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Abstract: We present a proof-of-concept technique for
the inverse design of electromagnetic devices motivated
by the policy gradient method in reinforcement learn-
ing, named PHORCED (PHotonic Optimization using
REINFORCECriteria for EnhancedDesign). This technique
uses a probabilistic generative neural network interfaced
with an electromagnetic solver to assist in the design of
photonic devices, such as grating couplers. We show
that PHORCED obtains better performing grating coupler
designs than local gradient-based inverse design via the
adjoint method, while potentially providing faster conver-
gence over competing state-of-the-art generative methods.
As a further example of the benefits of this method, we
implement transfer learning with PHORCED, demonstrat-
ing that a neural network trained to optimize 8◦ grating
couplers can then be re-trained on grating couplers with
alternate scattering angles while requiring >10× fewer
simulations than control cases.
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1 Introduction
There has been a recent, massive surge in research
syncretizing topics in photonics and artificial intelligence/
machine learning (AI/ML), including photonic ana-
log accelerators [1–8], physics emulators [9–15], and
AI/ML-enhanced inverse electromagnetic design tech-
niques [15–35]. While inverse electromagnetic design
via local gradient-based optimization with the adjoint
method has been successfully applied to a multitude of
design problems throughout the entirety of the optics and
photonics communities [36–60], inverse electromagnetic
design leveraging AI/ML techniques promise superior
computational performance, advanced data analysis and
insight, or improved effort towards global optimization.
For the lattermost topic in particular, Jiang and Fan
recently introduced an unsupervised learning technique
called GLOnet which uses a generative neural network
interfaced with an electromagnetic solver to design
photonic devices such as metasurfaces and distributed
Bragg reflectors [24–26]. In this paper we propose a con-
ceptually similar design technique, but with a contrasting
theoretical implementation motivated by a concept
in reinforcement learning called the policy gradient
method – specifically a one-step implementation of the
REINFORCE algorithm [61, 62]. We will refer to our
technique as PHORCED = PHotonic Optimization using
REINFORCE Criteria for Enhanced Design. PHORCED is
compatible with any external physics solver including
EMopt [63], a versatile electromagnetic optimization
package that is employed in this work to perform 2D
simulations of single-polarization grating couplers.

In Section 2, we will qualitatively compare and
contrast three optimization techniques: local gradient-
based optimization (e.g., gradient ascent), GLOnet, and
PHORCED. We are specifically interested in a proof-of-
conceptdemonstrationof thePHORCEDoptimization tech-
nique applied to grating couplers, which we present in
Section 3. We find that both our implementation of the
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GLOnet method and PHORCED find better grating cou-
pler designs than local gradient-based optimization, but
PHORCED requires fewer electromagnetic simulation eval-
uations thanGLOnet. Finally, in Section 4we introduce the
concept of transfer learning to integrated photonic opti-
mization, where in our application we demonstrate that a
neural network trained to design 8◦ grating couplers with
the PHORCED method can be re-trained to design grating
couplers that scatter at alternate angles with greatly accel-
erated time-to-convergence.We speculate that a hierarchi-
cal optimization protocol leveraging this technique can
be used to design computationally complex devices while
minimizing computational overhead.

2 Extending the adjoint method
with neural networks

Local gradient-based optimization using the adjoint
method has been successfully applied to the design of a
plethora of electromagnetic devices. Detailed tutorials of
the adjoint method applied to electromagnetic optimiza-
tion may be found in Refs. [36–39, 43, 46, 60]. Here, we
qualitatively illustrate a conventional design loop utiliz-
ing the adjoint method in Figure 1(a). This begins with
the choice of an initial electromagnetic structure param-
eterized by vector p, which might represent geometrical
degrees-of-freedom like thewidth andheight of the device.
This is fed into an electromagnetic solver, denoted by
a function g. The resulting electric and magnetic fields,
x = g(p), can be used to evaluate a user-defined electro-
magneticmerit function f (x) – the metric that we are inter-
ested in optimizing (e.g., coupling efficiency). Gradient-
based optimization seeks to improve the value of the
merit function by updating the design parameters, p, in a
direction specified by the gradient of the electromagnetic
merit function, 𝜕( f ⚬ g)

𝜕p . The value of the gradient may be
obtained very efficiently using the adjoint method, requir-
ing just two electromagnetic simulations regardless of the
number of degrees-of-freedom (called the forward simu-
lation and adjoint simulation, respectively). A single iter-
ation of gradient-based optimization is depicted visually
in the center of Figure 1(a), where p is a single-dimension
point sampled along a toy merit function (f ⚬ g)(p) repre-
senting the optimization landscape (which is unknown,
a priori). The derivative (gradient) of the merit function
is illustrated by the arrow pointing from p in the direc-
tion of steepest ascent (assuming this is a maximization
problem). During an optimization, we slowly update p in
this direction until a local optimum is reached.

