section 4.3) with each cell separated by metallic
vias to combat transverse couplingnotmodeled in thedesign
(see Figure 21f). The result of the 2D simulation is shown in
Figure 21d. The conversion efficiency, defined as the differ-
enceof the outputpower fromPort 3 (P3) and the input power

Figure 22: (Reprinted with permission from
Ref. [56]). (a) A metasurface consisting of
cascaded electric sheets placed
perpendicular to the propagation axis
within an over-moded cylindrical wave-
guide. The metasurface comprises four
electric sheets described by inhomoge-
neous admittance profiles yn(ρ). The
sheets are separated by dielectric spacers
of thickness d. Themetasurface divides the
waveguide into two outer regions (Region 1
& 5), and three inner regions (Region 2 and
4). (b) Simulated performance of the
metasurface-based single mode converter
with ideal electric admittance sheets using
the 2D, axially symmetric fullwave solver
COMSOL Multiphysics. A 2D surface plot of
the real part of the electric field for the
metasurface-based single mode converter.
(c) Realization of the capacitive sheets.
Metallic rings are printed on both sides of a
thin substrate. The bottom rings are shifted
by a half a cell with respect to the top rings.
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from Port 2 (P2) divided by the power delivered by the inci-
dent planewave fromPort 1 (P1) or (P3−P2)/P1, is between 90
and 95% depending on the length of the metasurface.

5.8 Perfect mode converters

Bianisotropic metasurfaces can also be used for perfect
conversion between two different sets of waveguide
modes [56]. In this work, the authors create bianisotropic
metasurfaces constructed from a cascade of four admit-
tance sheets (see Section 4.3) to perfectly convert a set of
TM0n modes to a desired set of TM0n reflected/transmitted
modes within an over-moded cylindrical waveguide (see
Figure 22a). In the full-wave results shown in Figure 22b,
the metasurface is designed to convert the TM01 mode to

the TM02 mode with a −45° transmission phase. The met-
asurfaces are designed using a combination of modal
network theory accelerated by Discrete Hankel Trans-
forms, and optimization. The approach allows rapid
synthesis based exclusively on matrix operations. The
metasurface’s electric sheet admittances are realized as
arrays of conductive cylindrical rings (see Figure 22c). The
technique can also be applied to the synthesis of aperture
antennas [55].

5.9 Perfect antennas

Another application of metasurfaces is in enhanced an-
tenna design. For example, in Refs. [52, 117, 118], a meta-
surface antenna is designed to achieve perfect (100%)

Figure 23: (Reprinted with permission from Ref. [52]). (a) A metasurface antenna consisting of a patterned metallic cladding supported by a
groundeddielectric substrate fed by an infinite electric line sourceplacedwithin the substrate. The geometry is finite in the transverse directions
and infinite in the axial direction and hence the electromagnetics problem is 2-dimensional. (b) The initial complex-valued sheet impedance and
the optimized reactive sheet impedance. (c) Far fields of the complex-valued sheet design, the optimized reactive sheet design, and a full wave
verification of the optimized reactive sheet design in COMSOL. (d) Backprojected far fields to the metasurface plane to show aperture fields.
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aperture efficiency. In Ref. [52], the metasurface antenna
consists of a patterned metallic cladding supported by a
grounded dielectric substrate and fed by an infinite elec
tric line source placed within the substrate, as seen in
Figure 23a. The metasurface is modeled using a reduced
version (the first three rows and columns) of the matrix
equation in (46) to account for one sheet impedance layer,
one dielectric spacer, and a ground plane (an impedance
sheet of zero impedance). Using the first of (47), the matrix
equation can be directly solved since the desired total field
is equal to the summation of the known incident cylindrical
wave field generated from the line source placed within
the substrate and the desired scattered aperture field of
uniform amplitude and phase. The solution results in
a complex-valued sheet design labeled ‘Complex’ in
Figure 23. The radiative near and far fields of the complex-

valued sheet show the desired performance (Figure 23c and
d). Using the retained reactances (with resistances dis-
carded) of the complex-valued sheet as a seed solution, and
theamplitudeof the farfield pattern as anoptimizationgoal,
gradient descent optimization accelerated by the Adjoint
Method [119] is applied to convert the complex-valued sheet
into a purely reactive one by introducing surface waves
which facilitate passivity and losslessness. The results of the
optimizationare labeledas ‘OptReact’ inFigure 23.Ascanbe
seen, the performance of the optimized reactive sheet is
identical to the complex-valued design. Also shown in
Figure 23c is the full wave simulation results from COMSOL
Multiphysics of the optimized reactive sheet for validation.
The metasurface generates a uniform aperture field from a
passiveand losslessmetasurface, andhence exhibits perfect
aperture efficiency in a compact form factor.

