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Abstract: Deep learning (DL) has emerged as a promising
tool for photonic inverse design. Nevertheless, despite the
initial success in retrieving spectra of modest complexity
with nearly instantaneous readout, DL-assisted design
methods often underperform in accuracy compared with
advanced optimization techniques and have not proven
competitive inhandling spectra of practical usefulness.Here,
we introduce a tandem optimization model that combines a
mixture density network (MDN) and a fully connected (FC)
network to inversely design practical thin-film high re-
flectors. The multimodal nature of the MDN gives access to
infinite candidate designs described by probability distri-
butions, which are iteratively sampled and evaluated by the
FC network to allow for rapid optimization.We show that the
proposed model can retrieve the reflectance spectra of
20-layer thin-film structures. More interestingly, it re-
produces with high precision the periodic structures of high
reflectors derived from physical principles, even though no
such information is included in the training data. Improved
designs with extended high-reflectance zones are also
demonstrated. Our approach combines the high-efficiency
advantage of DLwith the optimization-enabled performance

improvement, enabling efficient and on-demand inverse
design for practical applications.
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1 Introduction

Deep learning (DL) has emerged as a promising and
powerful tool for many tasks in optics and photonics, such
as image reconstruction and enhancement in microscopy
[1], feature recognition in spectroscopy [2], and inverse
design of photonic devices [3–8], to name a few. Concep-
tually, DL uses many-layered neural networks (NNs),
where a series of parameters are adjusted upon exposure to
a repository of training data, to learn an abstract and
generalizable mapping from the inputs to the outputs of
NNs. In the case of inverse design, the inputs are the
desired optical responses, and the outputs are the design
variables of a coinciding structure. Owing to their
remarkable ability to unearth unintuitive and hidden
relations within the data, DL-based methods have been
applied to designing various photonic structures,
including metasurfaces [9–11], metagratings [12, 13], and
multilayer nanoparticles and thin films [14–21], etc. The
choice of the assisting NNs also diversifies quickly from
fully connected (FC) networks to many advanced models
(discriminative or generative) and their ensembles [22–25].
While these efforts have shown encouraging ability to
reproduce spectra based on fully randomdesigns or simple
physical processes such as a Lorentzian resonance, little
has been reported at the level of solving practical prob-
lems, for which some rules of design have been derived
from physical principles. Thus, DL has yet to convincingly
show a capacity to match or replace traditional physics-
based design methods. In addition, in comparing with
optimization techniques for inverse design [26–28], DL of-
fers an unparalleled advantage of high speed after training
but is less favorable in accuracy, especiallywhen the target
optical responses contain steep features resulting from
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sophisticated physical processes. Recent works have
shown the potential of incorporating both DL and optimi-
zation in inverse design [10, 14, 29], which could combine
the advantages of high speed and scalability from DL with
the higher maximum performance afforded by optimiza-
tion techniques. This attempt raises the possibility that the
most fruitful avenue for application of DL to inverse design
may be in concert with existing approaches.

In this work, we report a tandem model that combines
two NNswith an optimization process to inversely design a
type of multilayer thin-film structure with wide applica-
tions, which are known as the high reflectors. Among the
structures to which DL-based design methods have been
applied, multilayer stacks are of particular interest [15–18,
30]. On one hand, thorough understanding of the proper-
ties of multilayer structures sets the basis of thin-film op-
tics. Albeit the seemingly simple geometry, multilayer thin
films can provide a variety of optical properties (see
Figure 1A), depending on the choice of materials and their
arrangements. The associated devices span beam splitters
[31], high reflectors [32], antireflection coatings [33], and
numerous optical filters [34]. In different application sce-
narios, the exact line shape of the desired spectra is case-
specific, each corresponding to a structure to be inversely
solved. Practical thin-film devices can have tens or

hundreds of layers, making the task challenging enough to
stimulate innovative design methods. On the other hand,
the development of thin-film optics has reaped many
classical designs based on physical principles or rules of
thumb [34]. Retrieving and outperforming these devices
can be good gauges to assess the performance of numerical
design methods.

