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Abstract: Multisection quarter-wave impedance trans-
formers are widely applied in microwave engineering and
optics to attain impedance-matching networks and anti-
reflection coatings. These structures aremostly designed in
the spatial domain (time harmonic) by using geometries of
different materials. Here, we exploit such concepts in the
time domain by using time-varying metamaterials. We
derive a formal analogy between the spectral responses of
these structures and their temporal analogs, i.e., time-
varying stepped refractive-index profiles. We show that
such space-time duality grants access to the vast arsenal of
synthesis approaches available in microwave engineering
and optics. This allows, for instance, the synthesis of
temporal impedance transformers for broadband imped-
ance matching with maximally flat or equi-ripple re-
sponses, which extend and generalize the recently
proposed quarter-wave design as an antireflection tem-
poral coating. Our results, validated via full-wave numer-
ical simulations, provide new insights and deeper

understanding of the wave dynamics in time-varying me-
dia, and may find important applications in space-time
metastructures for broadband frequency conversion and
analog signal processing.

Keywords: broadband; frequency conversion; impedance
matching; metamaterials; time-varying.

1 Introduction

The study of wave interactions with time-varying media
and structures is a subject of a longstanding interest in elec-
tromagnetics [1–3], which has recently gained new mo-
mentum in the emerging field of space-time metamaterials
and metasurfaces [4–7]. In these artificial materials, the
conventional spatial modulation of the constitutive parame-
ters is synergistically coupled with temporal modulation,
thereby enabling a wealth of intriguing field-manipulation
effects and anomalous wave-matter interactions. These
include, for instance, magnetless nonreciprocity [8–14], time
reversal and holography [15], extreme energy accumulation
[16], Doppler effect [17], inverse prism [18], Fresnel drag [19],
harmonic beam steering and shaping [20–22], temporal [23]
and spatiotemporal diffraction gratings [24], broadband
impedance matching [25, 26] and absorption [27], time-
varying optical vortices [28], temporal aiming [29], Brewster
angle [30], spatiotemporal isotropic-to-anisotropic meta-
atoms [31], parity-time symmetry [32], and exceptional points
[33], among others.

Interestingly, recent theoretical studies have shown
how the space-timeduality canbe leveraged to extend to the
realm of time-varying metastructures some concepts and
tools conventionally utilized in spatially variant scenarios.
For instance, the reflection and transmission of electro-
magnetic waves at temporal boundaries [1, 3, 34] were
studied in terms of temporal Fresnel coefficients, high-
lighting the wavenumber conservation and frequency con-
version. The case of “temporal slabs” was also studied [35],
and theoretical formalisms based on the transfer-matrix
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[36], effective-medium theory [37], and higher-order
homogenization schemes [38] were proposed to model
“temporal multilayers” or “temporal multisteps”. These
scenarios can be considered as the temporal equivalent of
spatial multi-layered media [39] with the difference that in
the former case time-varying media with stepped permit-
tivity profiles are implemented for the whole spatially un-
bounded medium where the wave travels. Within this
framework, by translating to the temporal case the well-
known quarter-wave impedance-matching scheme in mi-
crowave engineering [40], the idea of antireflection tempo-
ral coatings [41] was also put forward in order to attain
reflectionless frequency conversion and to achieve imped-
ance matching in spatiotemporal scenarios. More recently,
this idea was further expanded to more general temporal
multisteps in order to attain higher-order transfer functions
[42], and several design examples inspired by spatial-
multilayer counterparts were discussed. However, the sys-
tematic synthesis of the desired transfer function remains an
open problem.