Figure 24: (Reprinted with permission from Ref. [34]). (a) Depiction of a general electromagnetic metasurface (EMMS). Fields on each side of
the EMMS (E1,H1 and E2,H2) induce electric andmagnetic surface currents (Js,Ms) according to the surfaceparameters (Zse, Ysm,Kem, andKme).
(b) Multi-criteria optimization of far-field parameters with an omega-type bianisotropic EMMS. (c) Scattered electric field intensities com-
parison for multi-criteria optimization results with COMSOL and MATLAB-based MoM solver.
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Figure 26: (Reprinted with permission from
Ref. [107]). (a) Schematic of cascaded
conformal cylindrical metasurface. (b–c)
Field plots of the polarization converter
when excited by an electric surface current
density near the center. (b) Amplitude of Ez.
(c) Amplitude of Hz.

Figure 25: (Reprinted with permission from
Ref. [114]). A compound metaoptic
reshapes an incident Gaussian beam to
produce a Dolph–Chebyshev far-field
pattern pointed toward 40°. The metaoptic
performance is shown in (a) as the trans-
mitted electric field amplitude λ = 3 from
the metaoptic, (b) as the far-field radiation
pattern, and (c) as the real part of the
simulated electric field.
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5.10 Beamforming

With the introduction of surface waves and evanescent
field engineering through optimization, metasurfaces are
capable of beamforming in a passive and lossless manner
[31, 33, 34, 36, 38]. Epstein was the first to introduce the
concept of adding surface waves to achieve passivity in
Ref. [38]. In the work of Ref. [34], the authors design
Omega-type bianisotropic beamforming metasurfaces us-
ing integral equation modeling techniques and numerical
optimization. The metasurface shown in Figure 24a is
modeled using (42) and (43) and converted into a matrix
Eq. (44) following from the method of moments in
2-dimensions [99]. The matrix equation is solved by opti-
mization (the alternating direction method of multipliers).
The optimization goals are formulated around the desired
far field beams calculated from the vector potentials (see
Figure 24b). The optimization results in the specifications

for the constitutive surface parameters (Zse,Ysm,Kem, and

Kme). These parameters are inserted back into (42) to form a
boundary condition which can be enforced in simulation
for analysis. The results of the COMSOL simulation are
shown compared to the MATLAB-based method of mo-
ments results in Figure 24c. These metasurfaces can
potentially by realized using the three-sheet method.

5.11 Metasurface pairs

A pair of lossless and passive metasurfaces separated by a
wavelength scale distance can perform arbitrary wavefront
shaping (amplitude and phase) as well as beamforming
[35, 40, 120]. In thework of Ref. [120], a pair of bianisotropic
metasurfaces modeled using the IBC in (22) are synthe
sized using a modified Gerchberg–Saxton phase retrieval
algorithm to reshape an incident Gaussian beam into a
Dolph–Chebyshev far-field pattern pointing toward 40°.
The metasurfaces are separated by 1.25 wavelengths. The
results of the beamforming synthesis are shown in
Figure 25. Each metasurface in the pair is realized through
the three-sheet technique of Section 4.3.

5.12 Conformal metasurfaces

Metasurfaces conformal to different shaped surfaces have
also seen interest in recent scientific works [107, 121].
Consider the work in Ref. [107]. By formulating the wave
matrix synthesis approach of Section 3.3 in terms of
cylindrical modes, the same approach can be used to
synthesize cascaded cylindrical metasurfaces. The au-
thors consider a cascade of four electric admittance sheets

Figure 27: (Reprinted with permission from
Ref. [57]). (a) Dual band stacked
metasurfaces geometry. The geometry is
two-dimensional. The metasurface con-
tains five layers: two metasurface layers
(layers 1 and 3) and a ground plane (layer 5)
separated by two dielectric spacers (layers
2 and 4). An infinite electric line source
placed F meters above the aperture feeds
the metasurface. (b) Optimized reactive
sheet impedance for top and bottom met-
asurface at ωb. (c) Far field patterns of dual
band stacked metasurface.
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each separated by dielectric spacers as seen in Figure 26a.
The cylindrical metasurface is designed such that the TEz
modes created by the electric line source placed at the
center of the geometry (Figure 26b) are completely con-
verted to TMz modes at the output (Figure 26c). The au-
thors also report polarization splitters which split half of
the incident power to TEz waves and half to TMz waves.