Our two NNs include a mixture density network (MDN),
which solves the inverse problem to suggest probability
distributions of “raw” designs [35], and a standard FC
network as a forward simulator to instantly evaluate any
updated design during iterative optimization. The applica-
bility of the proposed model is beyond retrieval of random
thin-film structures. We show that the classical design of
high reflectors, derived from the principle of interference of
light, can be reconstructedwith highprecision, even though
no information about the periodicity or quarter-wavelength
layer thickness is introduced into the training data.
Improved designs with extended high-reflectance regions,
which are not easily obtainable by physics-based design
rules, are also demonstrated. We emphasize that the use of
two NNs in this work differs from previous implementations
of a tandem architecture [15, 36], which feature the inverse
and forward networks directly connected to relieve non-
uniqueness. Here, the non-uniqueness is relieved by the

Figure 1: (A) Top: diagram of a 20-layer thin-film structure consisting of two alternating materials placed on a semi-infinite glass substrate.
Once thematerials are chosen, the thicknessesof layers t1– t20 constitute the designparameters for any requestedoptical responses. Bottom:
examples of optical spectra of the multilayer thin-film structure featuring selected line shapes for various applications, including broadband
high reflection, black body radiation, and narrow peaks from resonances. (B) Schematic of the tandem model with adjoining optimization
method. The requested or target spectrum R (navy curve) fed into the MDN (left column) produces probability distributions of the design
parameters (red curve), which are repeatedly sampled and evaluated with the forward model (right column) to optimize the designs until the
predicted optical response R0 (blue curve) is close enough to the target spectrum R.
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MDN alone, and the forward model is indirectly connected
via the optimization method to iteratively improve designs
after initial readout. The model is also different from recent
works that use NNs only to accelerate the adjoint simula-
tions in an optimization framework [30, 37]. In fact, apart
from resampling, our whole model is DL-based. The unique
ability of MDN to predict multiple optima of the objective
function can potentially aid in the search of a global opti-
mum rather than getting stuck at a local one. Therefore, our
approach combines the advantage of DL in high speed
with the optimization-enabled performance improvement,
enabling efficient and on-demand inverse design of struc-
tures and devices for practical applications.

2 Materials and methods

As illustrated in Figure 1B, we construct a tandemmodel consisting of
two independent deep neural networks. The first network is an MDN,
designated to solve the inverse problem, i.e., seeking a design thatwill
produce the desired optical properties. The unique feature of MDNs is
that the outputs are not deterministic discrete design variables but
their probability distributions over the possible ranges. These distri-
butions are built as a mixture of M (we take M = 16 in this work)
Gaussian distributions, each parametrized by a mean μ, variance σ
and a mixing weight π, with the mixing weights shared across all
design mixtures. These parameters are what the network outputs in
lieu of directly outputting design values. Candidate designs are then
generated by sampling the distributions of the individual variables. To
train the model, desired outputs are measured for goodness of fit with
the model-produced distributions using a metric such as log-
likelihood, and this allows for multiple correct outputs to be
modeled as different peaks in the distribution. This difference from
ordinary NNs alleviates the non-uniqueness problem in inverse
design, and more importantly, opens the opportunity of subsequent
optimization for performance improvement and better search of a
global optimum in the design space. The second network deals with
the forward problem, functioning as a simulator to predict the optical
response of a given structure. This task is relatively simple and can
thus be carried out by a standard FC network. A full description of the
model architectures, hyperparameters, and training curves is given in
Section 1 of the Supplementary materials. Upon completion of
training, both the suggestion of candidate designs for a given spec-
trum and the prediction of optical properties for a given design are
almost instantaneous.

To work jointly as a tandem, the two NNs are connected through
an optimization procedure, which essentially post-processes the
output of the MDN by iteratively evaluating and updating sampled
candidate designs with the assistance of the forward network. The full
model works as follows for a design task involvingN variables. First, a
desired optical spectrum R is fed into the MDN, which produces at the
output N probability distributions, each corresponding to one design
variable. Without complex sampling strategies, the initial guess of the
design is made by assigning every variable the value at the most
prominent peak of its own distribution. Next, the initial design sug-
gestion is sent to the forward network for a prediction of the optical
response, denoted byRM and also labeled asR0 to indicate that it is the

predicted response of the active candidate design. The performance of
this design is evaluated by comparing R0 with the ground truth R
based on some metrics, including root mean square error (RMSE).
Then, the optimization process starts. Of the N variables of the active
candidate design, a randomly chosen one is resampled for a specified
number of times based on its probability distribution for new guesses,
while the remaining N − 1 variables are fixed. Once the predicted
response of a new guess Ri is closer to R than R0, that guess becomes
the new active candidate design, and R0 is updated accordingly. The
resampling and evaluation repeat for all the N variables in a random
order, and the process of cycling through all the variables can also be
repeated for any number of times. A more detailed account on the
numbers chosen for optimization and their relation to improvement in
the design is provided in Section 2 of the Supplementary materials. If
the forward model is accurate enough, the prediction of the design
guesses’ error relative to the ground truth will closely approximate
the true error, and the design will improve over time. Lastly, after
the optimization is complete, the optical response of the finalized
design R′ is simulated by plugging the design variables in an elec-
tromagnetic solver, which computes the real properties of the final
design. It should be emphasized that through the entire design
process, simulation is only used once at the very end for verification.