Here, we exploit the space-time duality that exists
between spatial and temporal boundaries to introduce a
rigorous and systematic framework for the synthesis of
temporal media having temporal multistep permittivity
functions. First, we prove analytically that, under carefully
engineered conditions, there exists a remarkably simple,
and yet nonintuitive, mathematical relationship that con-
nects the reflectivity of a temporal multistep and the
insertion loss of a conventional spatial multilayer. This
result bears important practical implications since it en-
ables the direct exploitation of the vast arsenal of synthesis
approaches that have been developed in microwave engi-
neering for the design of spatial quarter-wavemultilayered
impedance transformers [40]. As a proof of concept, here
we show that the general synthesis approach developed by
Riblet in the 1950s [43] for the spatial case can be seam-
lessly applied to the synthesis of broadband temporal
impedance-matching transformers. As it will be shown, for
a temporal boundary between lossless dielectrics, this
approach allows the synthesis of arbitrary, real-valued
polynomial transfer functions by resorting to temporal
sections featuring real-valued positive refractive indices.

Accordingly, the rest of the manuscript is structured as
follows. In Section 2, we outline the problem formulation,
highlight the formal analogies between the responses of
spatial and temporal multisteps, and illustrate the syn-
thesis approach. In Section 3, we demonstrate some
representative syntheses featuring maximally flat (bino-
mial) and equi-ripple (Chebyshev) responses. Moreover,
we validate the approach by comparison with full-wave

numerical simulations in the presence of narrowband and
broadband input signals, and for unbounded and bounded
regions. Finally, in Section 4, we provide some brief con-
clusions and discuss possible perspectives. Some ancillary
details on the analytical and computational aspects are
provided in Section 5. Our results, which include the tem-
poral quarter-wave design [41] as a special case, provide
new insights and deeper understanding of the role and
possible applications of temporal boundaries by exploiting
the space-time duality in the study of wave propagation in
temporal metamaterials and pave theway to novel exciting
developments in this emerging field.

2 Analytical formulation and
results

2.1 Spatial multilayered impedance
transformers

Referring to Figure 1(A) for schematic illustration, we start
considering a simple configuration of a spatial impedance
transformer, featuring a multilayered structure made of M
dielectric layers (with refractive index nm and thickness dm,
m = 1,…,M) stacked along the x-direction and sandwiched
between semi-infinite regions with refractive index ni
(input, x < 0) and ne (exterior, x > xM = d1 + d2 +⋯ + dM).
Throughout this study, we assume a time-harmonic
exp (−iωt) time-dependence, and nonmagnetic, lossless
media (i.e., real-valued refractive indices). Moreover, we
assume that the operating frequencies are much smaller
than any material resonance frequencies. In so doing, the
materials can approximately be considered as being
nondispersive [1, 29, 41, 42, 44]. As detailed in the Methods
Section 5.1, for normally incident plane-wave illumination,
the field propagation inside the multilayer can be rigor-
ously described via the transfer-matrix formalism [39], with
the (dimensionless, unimodular) matrix

S
m
(θ) =

⎡⎢⎢⎣ cos θ
i
νm

 sin θ

iνm  sin θ cos θ

⎤⎥⎥⎦ (1)

relating the transverse electric and magnetic field compo-
nents (suitably normalized) at the two interfaces of the
genericmth layer. In Equation (1), νm = nm/ni indicates the
normalized refractive index (with respect to that of the
input section), and θ = knmdm the electrical thickness,
which we assume is identical for all layers; here, k = ω/c =
2π/λ denotes the wavenumber in a vacuum, and c and λ the
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corresponding speed of light andwavelength, respectively.
By chain multiplication, we can straightforwardly relate
the transversefields at the input (x = 0) and output (x = xM)
interfaces via the total transfer matrix [39]

S =∏
1

m=M
S
m
= [ s11 is12

is21 s22
] , (2)

where s11, s12, s21, and s22 are real-valued and satisfy the
(unimodular) condition s11s22 + s12s21 = 1. From there, the
reflection coefficient can be obtained as (see the Methods
Section 5.1 for further details)

ρ = s22 + is21 − νe(s11 + is12)
s22 − is21 + νe(s11 − is12)  , (3)

with νe = ne/ni. In a typical impedance-matching scenario,
for a given index mismatch between the input and exterior
regions, the general problem entails synthesizing the
multilayer in such a way that reflections are minimized over
a broad frequency range [40]. Within this framework, for
moderately small index mismatches, the small-reflection
approximation (which essentially neglects multiple re-
flections inside the multilayer) provides a very simple and
effective parameterization that enables systematic Fourier-
based synthesis strategies [40]. However, such approxima-
tion does not provide any major advantage when applied to
the temporal counterpart of interest in this study and
therefore is not pursued here.