The adjoint method chain-rule derivative of the elec-
tromagnetic merit function resembles the concept of back-
propagation in deep learning, where a neural network’s
weights can be updated efficiently by application of the
chain-rule with information from the forward pass. Nat-
urally, we might extend the functionality of the adjoint
methodbyplacinganeuralnetwork in thedesign loop. The
neural network takes the place of a deterministic update
algorithm (such as gradient ascent), potentially learning
information or patterns in the design problem that allows
it to find a better optimum. Belowwe present twomethods
to implement inverse designwithneural networks: GLOnet
(introduced by Jiang and Fan [24, 25]) and PHORCED (this
work). Both methods are qualitatively similar, but differ in
the representation of the neural network. In the main text
of this manuscript we will qualitatively describe the dif-
ferences between these techniques; a detailed mathemat-
ical discussion may be found in Supplementary Material
Section 1.

The GLOnet optimization method is depicted qualita-
tively in Figure 1(b). The neural network is represented as
a deterministic function h𝜽 that takes in noise z from some
known distribution D and outputs design parameters p.
Importantly, the neural network is parameterized by pro-
grammable weights 𝜽 that we intend to optimize in order
to generate progressively better electromagnetic devices.
Similar to regular gradient ascent, we may evaluate the
electromagnetic merit function of a device generated by
the neural network (f ⚬ g)(p) using our physics solver, and
find its gradient with respect to the design parameters
using the adjoint method, 𝜕( f ⚬ g)

𝜕p . However, the GLOnet
design problem is inherently stochastic because of the
presence of noise, and therefore the optimization objec-
tive becomes the expected value of the electromagnetic
merit function, 𝔼z[( f ⚬ g ⚬ h𝜽)(z)] – sometimes called the
reward in the reinforcement learning literature.1 Inpractice
this expression can be approximated by taking a simple
average over the electromagnetic merit functions of sev-
eral devices generated by the neural network per iteration.
The gradient that is then backpropagated to the neural
network is given by the expected value of the chain-rule
gradient of the reward function. The first term, 𝜕( f ⚬ g)

𝜕p ,
can once again be computed very efficiently using the

1 Note that we have written a generalized version of the reward func-
tion defined in the original works by Jiang and Fan [24, 25]. In that
case, the reward function is chosen to weight good devices exponen-
tially, i.e. f → exp(f∕𝜎) where 𝜎 is a hyperparameter and f is the
electromagnetic quantity of interest. The full function is defined in
Eq. (S.18) of Supplementary Materials Section 1.
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Figure 1: Neural networks provide a natural extension to conventional inverse design via the adjoint method. A typical gradient-based
design loop is shown in (a) where the derivatives are calculated using the adjoint method. The GLOnet method (b), originally proposed by
Jiang and Fan [24, 25], replaces a conventional gradient-based optimization algorithm with a deterministic neural network. In this work we
propose PHORCED (c), which uses a probabilistic neural network to generate devices. (b) and (c) are qualitatively similar, but require
different gradients in backpropagation because of the representation of the neural network (deterministic versus probabilistic). In
particular, notice that PHORCED does not require an evaluation of the adjoint method gradient of the electromagnetic merit function,
𝜕( f ⚬ g)
𝜕p .

adjoint method, requiring just two electromagnetic sim-
ulations per device. Meanwhile the latter term, 𝜕p

𝜕𝜽
|p=h𝜽(z),

can be calculated internal to the neural network using con-
ventional backpropagationwith automatic differentiation.
Visually, one iteration of the GLOnet method is shown in
the center of Figure 1(b). In each iteration, the neural net-
work in theGLOnetmethod suggests parameters, pi, which

are then individually simulated. Similar to gradient-based
optimization from Figure 1(a), we find the gradient of the
merit function valuewith respect to each generated design
parameter, represented by the arrows pointing towards the
direction of steepest ascent at each point. The net gradient
information from many simulated devices effectively tells
the neural network where to explore in the next iteration.



3846 | S. Hooten et al.: Inverse design of grating couplers with PHORCED

With adense search, the global optimumalong the domain
of interest can potentially be found.