We apply our model to inverse design based on the reflectance
from a stack of dielectric thin films of alternating high and low
refractive indices. The whole structure consists of 20 layers of mag-
nesium fluoride (MgF2) and tantalum pentoxide (Ta2O5) placed on a
glass substrate andwith an air cladding, as shown in Figure 1A. For the
sake of comparison to physics-based design rules, only normal inci-
dence is considered. This reduces the design variables to the thick-
nesses of each of the 20 layers, forming a 20-dimensional vector.
However, inclusion of the angle of incidence in the design variables
has no intrinsic difficulty [16]. The reflectance is calculated for the
wavelength interval of 400–1000 nm using analytical formulae based
on the Fresnel equations [38], and the spectrum is discretized into 300
points.We limit the ranges of possible physical thicknesses to between
50 and 150 nm for MgF2 and between 30 and 120 nm for Ta2O5, both of
which cover the optical thickness of quarter-wavelength for a large
portion of the wavelengths of interest. The dielectric functions of MgF2
and Ta2O5 are taken from Refs. [39, 40] unless otherwise specified. To
train the two separate models, we use the same dataset of 828,000
samples, split into 70% for training and the remaining 30% for testing.
In sample generation, 50% of the data uniformly samples the entire
thickness range for all design variables, 25% of the data uniformly
samples the upper half of the thickness range for each, and the last
25% uniformly samples the lower half. The uniform sampling means
all values within the chosen interval are equally likely to be chosen.
Other sampling techniques such as low-discrepancy sequences [41]
are also tested and produce qualitatively similar results, as discussed
in the Supplementary materials, Section 3. Compared with sampling
the full thickness ranges all at once, this strategy ensures that struc-
tures with relatively balanced thicknesses are less likely underrepre-
sented, given the enormous design space spanned by 20 independent
variables.

3 Results

Both models are trained via gradient descent for 500
epochs on the Stampede2 computer of Texas Advanced
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Computing Center (TACC). A single compute node is used
for training, which takes a total of approximately 23 h to
complete, in addition to about 1 h for data generation. The
forwardmodel uses RMSE in the optical response as its loss
function and converges to a final RMSE of 0.02 for both the
training and test datasets. The MDN uses the negative log-
likelihood metric and converges to a value of −18 for both
datasets. The optimization process is set to run four cycles
of resampling and evaluation through all the 20 variables,
and each variable is sampled 50 times in one cycle. With
these settings, the optimization of a single design takes
approximately 1 min on the same TACC compute node or
6 min on a commercial laptop.

3.1 Retrieval of random stacks

We first examine the tandem optimization model on the
spectra produced by random structures in the test dataset.
The model can retrieve those designs fairly well even with
theMDN alone, and progressive improvements can be seen
during the optimization process. Figure 2A presents an
example randomly chosen from the test dataset. Three
spectra taken at different steps of the design, namely the
predicted response of MDN’s initial guess RM (black dash
curve), the predicted response of the final design R0 (green
dash curve), and the simulated response of the final design
R’ (blue curve), are compared with the desired spectrum as
ground truthR (red curve). Noticeably, despite the complex

line shape of the target spectrum, the initial guess that
simply takes the peak values of the outputs of MDN can
already resemble the ground truth design closely at most
wavelengths. The deviations between the initial guess and
the ground truth are diminished by optimization. Both the
predicted and simulated responses of the final design
overlap the target spectrum R almost perfectly, confirming
the effectiveness of the optimization procedure and the
accuracy of the forward network. To get a quantitative idea
of the performance of MDN and the improvement by opti-
mization, we conduct a statistical study over 500 samples
randomly chosen from the test dataset. Figure 2B shows the
histograms of RMSE between the requested spectra and the
responses of the initial guesses by MDN and final designs
after optimization. The initial designs, sampled at the most
prominent probability peaks predicted by theMDN, give an
average response RMSE of 0.09. In comparison, after
optimization, the model produces final designs with an
average RMSE of 0.04, improved by more than a factor of
two. This improvement highlights the unique benefits of
the probabilistic nature of the MDN. By resampling and
using the forward model to evaluate samples without
additional simulations, designs can be continuously opti-
mized after an initial sample. The optimization can run for
any arbitrary number of rounds and samples, with the
processing time scaling linearly with each factor, however
the improvements in response RMSE see diminishing
returns. A more detailed description is provided in Section
2 of the Supplementary materials.