Figure 1: Problem schematic.
(A) Spatial multilayer (with refractive indices nm and thicknesses dm, n = 1,…,M) sandwiched between two semi-infinite regions with
refractive indices ni (input) and ne (exterior), under normally incident, plane-wave illumination. (B) Temporal transition (in a spatially
unbounded medium) of the refractive index between the values ni (initial) and ne (end) via a multistep profile (temporal multistep, with
refractive indices nm and durations δm, n = 1,…,M).
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2.2 Temporal multistep impedance
transformers

Let us now consider the temporal counterpart schemati-
cally illustrated in Figure 1(B). As in Section 2.1, here we
again start considering a monochromatic electromagnetic
wave as the incident signal. In the temporal case, however,
this wave travels within a homogeneous and spatially
unboundedmediumhaving an initial refractive index ni for
times t < t0. Starting at a time instant t = t0, we assume a
temporal modulation of the refractive index characterized
byM intervals (each of duration δm, featuring an ideal step
transition to a refractive index nm), reaching an end value
ne at time tM = δ1 + δ2 +⋯ + δM . Specifically, we only
consider changes of the refractive index produced by
nonmagnetic media with time-varying permittivity.
Clearly, the assumption of step temporal transitions is
highly idealized, as it implies that the medium response to
modulation is infinitely fast. In reality, a rise/fall time
should be considered when changing the permittivity of
themedium. In this context, as long as such fall/rise time is
much smaller than the period of the incident wave, our
approach will continue to be valid. Indeed, in our numer-
ical simulations (see the Methods Section 5.3) we do as-
sume fast but still smooth transitions with short rise/fall
times, in order to obtain accurate results and for the
simulator to converge.

Note that, in order to better highlight the formal analo-
gies with the spatial scenario, we have utilized the same
symbolsM,ni,ne, andnm, although their physicalmeaning is
now evidently different. As detailed in the Methods Section
5.1, also for this temporal multistep, it is possible to study the
wave propagation via a rigorous transfer-matrix approach.
Specifically, by suitably normalizing the relevant electric and
magnetic induction fields, we can obtain a transfer matrix
formally analogous to that in Equation (1), viz. [37],

S
m
(φ) =

⎡⎢⎢⎣ cos φ
i
νm

 sin φ

iνm  sin φ cos φ

⎤⎥⎥⎦ , (4)

with φ = ωδm/νm now denoting the normalized travel time,
once again assumed identical for all intervals. Accord-
ingly, by chain multiplication, we can obtain the transfer
matrix connecting the (normalized) electric and magnetic
induction fields at the initial (t = t0) and final (t = tM)
temporal boundaries, which is formally identical to the
expression in Equation (2) (but with argument φ instead of
θ). From there, the backward (BW) wave coefficient, which
is the temporal analog of the reflection coefficient, can be
derived as (see the Methods Section 5.1 for more details)

R = s22 + is21
2ν2e

− s11 + is12
2νe

 . (5)

We highlight that, in spite of the aforementioned
formal analogies, the above expression differs from that in
Equation (3) since, in view of causality, the reflection co-
efficient assumes different meanings in the spatial and
temporal cases. Nevertheless, as discussed hereafter, the
space-time duality can be directly exploited by resorting to
different observables.