5.13 Multiband metasurfaces

Metasurfaces can be stacked to enable operation at mul-
tiple bands. For example, in Refs. [57–59], an algorithm to
synthesize dual-band, stacked metasurfaces is presented.
The reflective, stacked metasurface configuration of two
metasurfaces (each metasurface consists of a patterned
metallic cladding and a dielectric spacer) stacked one
upon the other is shown in Figure 27a. The stacked

metasurface is modeled using (46) except the impedance

of the fifth layer, Z5
ee, is set equal to zero to represent the

ground plane. An iterative algorithm introduced in
Ref. [57] is used to synthesize the dual band metasurface
to collimate the incident cylindrical wave at two different
frequencies (for example, at both fa = 2.4 and fb = 5.1 GHz
for the case in Figure 27). The synthesis approach results
in complex-valued sheet impedances for both cladding
layers. The reactances (resistances discarded) of these
complex-valued sheets are used as a seed for a gradient
descent optimization, accelerated by the Woodbury Ma-
trix Identity [122], to convert the complex-valued sheet
into a purely reactive sheet which scatters the same far
fields as the complex-valued sheet design. The results of
the optimization are shown in Figure 27b. The far-field
patterns scattered by the stackedmetasurface for both the
complex-valued sheets and the purely reactive sheets are
shown in Figure 27c. Also included in the figure are the

Figure 28: (Reprinted with permission from
Ref. [86]). (a) Scattering by an impenetrable
cylindrical object inside a metasurface
cavity using equivalent electric and
magnetic currents. (b) A tilted thin elliptic
cylinder inside a circular metasurface
cavity. Arrows show the propagation
directions of plane waves inside and
outside of the metasurface cavity. (c)
Magnitude of the total magnetic field when
there is no metasurface. (d) Magnitude and
(e) phase of the total magnetic field inside
and outside of themetasurface cavity when
there is metasurface.
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full wave verifications in COMSOL Multiphysics for both
the homogenized ideal sheet case and for the realized
patterned metallic cladding.

5.14 Perfect cloaking

The field of cloaking has excited researchers and the public
in general. The first cloaks were metamaterial based and
designed using a transformation optics approach [123].
Metasurfaces have enabled mantle cloaks which can lay
conformal to surfaces allowing the cloaking of objects
hidden within thin metasurface coverings [83] through
polarization cancellation. Early mantle cloaks relied on
electric surface impedances only. By introducing bianiso-
tropic metasurfaces, better cloaks were created. These
cloaks were made from penetrable bianisotropic meta-
surfaces and were termed perfect in literature [87]. These
perfect cloaks were designed using an integral equation

formulation similar to (42)–(44). Following from Ref. [88],
by combining the GSTC with integral equations written in
both region 1 (outside the metasurface cloak) and region 2
(inside the metasurface cloak), a system of four equations
(two from the GSTC and two from the IE) in four unknowns
(tangential electric and magnetic fields on both sides of
the metasurface) is created (see Figure 28a). The system of

Figure 29: (Reprinted with permission from Ref. [85]). (a) and (b)
Design of an illusion device. (a) A target configurationwith scattered
fields (E

s
tar , H

s
tar ). (b) An illusion device having an impenetrable

bounding surface S with scattered fields (E
s
ill, H

s
ill) on and outside S.

(c) and (d) Distributions of Ez(x, y) in V/m for a triangular PEC cylinder
and its illusion device. The target is a cylinder of an equilateral
triangular cross section with a side of 3√3λ. (c) An E-field snapshot
for the target cylinder. The black circle indicates the imaginary
contour of the illusion device to be designed. (d) An E-field snapshot
for the cylindrical illusion device of a = 4λ.

Figure 30: (Reprinted with permission from Ref. [76]). (a) Schematic
of a bianisotropic high-index dielectric metasurface. (b) A cutaway
drawing of a single bianisotropic particle. (c) Simulated forward
scattering (FS) and backward scattering (BS) of a bianisotropic
particle. (d) Numerically simulated radiation patterns of a bianiso-
tropic particle at the frequency of 7.4 GHz.
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integral equations is solved together to obtain the
tangential fields on each side of the metasurface. From
these fields, the surface susceptibilities can be obtained. In
Ref. [88], the authors noted that perfect cloaking requires
active/lossy metasurfaces. However, they employed met-
asurfaceswith only electric andmagnetic polarizabilities. In
a subsequent publication, the same authors show that in-
clusion of magnetoelectric coupling can lead to perfect,
passive, and lossless cloaks [87]. The cloaking of an elon-
gated elliptical cylinder is shown in Figure 28b. The total
fields in region 1 are stipulated to be the sameas the incident
illuminating plane wave field. The object has minimum ra-
dar cross section at φ = 45° and 225° observation angles.
Thus, the metasurface is synthesized so that the plane wave

inside the cavity propagates along k
→

2 = k2( x̂cosα + ŷsinα)
where α = 45°. The arrows in Figure 28b show the

propagation directions of plane waves inside and outside of
the metasurface cavity. Figure 28c shows the magnitude of
the total magnetic field when there is no metasurface. By
including the bianisotropic metasurface, the object is
perfectly cloaked as seen in Figure 28d and e.