Our technique, called PHORCED, is provided in
Figure 1(c). Qualitatively speaking, it is very similar to
GLOnet, but is motivated differently from a mathematical
perspective. PHORCED is a special case of the REINFORCE
algorithm [61, 62] from the field of reinforcement learn-
ing (RL), applied to electromagnetic inverse design. In
particular, the neural network is treated as purely prob-
abilistic, defining a continuous conditional probability
density function over parameter variables p conditioned
on the input vector z – denoted by𝜋𝜽(p|z). In other words,
insteadof outputtingpdeterministically given inputnoise,
the neural network outputs probabilities of generating p.
We then randomly sample a parameter vector p for simu-
lation and evaluation of the reward. Note that 𝜋𝜽(p|z) is
called the policy in RL, and in this work is chosen to be a
multivariate Gaussian distribution with mean vector and
standard deviation of random variable p as outputs. The
reward for PHORCED is qualitatively the same as GLOnet
– namely, we intend to optimize the expected value of the
electromagnetic merit function. However, because both p
and z are random variables, we take the joint expected
value: 𝔼p,z[( f ⚬ g)(p)]. Furthermore, because of the proba-
bilistic representation of the neural network, the gradient
of the reward with respect to the neural net weights for
backpropagation ismuch different than the corresponding
GLOnet case. In particular, we find that the backpropa-
gated chain-rule gradient requires no evaluation of the
gradient of the electromagnetic merit function, 𝜕( f ⚬ g)

𝜕p .
Consequently, the electromagnetic adjoint simulation is
no longer required, implying that fewer simulations are
required overall for PHORCED compared to GLOnet under
equivalent choices of neural network architecture and
hyperparameters.2 PHORCED is visually illustrated in the
center of Figure 1(c). The neural network defines Gaussian
probability density functions conditioned on input noise
vectors zi, shown in the light red bell curves represent-
ing 𝜋𝜽(p|zi), from which we sample points pi to simulate.3

2 However, because the representation of the neural network is dif-
ferent in either case, it would rarely make sense to use equivalent
choices of neural network architecture and hyperparameters. There-
fore, we make this claim tepidly, emphasizing only that we do not
require adjoint simulations in the evaluation of the reward.
3 Note that while we explored a uniform distribution at the input
as well, our best results with PHORCED applied to grating coupler
optimization in this work were attained with z drawn from a Dirac
delta distribution, i.e. a constant vector input rather than noise. This
has the effect of collapsing the multiple distributions depicted in

Using information from themerit function values, the neu-
ral network learns to update themean and standard devia-
tionof theGaussians.Consequently,weemphasize that the
Gaussian policy distribution is not static because its statis-
tical parameters are adjusted by the trainable weights of
the neural network, and is therefore capable of exploring
throughout the feasible design space. For adequate choice
of distribution and dense enough search, the PHORCED
method can potentially find the global optimum in the
domain of interest.

Before proceeding it should be remarked that the algo-
rithms implemented by GLOnet and PHORCEDhave prece-
dent in the literature, with some distinctions that we will
outline here. Optimization algorithms similar to GLOnet
were suggested in Refs. [64, 65], where the main algo-
rithmic difference appears in the definition of the reward
function. In particular, the reward defined in Ref. [64]
was the same generalized form that we have presented
in Figure 1(b), while Jiang and Fan emphasized the use of
an exponentially-weighted reward to enhance global opti-
mization efforts [25]. On the other hand, PHORCED was
motivated as a special case of the REINFORCE algorithm
[61, 62], but also resembles some versions of evolutionary
strategy [64–67]. The main difference between PHORCED
and evolutionary strategy (ignoring several heuristics) is
the explicit use of a neural network to model the mul-
tivariate Gaussian policy distribution, albeit some recent
works have used neural networks in their implementa-
tions of evolutionary strategy [65, 67] for different appli-
cations than those studied here. Furthermore, PHORCED
does not require a Gaussian policy; any explicitly-defined
probability distribution can be used as an alternative if
desired. Beyond evolutionary strategy, a recent work in
fluid dynamics [68] uses an algorithm akin to PHORCED
called One-Step Proximal Policy Optimization (PPO-1) – a
version of REINFORCE with a single policy, 𝜋𝜽, operat-
ing on parallel instances of the optimization problem. The
main distinction between PPO-1 and PHORCED is that we
have implemented the option to use an input noise vec-
tor z to condition the output policy distribution, 𝜋𝜽(x|z),
which can effectively instantiate multiple distinct policies
acting on parallel instances of the optimization problem.
This potentially enables multi-modal exploration of the
parameter space, bypassing a known issue of Bayesian
optimization with Gaussian probability distributions [65].
However, note that the best results for the applications
studied in this work used a constant input vector z, thus

Figure 1(c) into a single distribution from which we draw multiple
samples.
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making our implementation similar to PPO-1 in the results
below. Regardless of the intricacies mentioned above, we
emphasize that both GLOnet and PHORCED are unique in
their application to electromagnetic optimization, to the
authors’ knowledge. In the next section we will compare
all threealgorithms fromFigure 1applied togratingcoupler
optimization.

3 Proof-of-concept grating coupler
optimization

A grating coupler is a passive photonic device that is
capable of efficiently diffracting light from an on-chip
waveguide to an external optical fiber. Recent works have
leveraged inverse design techniques in the engineering
of grating couplers, resulting in state-of-the-art charac-
teristics [21, 42, 44, 52, 56]. In this section we will show
how generative neural networks can aid in the design of
ultra-efficient grating couplers.