Figure 2: (A) Comparison of a requested spectrum R (red curve) with the simulated response R′ of the final design retrieved by themodel (blue
curve) for a random case from the test dataset. Forwardmodel predictions of the response of the initial MDN design RM (black dash curve) and
of thefinal designR0 (greendash curve) are also shown. (B) Histogramof RMSEmatchingbetween the requested spectrumand the responseof
the model-suggested design for 500 randomly chosen test dataset samples before optimization (initial design from the MDN) and after
optimization (final design by the tandem optimization model).
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3.2 Retrieval of classical high reflectors

Practical applications of the multilayer thin films usually
require optical responses that aremuchmore sophisticated
than a series of slowly varying peaks. Typical features like a
constant response over a certain wavelength range and
steep edges cannot be produced by randomly assembled
layers as building blocks. Therefore, the ability to retrieve
spectra from random structures is no guarantee of practical
applications. To prove that the proposed model can be a
competitive tool to tackle real-world applications, we
further test it with a classical type of thin-film high re-
flectors, the distributed Bragg reflectors (DBRs) [42, 43],
which feature a flat high-reflectance band and are origi-
nally accessed by physics-based approaches. The most
popular design of DBRs consists of a stack of quarter-wave
dielectric films with alternating high and low refractive
indices. In other words, a DBR has a periodic structure, and

with a given pair of materials, the thicknesses of neigh-
boring layers are determined by the central wavelength of
operation. We compute the reflectance of several DBRs
targeting at different wavelengths and feed the spectra into
the MDN as the desired optical properties. The proposed
model performs very well in retrieving these DBR designs,
as shown in Figure 3. In both cases at shorter and longer
wavelengths, the predicted and simulated responses of the
final designs are highly coincident with the ground truth
spectra. More impressively, the model manages to
“discover” periodicity in the appearance of two materials,
and the suggested thicknesses only deviate slightly from
the quarter-wavelengths. With a total of 20 independent
design variables, the size of our dataset gives an extremely
low chance of any individual training samples being peri-
odic to supply this knowledge to the model. Therefore, the
successful retrieval of DBRs, despite their significant
divergence from the random structures used for training,

Figure 3: Inverse design of DBRs consisting of alternating high- and low-index films of quarter-wavelength thicknesses stacked in a periodic
fashion.
(A) Comparisons of the requested spectrum R from a DBR (red curve) with the simulated response R′ of the final design retrieved by our model
(blue curve). Also shown is the predicted response R0 of the final design (green dash curve). Two examples are selected for shorter (top) and
longer (bottom) central wavelengths. (B) Visualization of the 20-layer thicknesses for the corresponding designs (top: shorter central
wavelength; bottom: longer central wavelength) retrieved by the tandem optimization model for both requested spectra. Green and red lines
mark the alternating thicknesses of MgF2 and Ta2O5, respectively, in the ground truth designs of DBRs.
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suggests that the model has a strong ability to intuit the
design-response mapping on a fundamental level.

The working principle of DBRs is the constructive
interference of light fields reflected from each interface of
the multilayer thin films, while a random arrangement of
thicknesses cannot lead to such an effect. We note two
interesting phenomena regarding this difference. One is
that DBRs are tolerant of small disturbances to the ideal
design. In Figure 3B, the deviations of the retrieved
thicknesses from ground truths are largely attributed to

this tolerance. The other is that (quasi-)periodic structures
may apply implicit constraints that suppress multi-
modality in the design. The final thicknesses after opti-
mization in Figure 3 are close to those taken from the
MDN’s initial suggestion. In contrast, randomly sampled
designs have amuch greater chance to contain at least one
layer that exhibits secondary peaks in the corresponding
probability distribution. A brief discussion of multi-
modality is presented in Section 3 of the Supplementary
materials.