2.3 Formal analogies

In microwave engineering, rigorous approaches to the
synthesis of spatial multilayered impedance transformers
typically consider as a meaningful parameter the insertion
loss (or power loss ratio) [40]

PL = 1
1 − |ρ|2 =

1
2
+ νe(s211 + s212)

4
+ s222 + s221

4νe
 , (6)

where the second equality follows from Equation (3) taking
into account the unimodular condition. On the other hand,
from Equation (5) and similar arguments, we obtain for the
temporal case

|R|2 = ν−3e [ − 1
2
+ νe(s211 + s212)

4
+ s222 + s221

4νe
] , (7)

from which the formal analogy with the insertion loss in
Equation (6) becomes apparent. Specifically, by suitably
mapping the arguments (θ↔ φ, i.e., knmdm ↔ ωδm/νm), we
obtain

PL − 1 = ν3e|R|2  , (8)

which represents the key result in our study, and the
cornerstone of our proposed synthesis approach.We stress
that, in spite of its remarkably simple form, this result is
neither trivial nor intuitive, as it connects two different
observables (spatial insertion loss and temporal reflectiv-
ity). By recalling thewell-known expressions for the spatial
reflection coefficient [39] and temporal BW coefficient [34]
in the absence of themultilayer andmultistep, respectively
(i.e., θ = φ = 0, corresponding to a single spatial/temporal
boundary betweenmedia with refractive indices ni and ne),

ρ(0) = ni − ne
ni + ne

= 1 − νe
1 + νe

, (9)

R(0) = ni(ni − ne)
2n2e

= 1 − νe
2ν2e

, (10)

it can be readily verified that Equation (8) consistently
holds in this especially simple case. However, our theory
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ensures that this result also holds in the presence of generic
spatial and temporal multisteps, under the argument
mapping θ↔ φ.

In what follows, we show how this formal analogy can
be leveraged to exploit the wealth of synthesis tools and
approaches developed in microwave engineering for
impedance transformers using time-varying media.

2.4 Synthesis strategy

As described in the introduction, a well-known synthesis
approach for broadband spatial quarter-wavemultilayered
impedance transformers is based on a theory put forward
by Riblet in the 1950s [43], which systematizes and gener-
alizes some previous results by Collin [45]. This approach
allows the physically feasible synthesis of insertion-loss
functions belonging to the general family

PL(θ) = 1 + Q2
M(cos θ) , (11)

where QM is a real-valued, Mth degree polynomial. When
particularized to our spatial multilayered scenario in
Figure 1(A), the above theory prescribes spatial quarter-
wave thickness for the layers

nmdm = λ0
4
, m = 1,…,M  , (12)

with λ0 = 2πc/ω0 denoting the vacuum wavelength at the
desired center angular frequency ω0. Moreover, for ni and
ne real and positive, it guarantees that the resulting
refractive indices nm of the M layers are likewise real and
positive, and provides a constructive procedure for their
calculation; for the sake of completeness, the salient steps
of the approach are summarized in theMethods Section 5.2.

In view of the formal analogy in Equation (8), the same
approach enables the rigorous, systematic synthesis of
temporal multisteps (as in Figure 1(B)) with rather general
reflectivity functions of polynomial type,

|R(φ)|2 = ν−3e Q2
M  (cosφ) , (13)

by exploiting the same (real, positive) refractive indices as
for the spatial case above. In this case, the travel times of
the steps are chosen as

δm
νm

= T0

4
, m = 1,…,M  , (14)

with T0 = 2π/ω0 denoting the period (in vacuum) at the
desired center frequency. We note that, in both spatial and
temporal cases, the polynomial function QM must satisfy
the self-consistency relationship (in the limit θ,φ→ 0, i.e.,
in the absence of the multilayer/multistep)

Q2
M(1) = PL(0) − 1 = ν3e|R(0)|2 =

(1 − νe)2
4νe

 . (15)

In what follows, we focus on two traditional designs
known for broadband spatial antireflection coatings,
namely, the maximally flat and equi-ripple responses,
which we then implement with temporal metamaterials to
achieve their temporal analog. Interestingly, for these de-
signs, it can be shown [43] that the (normalized) refractive
indices also satisfy the symmetry conditions

νmνM+1−m = νe, m = 1,…,M . (16)

We note that, for the special case M = 1, the result in
Equation (16) consistently reproduces the quarter-wave
design n1 = ̅̅̅̅

nine
√

that was previously extended to the
temporal case [41].