The grating coupler geometry used for our proof-of-
concept is depicted in Figure 2(a). We assume a silicon-
on-insulator (SOI) wafer platform with a 280 nm-thick
silicon waveguide separated from the silicon substrate
by a 2 μm buried oxide (BOX) layer. The grating coupler
consists of periodically spaced corrugations to the input
silicon waveguide with etch depth 190 nm. These grating
coupler dimensions are characteristic of a high-efficiency
integrated photonics platform operating in the C-band
(1550 nm central wavelength) as suggested by a transfer
matrix based directionality calculation [55, 69], and are
provided as an example in the open-source electromag-
netic optimization package EMopt [63] that was used to
perform forward and adjoint simulations in this work.

For our optimizations, we will consider 60 total des-
ignable parameters that define the grating coupler: the
width of and spacing between 30 waveguide corrugations.
For a well-designed grating coupler, input light to the
waveguide scatters at someangle relative tovertical toward
an external optical fiber. In this work we choose to opti-
mize the grating coupler at fixed wavelength and scatter-
ing angle assuming specific manufacturing and assembly
requirements for amodular optical transceiver application
[52, 70]. In our case, the merit function for optimization is
the coupling efficiency of scattered light with wavelength
𝜆 = 1550 nm propagating 8◦ relative to normal, mode-
matched to an output Gaussian beammode field diameter
10.4 μm – characteristic of a typical optical fiber mode.
The explicit definition of this electromagnetic merit func-
tionmay be found in Refs. [44, 52, 71]. Note that we did not

include fabrication constraints nor other specifications of
interest in grating couplers in ourparameterization choice,
e.g. the BOX thickness and the Si etch depth, which will be
desirable in future optimizations of experimentally-viable
devices. Furthermore, the simulationdomain is discretized
with a dx = 25 nm grid step which may result in some
inaccuracy for very fine grating coupler features. This sim-
ulation discretization was chosen for feasibility of the
optimization since individual simulations require about
4 s to compute on a high-performance server with over 30
concurrent MPI processes, and as we will show GLOnet
and PHORCED can require as many as 20,000 simulation
evaluations for convergence. Nevertheless,weutilized per-
mittivity smoothing [43] to minimize the severity of this
effect and obtain physically meaningful results.

We apply the Broyden–Fletcher–Goldfarb–Shanno
(BFGS), GLOnet, and PHORCED algorithms to grating cou-
pler optimization with two different initial designs (Initial
Seed 1 and Initial Seed 2) in Figure 2(b) and (c). Initial
Seed 1 corresponds to the grating depicted in Figure 2(a)
and the top of Figure 2(b), where we used a parameter
sweep to choose a linear apodization of the etch duty cycle
before optimization. Initial Seed 2 corresponds to the grat-
ing shown at the top of Figure 2(c) where we use a uniform
duty cycle of 90%. Both initial designs have pitch that sat-
isfy the grating equation [44, 52] for 8◦ scattering. These
initial seeds serve to explore the robustness of the opti-
mizationalgorithms to “good” and“poor” choices of initial
condition. Indeed, Initial Seed 1 satisfies physical intuition
for a good grating coupler, because chirping the duty cycle
is well-known to improve Gaussian beammode-matching,
and thus the initial grating coupler efficiency is already
a reasonable value of 56%. Meanwhile, Initial Seed 2 has
the correct pitch for 8◦ scattering, but has a low efficiency
of 1% owing to poor mode-matching and directionality. In
essence, we are using these two cases as a proxy to explore
whether PHORCED and GLOnet can reliably boost electro-
magnetic performance in a high-dimensional parameter
space, even in cases where the intuition about the optimal
initial conditions is limited.

BFGS is a conventional gradient-based optimization
algorithmsimilar to that depicted inFigure 1(a), and imple-
mented using default settings from the open-source SciPy
optimize module. After optimization with BFGS, the final
simulated grating coupler efficiency of Initial Seed 1 and
Initial Seed 2 are 86.4 and 69.9% respectively, which are
shown in the black dashed lines of Figure 2(b) and (c).
Note that the number of simulation calls for BFGS is not
shown because it is vastly smaller than that required for
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Figure 2: PHORCED and GLOnet outperform conventional gradient-based optimization, with different simulation evaluation requirements.
The grating coupler simulation geometry for optimization is shown in (a), consisting of an SOI wafer platform with 280 nm waveguide,
190 nm etch depth, and 2 μm BOX height. We optimized 60 device parameters in total, namely the width and spacing between 30 etch
corrugations. The results of the BFGS, GLOnet, and PHORCED algorithms applied to Initial Seed 1 and Initial Seed 2 are presented in (b) and
(c) as a function of the number of simulation calls. The initial seeds (grating designs) are illustrated above each optimization plot. The insets
depict zoomed-in views of the peak efficiencies attained by PHORCED and GLOnet, along with respective BFGS refinement steps performed
on the best design generated by each algorithm.