5.15 Electromagnetic illusions

A closely related electromagnetic phenomenon to cloak-
ing is electromagnetic illusion. A device capable of elec-
tromagnetic illusion scatters the same field as a different
object. In Ref. [85], cylindrical bianisotropic metasurfaces
are designed to produce electromagnetic illusions. The
concept is illustrated in Figures 28b and 29a. In
Figure 29a, the target fields are acquired by recording the

Figure 31: (Reprinted with permission from
Ref. [67]). (a) Half-wave plate design and
measurement configuration. Excitation is
at normal incidencewith linear polarization
along x and y. The waveplate’s fast optic
axis is rotated by an angle φ to the y axis.
(b) Measured (solid) and analytically
calculated (dotted) reflection coefficients
with φ = 0°. (c) Measured (solid) and
calculated (dotted) reflection coefficients
with φ = 45°. (d) Measured (solid) and
calculated (dotted) phase performance
with φ = 0°. Optimal is ∠Ryy − ∠Rxx = 180°.
(e) Polarization rotation at 33 GHz as a
function of waveplate angle φ.
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field scattered from a targeted object. Then in Figure 29b,
an impenetrable bianisotropic metasurface is designed
using the IBC such that it scatters the target field when
illuminated by the same incident field. The bianisotropic
metasurface is made passive and lossless by including a
number of evanescent surface waves in the design which
travel around the perimeter of the metasurface. In
Figure 29c and d, an example of an impenetrable cylin-
drical electromagnetic illusion metasurface which scat-
ters the same fields as a triangular PEC object is shown.
The authors also provide additional examples of both PEC
and dielectric objects.

5.16 All dielectric bianisotropic
metastructures

Bianisotropic metasurfaces made from all-dielectric
magnetoelectric particles can avoid losses associated
with plasmonic metals when operated at optical or
infrared frequencies. To this end, an all dielectric biani-
sotropic metasurface was fabricated and measured in
Ref. [76] using the dielectric magnetoelectric particles
presented in Section 4.4. The metasurface is shown in
Figure 30a and the particle in Figure 30b. Numerical
simulation results of the particle are shown in Figure 30c.
As can be seen, the particle exhibits the same forward
scattering since the particle is reciprocal, however, its
backscattering differs due to themagnetoelectric coupling
induced by the broken symmetry of the particle. This is
further evident in Figure 30d, where the far field patterns
are shown for a single particle. In the forward direction,
the electric and magnetic dipoles spectrally overlap pro-
ducing a Huygens type source with unidirectional radia-
tion, whereas when excited in the backward direction, a
different pattern emerges giving rise to the scattering
asymmetry indicative of bianisotropic operation. In
Ref. [76], the authors show measured scattering parame-
ters for a fabricated array of bianisotropic particles. The
measured scattering parameters agree well with the
theoretical operation.

Using the all-dielectric particles constructed from
layers of anisotropic dielectric gratings also presented in
Section 4.4, a Half-wave plate was demonstrated in
Ref. [67] and is shown in Figure 31. The half wave plate
is made from four stacked staked anisotropic gratings
and shows excellent agreement between simulated and
measured values. Different scattering matrices can be real-
ized using this technique. This structure may find use in
applications where low loss is required.

5.17 Nonreciprocal bianisotropic
metasurfaces

An application of nonreciprocal metasurfaces using the
Moving–Chiral particles from Section 4.1 is one-way
transparent sheets [124, 125]. A one-way transparent sheet
is a metasurface which is transparent when illuminated