3 Broadband temporal impedance
transformers

3.1 Spatially unbounded medium

We start considering the spatially unbounded-medium
scenario in Figure 1(B), assuming as initial and end values
for the refractive indices ni = 1 and ne = 2, respectively, and
M = 4 intervals.

As a first synthesis example, we consider the so-called
binomial design [40],

|R(φ)| = |1 − νe|
2ν2e

 |cosφ|M  , (17)

which ensures amaximally flat frequency response. Note
that the multiplicative constant in Equation (17) is
selected so as to fulfill the self-consistency condition in
Equation (10).

By applying the previously described synthesis strategy,
we obtain for the four temporal intervals: n1 = 1.044,
n2 = 1.242, n3 = 1.610, and n4 = 1.915 [which satisfy the
symmetry conditions in Equation (16)], with the correspond-
ing durations obtained via Equation (14): δ1 = 0.261T0,
δ2 = 0.311T0, δ3 = 0.403T0, and δ4 = 0.479T0.

Figure 2 shows some representative results for this
design. Specifically, Figure 2(A) shows a finite-element
computed (see Section 5.3 for details) space-time field map
pertaining to a narrowband modulated (∼12 cycle)
Gaussian pulse with center angular frequency chosen as
the design value ω0, from which we observe the expected
frequency conversion [1, 3] in the forward (FW) propa-
gating waves at the temporal boundaries, but without
visible BW reflected components, as an effect of the
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impedance matching. As shown in Figure 2(B), these BW
waves become clearly visible if the center angular fre-
quency of the pulse differ substantially (0.2ω0) from the
design value, thereby indicating that the impedance
matching is less effective. For a more quantitative assess-
ment, we carry out multiple numerical simulations by
varying the center frequency of the narrowband pulse, so
as to cover the spectral range of interest, and estimate the
BW wave coefficient from the amplitude of the BW
component (normalized by the incident one). As shown in
Figure 2(C), these results are in excellent agreement with
the theoretical design in Equation (17), yielding the desired
maximally flat behavior; note that the response is centered
at ω0/2 in view of the frequency conversion (ωe = niωi/ne)
imparted by the final temporal boundary (with ne = 2). We
also observe the expected broader bandwidth by compar-
ison with the reference quarter-wave design (i.e., M = 1)
that was previously studied [41]. Within this framework,
paralleling the spatial case [40], it is rather straightforward
to estimate analytically the bilateral fractional bandwidth
for a given maximum tolerable BW wave coefficient
Rmax = |R(φmax)|, viz.,

Δω
ω0

= 2 − 4φmax

π
 , (18)

where φmax follows by inverting Equation (17) as

φmax = arc cos [(2ν2eRmax

|1 − νe|)
1
M] . (19)

Next, for the same design, we consider broadband-
modulated (∼1 cycle) Gaussian pulsed excitation. Figure
3(A) and (B) show two numerically computed instanta-
neousfieldmaps at time instants before the initial temporal

boundary (t < t0) and after the final one t > tM, respectively.
The BW wave is hardly visible on the scale of the plots and
is better visualized in the saturated scale of Figure 3(C).
Figure 3(D) shows instead a space-time field map, which
better illustrates the evolution of the FW and BW
wavefronts.

From a quantitative viewpoint, Figure 4(A) shows the
(normalized) incident, FW, and BW waveforms at fixed
positions,with the hardly visible BWcomponentmagnified
in Figure 4(B). The corresponding (normalized) spectra are
displayed in Figure 4(C), once again with the BW compo-
nent magnified in Figure 4(D). As could be expected, with
the exception of the edges of the Gaussian spectrum, the
BWspectrum is in very good agreementwith the theoretical
design in Equation (17). To sum up, our proposed design
enables a nearly reflectionless frequency conversion of a
broadband pulse. It is also worth highlighting that,
although the reflections are negligible, the FW transmitted
field exhibits reduced amplitude; this is fully consistent
with the general theory of transmission of electromagnetic
waves at temporal boundaries [34].