GLOnet and PHORCED (144 and 214 total simulations for
Initial Seed 1 and Initial Seed 2, respectively).

The implementation of GLOnet and PHORCED for the
grating coupler optimizations in Figure 2(b) and (c) are
described below; other details and specifications, such
as a graphical illustration of the neural network mod-
els used in either case, may be found in Supplementary
Materials Section 2. GLOnet is described qualitatively
in Figure 1(b) where we use a deterministic neural
network and an exponentially-weighted electromagnetic
merit function originally recommended by Jiang and Fan

[24, 25] with a chosen hyperparameter 𝜎 = 0.6. PHORCED
is described qualitatively in Figure 1(c) where we use
a probabilistic neural network modeling a multivari-
ate, isotropic Gaussian output distribution. The electro-
magnetic merit function used in the reward is just the
unweighted grating coupler efficiency, except we used a
“baseline” subtraction of the average merit function value
in the backpropagated gradient (which is a common tac-
tic in reinforcement learning for reducing model variance
[72]). In both methods, we use a stopping criterion of 1000
total optimizer iterations, with 10 devices sampled per
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iteration. Note that because GLOnet requires an adjoint
simulation for each device and PHORCED does not, the
effective stopping criteria are 1000 × 10 × 2 = 20,000 sim-
ulation calls for GLOnet and 1000 × 10 × 1 = 10,000 sim-
ulation calls for PHORCED. The neural networkmodels for
GLOnet and PHORCED were implemented in PyTorch, and
are illustrated in Figure S1 of the Supplementary Material.
For GLOnet, we used a convolutional neural network with
ReLU activations and linear output of the design vector.
For PHORCED, we used a simple fully-connected neural
network with ReLU activations and linear output defin-
ing the statistical parameters (mean and variance) of
the Gaussian policy distribution. We applied initial con-
ditions by adding the design vector representing Initial
Seed 1 and Initial Seed 2 to either the direct neural net-
work output or the mean of the Gaussian distribution
for GLOnet and PHORCED, respectively. Hyperparame-
ters such as the number of weights and learning rate of
the neural network optimizer were individually tuned for
GLOnet and PHORCED (specifications can be found in
Figure S2 of the Supplemental Material). For both neu-
ral networks, we used an input vector z of dimension 5.
However, for GLOnet zwas drawn from a uniform distribu-
tion  (−1, 1), while for PHORCED we used a simple Dirac
delta distribution centered on 1. In other words, the input
for PHORCED was a constant vector of 1’s. In this work
we achieved our best results with this choice, but simi-
lar results (within 1% absolute grating coupler efficiency)
couldbeattainedwithalternative choicesof inputdistribu-
tion. Anecdotally, we found that using a noisy input could
improve training stability and performance in toy prob-
lems studied outside of this work, but further investigation
is required.

We find that PHORCED and GLOnet outperform regu-
lar BFGS for both initial conditions studied in Figure 2. For
Initial Seed 1 (Figure 2(b)), we generated optimized grat-
ing coupler efficiencies of 86.9 and 87.2% for PHORCED
and GLOnet, respectively. For Initial Seed 2 (Figure 2(c))
we find optimized grating coupler efficiencies of 86.8 and
85.6% for PHORCED and GLOnet, respectively. Further-
more, as shown in the insets of Figure 2(b) and (c), we
were able to marginally improve each of the results by
applying a BFGS “refinement step” to the best performing
design output from GLOnet and PHORCED. This refine-
ment step was limited to a maximum of 200 iterations,
or until another default convergence criterion was met.
For Initial Seed 1 we obtained improvements of {86.9%
→ 87.8%}/{87.2%→ 87.4%} for PHORCED/GLOnet, res-
pectively. For Initial Seed 2, we find improvements
of {86.8%→ 87.0%}/{85.6%→ 86.4%} for PHORCED/

GLOnet, respectively. Since PHORCED and GLOnet are
inherently statistical and noisy, the refinement step is use-
ful for finding the nearest optimum without requiring one
to runanexhaustivesearchof theneuralnetworkgenerator
in inference mode.

In summary,we find that the PHORCED+BFGS refine-
ment optimization achieved the best performance for both
Initial Seed 1 and Initial Seed 2 with final grating coupler
efficiency of 87.8 and 87.0%, respectively. These results
agree with a transfer matrix based directionality analysis
of these grating coupler dimensions [55, 69], where we
find that approximately 88% grating efficiency is possi-
ble under perfect mode-matching conditions – meaning
that our result for Initial Seed 1 is close to a theoretical
global optimum. Notably, GLOnet had better performance
than PHORCED in Initial Seed 1 before the refinement step
was applied, and it is possible that better results could
have been achieved with further iterations of both algo-
rithms (as indicated by the slowly rising slopes of the
optimization curves in the insets of Figure 2(b) and (c)).
However, we emphasize that PHORCED required approx-
imately 2× fewer simulation than GLOnet with the same
number of optimization iterations because of the lack of
adjoint gradient calculations.