Figure 4: On-demand inverse design of thin-film high reflectors with extended high-reflectance zones.
(A) Comparison of a requested spectrum R and the simulated response R′ of the design retrieved by themodel. The target design is composed
of two 9-layer periodic sub-stacks with a spacer layer in the middle and a cladding layer on the top, obtained with a known optimization
strategy based on the principle of interference. (B) Comparison of design variables between the ground truth design and model-produced
design. (C) Inverse design of a high reflector with ultrabroad high-reflectance zone. The requested spectrum R (red curve) is fictitious, taken
froma20-layer DBRandartificially extended in the high-reflectance region for a bandwidth not achievable by knowndesignmethods basedon
physical principles. The blue curve shows the simulated response R′ of the design suggested by the tandem optimization model. Note that in
this case, optimization is applied to the high-reflectance region only, as highlighted by the shaded area.
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3.3 Inverse design of reflectors with
extended high-reflectance zones

Our next task is set to be more ambitious. Standard DBRs
have a limited bandwidth, determined by the choice of
materials. In the frequency domain, the width of the high-
reflectance zone Δf is given by [34]

Δf
f0

= 4
π
arcsin(nH − nL

nH + nL
), (1)

where f0 is the central frequency, and nH and nL are the
refractive indices of the high and low index layers, respec-
tively. Extending the width of the high-reflectance zone is a
task of practical concern, and different attempts have been
made based on physical considerations or optimization
algorithms [34]. We first challenge our model with a design
manually optimized with the guidance of interference con-
ditions, which requests stacking two 9-layer periodic
structures covering different wavelengths with a spacing
layer in the middle and a cladding layer on the top. Again,
the model retrieves the design with high precision. To
minimize the influence of the dielectric loss, we train the
model with a different dataset generated using the dielectric
function of Ta2O5 measured by Gao et al. [44]. Figure 4A
compares the performance of the final design and the
ground truth, showing an excellent agreement. The small
dips in the extended high-reflectance zone are unavoidable
mainly because of the limited number of layers. Figure 4B
shows the comparison of design variables. The two distinct
sub-stacks can be clearly recognized, despite that no such
information is provided in the training data. With only nine
layers in each sub-stack, the extraction of strict periodicity is
more difficult than in the standard DBRs.

Finally, we solve the ultimate task to search for high-
reflector designs that can outperform the examples derived
from known principles. Although any fictious spectra can
be used as the input to the model, we choose to artificially
extend the high-reflectance zone of a DBR to be wider than
what is achievable by the previous optimization method
[34]. This manipulation creates a spectrum in Figure 4C
(red curve), which does not coincide with any known
structure and may not be physically possible with the
constraints of the design space. However, the model suc-
cessfully finds a design with consistent high reflectance
across the desired wavelength range (blue curve). In this
specific task, the optimization process is customized to
evaluate the candidate designs only in the target high-
reflectance zone. The flexibility of tuning the objective

function of optimization further enhances the search for
the closest possible matching design to any input spectra.

4 Conclusions and future study

We propose a framework for inverse design based on two
NNs combined through an optimization process and
demonstrate its ability to outperformphysics-basedmethods
in designing thin-filmhigh reflectors. The first NN solving the
inverse problem is the MDN. Its unique probabilistic nature
allows generation of candidate designs with information
of uncertainty, which enables progressive performance
improvement through iterative evaluation and resampling
during the optimization process. The second NN has a
standard FC architecture to solve the forward problem. It
serves as a simulator to make instant and accurate pre-
dictions of the response of candidate designs from the MDN.
We apply this tandem optimization model to on-demand
inverse design of high reflectors based on 20-layer thin films.
In addition to passing the ordinary test of reproducing the
reflectance spectra of random structures, the model suc-
cessfully retrieves a series of high reflector designs that are
derived by physics-based methods. In particular, DBRs with
periodic quarter-wave layers are obtained with high accu-
racy, even though no prior knowledge of periodicity is in the
training data.We further demonstrate designswith extended
high-reflectance zones, originally accessible only byphysical
principles or other optimization techniques. Lastly, the
model showsa strongability to search for the closest possible
solution to unrealistic reflectors with an artificially widened
high-reflectance zone. The proposedmodel can both quickly
and repeatedly produce high-performance designs that are
competitive with those obtained by other time-consuming
inverse design approaches,making it a promising tool for on-
demand industrial applications.

It is worth mentioning that the individual compo-
nents of the proposed model are highly adaptable. For
example, the MDN can be replaced by generative NNs to
tackle pattern-based designs, and the optimization would
then take samples in the latent space instead of the
probability distributions [10]. The success in retrieving
periodic structures of DBRs is also encouraging for other
uses beyond inverse design, such as knowledge discovery
[45–49]. We envision that the combination of DL algo-
rithms and optimization techniques will provide new
opportunities for advancing both optical physics and
engineering applications.
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