As a second representative example, we consider the
well-known Chebyshev-type design,

|R(φ)| = |1 − νe|
2ν2e

⃒⃒⃒⃒⃒
⃒⃒⃒TM(sec φmaxcos φ)

TM(sec φmax)
⃒⃒⃒⃒⃒
⃒⃒⃒ , (20)

with TM denoting anMth degree Chebyshev polynomial [46],
which yields an equi-ripple response that maximizes the
tradeoff between bandwidth and maximum reflection [40].
Also, in this case, the multiplicative constant is chosen so as
to satisfy the self-consistency condition in Equation (10),
whereas the band-edge φmax is related to the maximum
tolerable BW wave coefficient (magnitude) Rmax via

Figure 2: Binomial design: ni = 1, ne = 2,M = 4, n1 = 1.044, n2 = 1.242, n3 = 1.610, n4 = 1.915, δ1 = 0.261T 0, δ2 = 0.311T 0, δ3 = 0.403T 0, and
δ4 = 0.479T 0.
(A), (B) Numerically computed space-time maps (normalized electric field) for narrowband modulated Gaussian pulses with center angular
frequencyω0 and 0.2ω0, respectively. The vertical dashed lines indicate the initial (t0 = 15T 0) and final (tM = 16.453T 0) temporal boundaries.
(C) Comparison between numerically computed (red circles) and theoretical (blue-solid curve) BWwave coefficient magnitude as a function of
normalized angular frequency (in the final medium). Also shown (green-dashed curve), as a reference, is the response of the quarter-wave
design (M = 1, n1 = 1.414, and δ1 = 0.354T 0).
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Figure 3: Parameters as in Figure 2 (binomial design), but broadband pulsed excitation.
(A), (B) Numerically computed instantaneous field maps (normalized electric field) at time instants before the initial temporal boundary and
after the final one, respectively. (C) Same as panel (B), but with a saturated color scale, so as to better highlight the BW component. (D)
Corresponding space-time map, with the vertical dashed lines indicating the initial and final temporal boundaries.

Figure 4: Parameters as in Figure 2 (binomial design), but broadband pulsed excitation.
(A) Numerically computed (normalized) incident, FW, and BW waveforms (black, blue, red curves, respectively) at fixed positions (x = −6.7λ0
for the incident and BWwaves, and x = 6.7λ0 for the FWwave). (B) Magnified details of the BWwaveform [yellow-shaded area in panel (A)]. (C)
Corresponding (normalized) spectra (magnitude). (D) Magnified details of the BW spectrum [yellow-shaded area in panel (C)], compared with
the theoretical prediction (purple-dashed curve).
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TM(sec φmax) =
1

Rmax
(|1 − νe|

2ν2e
) , (21)

which can be analytically inverted by resorting to the
(hyperbolic) trigonometric expressions of the Chebyshev
polynomials [46]. Once φmax is known, the fractional
bandwidth follows immediately from Equation (18).

For the Chebyshev design above, Figures 5–7 mirror the
results shown in Figures 2–4, respectively, following the
same layout and organization. The synthesized refractive
indices and interval durations are given in the caption of
Figure 5.

The same qualitative observations as for the binomial
design essentially hold in this case too, with the obvious
differences in the spectral BW response (see Figures 5(C) and
7(D)). Also, in this case, the agreement between numerical
simulations and theoretical design is very good. We also
observe that, although for different temporal multisteps the
FW responses may differ even in the presence of very small
reflections, in our example here the FW response is hardly
distinguishable from the one in Figure 4 (binomial design).