Perhaps the most important result of these optimiza-
tions is that both PHORCED and GLOnet proved to be
resilient against our choice of initial condition. Indeed,
while BFGS provided a competitive result for Initial Seed
1, it failed to find a favorable local optimum given Initial
Seed 2. PHORCEDandGLOnet, on the other hand, attained
final results within 1% absolute grating coupler efficiency
for both initial conditions. This outcome ispromisingwhen
considering the relative sparsity of each algorithm’s search
in a high-dimensional design space. Indeed, asmentioned
previously, we only sampled 10 devices per iteration of
the optimization, meaning that there were fewer samples
than dimension of the resulting parameter vectors (60). As
an additional reference, we compared our results to CMA-
ES (implemented with the open-source package pycma),
a popular “blackbox” global optimization algorithm that
is known to be effective for high-dimensional optimiza-
tion [66]. Under the same number of simulation calls as
PHORCED (10,000), CMA-ES reached efficiencies of 87.3
and 86.7% for Initial Seed 1 and Initial Seed 2, respectively.
Therefore our implementations of PHORCED and GLOnet
are competitivewith current state-of-the-art blackboxalgo-
rithms.While the simulation requirements for convergence
of PHORCED and GLOnet remain computationally pro-
hibitive for more complex electromagnetic structures than
those studied here, in contrast to local gradient-based
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search, our results offer the possibility of global optimiza-
tion effort in electromagnetic design problems, where we
are capable of limiting the tradeoff of performance with
search density as well as the need for human interven-
tion in situations where physical intuition is more difficult
to ascertain. Furthermore, we believe that our implemen-
tations of GLOnet and PHORCED have significant room
for improvement, and have advantages that go beyond
alternative global optimization algorithms like CMA-ES. In
particular, leveraging advanced concepts in deep learning
and reinforcement learning can further improve computa-
tional efficiency and performance. For example, whereas
our implementations of PHORCED and GLOnet used sim-
ple neural networks, a ResNet architecture can improve
neural network generalizability while simultaneously red-
ucing overfitting [27]. Moreover, one could take advan-
tage of complementary deep learning and reinforcement
learning based approaches such as importance sampling
[65, 72], or “model-based” methods that could utilize
an electromagnetic surrogate model or inverse model to
reduce the number of full electromagnetic Maxwell sim-
ulations needed for training [13, 19, 28, 32]. Alternatively,
whereas we optimized our grating for a single objective
(single wavelength, 8◦ scattering) Jiang and Fan showed
that generative neural network based optimization can
be extremely efficient for multi-objective design problems
(e.g., multiple wavelengths and scattering angles in meta-
surfaces [24]). Along the same vein, in the next section
we will show how a technique known as transfer learn-
ing can be used to repurpose a neural network trained
with PHORCED for an alternative objective, meanwhile
boosting computational efficiency and electromagnetic
performance dramatically.

4 Transfer learning with the
PHORCED method

Transfer learning is a concept in machine learning encom-
passing any method that reuses a model (e.g. a neural
network) trained on one task for a different but related
task. Qualitatively speaking and verified by real-world
applications, we might expect the retraining of a neural
network to occur faster than training a new model from
scratch. Transfer learning has been extensively applied
in classical machine learning tasks such as classification
and regression, but has only recently been mentioned in
the optics/photonics research domains [17, 27, 28, 33]. In
this work we apply transfer learning to the inverse design
of integrated photonics for the first time (to the authors’
knowledge), revealing that a neural network trained using

PHORCED for the design of 8◦ grating couplers can be
retrained to design grating couplers with varied scattering
angle and increased rate of convergence.