Figure 32: (Reprintedwith permission from Ref. [124]). (a) Geometry
of aMoving–Chiral particle. The externalmagneticfield bias is along
the ẑ-axis. (b) and (c) Simulated reflection and transmission (in
terms of intensity) for the sheet when the incident wave propagates
along the (b) transparent side and (c) nontransparent side.
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from one side (the transparent side) and has controllable
properties when illuminated from the opposite side (the
nontransparent side). For example, in Ref. [124], the au-
thors design a one-way transparent sheet metasurface
which completely transmits from the transparent side and
acts as a polarization rotator metasurface (rotates the
incident polarization by 90° upon transmission) when
illuminated from the nontransparent side. To design the
metasurface, the synthesis technique based on the polar-
izability model (see Section 3.1) is used. By writing the
magnetoelectric effective polarizabilities with the coupling
coefficients responsible for reciprocal and nonreciprocal
coupling processes separated

α̂em = (χ̂ − jκ̂)It + (V̂ − jΩ̂)Jt
α̂me = (χ̂ + jκ̂)It + (−V̂ + jΩ̂)Jt (69)

The conditions on the polarizabilities needed for one-way

sheet design can be obtained. Note, in (69), κ̂, Ω̂, V̂, and χ̂
are the chiral, omega, moving, and Tellegen coefficients.
Substituting (69) into (28) and noting the one-way sheet is
characterized by

E
→

r = 0, E
→

t = ẑ × E
→

inc (70)

the required polarizabilities for one-way sheet which ro-
tates polarization by 90° when illuminated by the non-
transparent side can be obtained. It is found that Moving–
Chiral particles are required (see Figure 32a). The reflec-
tion and transmission properties of an infinite sheet
composed of Moving–Chiral particles is shown in
Figure 32b and c, respectively. The results show that the
incident wave is completely transmitted when illumined
from the transparent side (one-way sheet) and has its
polarization rotated by 90° when illuminated by the
nontransparent side (polarization twist).

6 Future prospects

The next generation of bianisotropic metasurfaces will
involve dynamic and active bianisotropic properties which
can overcome the design limitations imposed by linearity,
passivity, and reciprocity. Nonlinear effects [126, 127] can
be incorporated into the magnetoelectric particles for new
functionality unexplored to date. Time-modulated meta-
atoms can also be included in bianisotropic metasurfaces
to allow new design dimensions [128–132]. Both of these
approaches lead to control over not only the spatial spec-
trum but also the temporal spectrum as well. New forms of
the GSTC applicable in the time-domain can also be

envisaged. In Ref. [133], the authors develop an extension of
the GSTC to the time domain. Other extensions of the GSTC
have also been formulated. In [134], the GSTC was extended
to include spatial dispersion. In the future, one can envision
fast reconfigurable meta-atoms coupled with fast optimiza-
tion algorithms allowing for software controlled bianiso-
tropic metasurfaces. Toward this end, the work in Ref. [135]
develops a reconfigurable metasurface for cloaking of ob-
jects hidden inside a bump. If these metasurfaces can be
made multiband and conformal, cloaks capable of hiding
large objects or creating dynamic optical illusions can be
envisioned. This could enable three-dimensional dynamic
multi-color holograms for next generation display and
communications systems. Nonreciprocal metasurfaces [101,
136], metasurfaces with parametric gain, and Multi-Input–
Multi-Output (MIMO) metasurfaces [137, 138] are also
emerging and promise new capabilities. In Ref. [139], a time-
modulated metasurface that locally mimics a rotating
anisotropic metasurface is introduced that performs fre-
quency up/down conversion and provides parametric gain
for reflections of circularly polarized incident waves. All of
these research directions will require new computational
and numerical design, analysis, and optimization algo-
rithms as well as fabrication approaches. Undoubtedly, the
next generation of electromagnetic and optical devices will
involve bianisotropic metasurfaces.

7 Conclusions

In conclusion, bianisotropic boundary conditions used
in metasurface design have been reviewed in a complete
tutorial-like manner. The most common bianisotropic
boundary models used in metasurface design (Susce
ptibility, Impedance, and Polarizability Models) have
been derived. Several synthesis methods based on these
models have been presented. Several bianisotropic par-
ticles which exhibit magnetoelectric coupling have also
been reviewed. These include the reciprocal Omega,
reciprocal Chiral, nonreciprocal Tellegen–Omega, and
nonreciprocal Moving–Chiral particles, three-sheet and
four-sheet realizations of bianisotropic particles, and all
dielectric realizations. Finally, numerous metasurfaces,
taken from literature, which utilize bianisotropic bound-
aries, synthesis methods, and particle designs described
were highlighted in the final section of this review article.
The survey of examples taken from recent scientific works
represents the state of the art in bianisotropicmetasurface
design. The article also included a short section on future
prospects. This review article serves as a one-stop
collection on recent advances in the theory, realization,
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capabilities, and applications of bianisotropic boundary
conditions in metasurface design.
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