Transfer learning applied to grating coupler optimiza-
tion is qualitatively illustrated in Figure 3(a) and (b).
Figure 3(a) shows a shorthand version of the PHORCED
optimization of Initial Seed 1 that was performed in
Figure 2(b), where a neural network was specifically
trained to design an 8◦ grating coupler. In the case of
transfer learning in Figure 3(b), we reuse the trained neu-
ral network from Figure 3(a) but now exchange the 8◦
angle in the grating coupler efficiency merit function with
an alternate scattering angle. In particular, we retrain the
neural network on six alternative grating coupler angles:
{2◦, 4◦, 6◦, 10◦, 12◦, 14◦}. Note that we maintained the exact
same neural network architecture and optimization hyper-
parameters during these exchanges, including the opti-
mization stopping criterion of 10,000 total simulation calls
per training session; the only change in a given opti-
mization was the grating coupler angle. As depicted in
Figure 3(c),we show theoptimizationprogressionsof these
transfer learning sessions (blue/red curves) in comparison
to the original PHORCED optimization of the 8◦ grating
coupler from Figure 2(b) (reproduced in the black curve
in the middle panel). Also shown are control optimiza-
tions for each grating coupler angle using the PHORCED
method without transfer learning (in gray). We find that
transfer learning to grating couplers with nearby scatter-
ing angles (e.g. 6◦ and 10◦) exhibit extremely accelerated
rate of convergence relative to the original optimization
and control cases. However, transfer learning is less effec-
tive or ineffective for more distant angles (e.g. 2◦, 4◦, and
14◦). This observation is shownmore clearly in Figure 3(d)
where we plot the number of simulations required to reach
80% efficiency in optimization versus the scattering angle
for retraining.4 While the original optimization and control
optimizations (black star andgraydiamonds) required sev-
eral thousand simulation calls before reaching this thresh-
old, the6◦ and 10◦ transfer learningoptimizations required
only about 100 simulations a piece – a >10× reduction
in simulation calls, making transfer learning comparable
with local gradient-based optimization in terms of compu-
tation requirements. On the other hand, the distant grating
coupler angle transfer learning optimizations (2◦, 4◦, and
14◦) required similar simulation call requirements to reach
the same threshold as the original optimization. Evidently,

4 80% grating coupler efficiency was chosen because it equates to
roughly 1 dB insertion loss – an optimistic target for state-of-the-art
silicon photonic devices.
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Figure 3: Transfer learning applied to grating coupler design yields accelerated convergence rate in optimization. The original PHORCED
optimization from Figure 2(b) is qualitatively depicted as a block diagram in (a) for comparison with the transfer learning approach in (b).
Here, we exchange the 8◦ grating coupler merit function with an alternative grating coupler angle for retraining. Optimization progressions
as a function of the number of simulation calls for each of the retraining sessions are shown in the blue/red curves of (c). Control
optimizations where transfer learning was not applied are plotted in gray for comparison. In (d) we plot the number of simulation calls for
each optimization from (c) to reach 80% grating coupler scattering efficiency, with blue/red colored arrows and dots indicating applications
of transfer learning and gray diamonds indicating the control cases.

there is a bias towards less effective transfer learning for
small scattering angles. Grating couplers become plagued
by parasitic back-reflection for small diffraction angles
relative to normal [44, 52], and thus it is possible that the
neural network has difficulty adapting to the new physics
that were not previously encountered. We conclude that
the transfer learning approach is most effective for devices
with very similar physics to the device originally optimized
by the neural network.

The results of Figure 3 lead to a natural follow-
up query: can we apply transfer learning multiple times
progressively in order to maintain the convergence rate

advantage for optimizations at more distant grating
coupler angles? We explore this question of sequential
transfer learning in Figure 4. In Figure 4(a) and (b) we
qualitatively compare sequential transfer learning to the
original PHORCED optimization from Figure 2(b). As indi-
cated, we replace the original 8◦ grating coupler scat-
tering angle in the electromagnetic merit function with
an alternative scattering angle in the same manner dis-
cussed in Figure 3(b). Then, after that optimization has
completed, we continue to iterate and exchange the grat-
ing coupler angle again. By sequentially applying trans-
fer learning, we hope to slowly introduce new physics
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Figure 4: Transfer learning applied sequentially improves convergence for grating coupler scattering angles that are distant relative to the
original optimization’s scattering angle. The original PHORCED optimization from Figure 2(b) is qualitatively depicted in (a) for comparison
with the ‘‘sequential’’ transfer learning approach in (b). Here, we sequentially re-train the neural network (originally trained to generate 8◦

grating couplers) with progressively different scattering angles, with the intention of slowly changing the physics seen by the neural
network. Grating coupler efficiency as a function of the number of simulation calls for each of the retraining sessions are shown in the
blue/red curves of (c), where the arrows on the right-hand side show the sequence of each application of transfer learning. The results of the
one-shot (non-sequential) transfer learning approach from Figure 3(c) are shown in gray for comparison. In (d) we plot the number of
simulation calls needed for the grating coupler optimizations from (c) to reach an 80% efficiency using the sequential transfer learning
approach, similar to the corresponding plot in Figure 3(d). The blue/red arrows and dots indicate applications of sequential transfer
learning, and the gray diamonds correspond to non-sequential transfer learning cases.

to the neural network such that we can maintain faster
convergence at more physically distant problems from the
initial optimization. We conduct two sequential transfer
learning sessionswherewe evolve the grating coupler scat-
teringangle in the following steps:{8◦ → 10◦ → 12◦ → 14◦}
and{8◦ → 6◦ → 4◦ → 2◦}. The results of theseprogressions
are shown in Figure 4(c) where we plot the grating coupler
efficiency as a function of the number of simulation calls
in each (re-)training session. The 6◦, 8◦, and 10◦ cases are

the same as those shown previously in Figure 3(c); the
new results may be seen in the 2◦, 4◦, 12◦, and 14◦ cases,
where blue/red lines indicate the new optimization data
and gray lines indicate the non-sequential transfer learn-
ing cases from Figure 3(c) for comparison. We observe that
sequential transfer learning improves the optimization
convergence rate for the distant grating coupler scatter-
ing angles, in accordance with our initial prediction. This
observation is made more explicit in Figure 4(d) where
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we plot the simulation call requirement to reach an 80%
grating coupler efficiency threshold for each of the trans-
fer learning optimizations. Blue/red arrows and points
indicate sequential transfer learning progressions, while
gray diamonds indicate the one-shot transfer learning
cases reproduced from Figure 3(d). Evidently, sequential
transfer learning improves simulation call requirements
by approximately an order of magnitude relative to the
single-step cases. While we find that there is still a notice-
able bias towards longer (but less severely long) training
at smaller scattering angles, sequential transfer learn-
ing had the added benefit of providing the most efficient
devices overall at every scattering angle in the progres-
sion. Note that the plotted simulation call requirements do
not include the simulation calls from the previous itera-
tion in the sequential transfer learning progression (each
application of transfer learning used 10,000 simulation
calls, where the final neural network weightset after those
10,000 simulation calls was used as the initial weightset
for the next iteration of transfer learning). Furthermore,
note that each optimization in these sequential transfer
learning cases used the same neural network architecture
and hyperparameters as the original PHORCED optimiza-
tion (8◦ case), except for the {12◦ → 14◦} and {4◦ → 2◦}
cases which required a slightly smaller learning rate in
optimization for better performance. The smaller learning
rate negligibly affected the 80% efficiency simulation call
requirement shown in Figure 4(d).

5 Conclusions
In thisworkwe introducedPHORCED,aphotonicoptimiza-
tion package leveraging the policy gradient method from
reinforcement learning. This method interfaces a proba-
bilistic neural network with an electromagnetic solver for
enhanced inverse design capabilities. PHORCED does not
require an evaluation of adjoint method gradient of the
electromagnetic merit function with respect to the design
parameters, therefore eliminating the need to perform
adjoint simulations over the course of an optimization. We
anticipate that this fact can be particularly advantageous
formultifrequency electromagneticmerit functions,where
multipleadjoint simulationswouldnormallyberequired in
a simple frequency-domain implementation of the adjoint
method (e.g. see Ref. [52]).

We applied both PHORCED and the GLOnet method to
the proof-of-concept optimization of grating couplers. We
found that both algorithms could outperformconventional

gradient-based BFGS optimization, resulting in state-of-
the-art simulated insertion loss for single-etch c-Si grating
couplers and resilience against poor choices of initial con-
dition. In future work we intend to implement fabrication
constraints, alternative choices of geometrical parame-
terization, and other criteria to guarantee feasibility and
robustness of experimental devices.

As an additional contribution we introduced the con-
cept of transfer learning to integrated photonic opti-
mization, revealing that a trained neural network using
PHORCEDcouldbe re-trainedonalternativeproblemswith
accelerated convergence. In particular, we showed that
transfer learning could be applied to the design of grat-
ing couplers with varied scattering angle. Transfer learn-
ing was extremely effective for grating coupler scattering
angles within ≈ ±4◦ to the original optimization angle,
improving the convergence rate by >10× in some cases.
However, this range could be effectively extended to≈ ±6◦
or more using a sequential transfer learning approach,
where transfer learning was applied multiple times pro-
gressively to slowly change the angle seen by the neural
network. Because neural network based design methods
such as PHORCED are generally data-hungry, we believe
that transfer learning could greatly reduce the electromag-
netic simulation and compute time that would otherwise
be required by these techniques in the design of complex
electromagnetic structures. For example, transfer learning
could be used in multiple hierarchical stages to evolve an
optimization from a two-dimensional structure to a three-
dimensional structure, or from a surrogatemodel (e.g., the
grating coupler model in Ref. [10]) to real physics.

Looking forward, we would like to emphasize that
PHORCED takes advantage of fundamental concepts in
reinforcement learning, but there is a plethora of burgeon-
ing contemporary research in this field, such as advanced
policy gradient, off-policy, and model-based approaches.
We anticipate that further cross-pollination of the inverse
electromagnetic design and reinforcement learning com-
munities could open the floodgates for new research in
electromagnetic optimization.
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SupplementaryMaterial: Theonline versionof this article offers sup-
plementary material (https://doi.org/10.1515/nanoph-2021-0332).

https://github.com/anstmichaels/gcslab
https://github.com/anstmichaels/gcslab
https://doi.org/10.1515/nanoph-2021-0332
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