3.2 Spatial discontinuity: toward
broadband spatiotemporal impedance
matching and frequency conversion

As a final example, we apply the temporal-impedance-
transformer concept to a scenario featuring a spatial
discontinuity between two stationary media. In this case,
similar to what was proposed in Ref. [41] for the spatio-
temporal quarter-wave antireflection temporal coating
case, we introduce an intermediate spatial regionwherewe
apply the temporal modulation. More specifically, we

assume an input region x < −2.5λ0 with (stationary)
refractive index ni, an exterior region x > λ0 with (station-
ary) refractive index ne, and a central region −2.5λ0 < x <
2.5λ0 where we apply the temporal modulation according
to the previously considered binomial and Chebyshev de-
signs. The size of the central region as well as the initial
(t0 = 15T0) and final (tM = 16.453T0 for the binomial, and
tM = 16.436T0 for the Chebyshev case) temporal bound-
aries is chosen so as the temporal modulation is active
while the incident pulse is propagating through this region.

For the sameparameters anddesigns as in the previous
examples (given in the captions of Figures 2 and 5) and
broadband (∼1 cycle) pulsed excitation, Figure 8 shows the
numerically computed results in this scenario. Specifically,
Figure 8(A)–(C) show two representative instantaneous
field maps and the space-time field map pertaining to the
binomial design, whereas Figure 8(D)–(F) show the corre-
sponding results for the Chebyshev design. In both cases,
we observe very weak BW (reflected) waves, which in-
dicates that the temporal-impedance-transformer concept
can be applied to spatial discontinuities as well via
spatiotemporal modulations of the refractive index.

As a reference, Figure 8(G)–(I) show the results for the
case of a single-stepmodulation, where the refractive index
in the central region is changed abruptly from ni to ne at
t = t0 and then maintained constant. In this case, both
spatial and temporal reflections are noticeably visible.

4 Conclusions

Via space-time duality, we have rigorously established a
formal analogy between the reflectivity of a temporal
multistep and the insertion loss of a conventional spatial

Figure 5: Chebyshev design: ni = 1, ne = 2, M = 4, n1 = 1.120, n2 = 1.298, n3 = 1.541, n4 = 1.786. δ1 = 0.280T 0, δ2 = 0.324T 0, δ3 = 0.385T 0,
and δ4 = 0.446T 0.
(A), (B) Numerically computed space-time maps (normalized electric field) for narrowband modulated Gaussian pulses with center angular
frequencyω0 and 0.2ω0, respectively. The vertical dashed lines indicate the initial (t0 = 15T 0) and final (tM = 16.436T 0) temporal boundaries.
(C) Comparison between numerically computed (red circles) and theoretical (blue-solid curve) BWwave coefficient magnitude as a function of
normalized angular frequency (in the final medium). Also shown (green-dashed curve), as a reference, is the response of the quarter-wave
design (M = 1, n1 = 1.414, and δ1 = 0.354T 0).
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multilayer. This enables the systematic synthesis of the
spectral response of temporal impedance transformers
by resorting to well-established tools and approaches
that are available in microwave engineering. As a proof

of concept, we have carried out the synthesis of maxi-
mally flat (binomial) and equi-ripple (Chebyshev) re-
sponses, which extend and generalize the previously
studied quarter-wave design [41]. Numerical validation

Figure 6: Parameters as in Figure 5 (Chebyshev design), but broadband pulsed excitation.
(A), (B) Numerically computed instantaneous field maps (normalized electric field) at time instants before the initial temporal boundary and
after the final one, respectively. (C) Same as panel (B), but with a saturated color scale, so as to better highlight the BW component. (D)
Corresponding space-time map, with the vertical dashed lines indicating the initial and final temporal boundaries.

Figure 7: Parameters as in Figure 5 (Chebyshev design), but broadband pulsed excitation.
(A) Numerically computed (normalized) incident, FW, andBWwaveforms (black, blue, red curves, respectively) at fixedpositions. (B)Magnified
details of the BWwaveform [yellow-shaded area in panel (A)]. (C) Corresponding (normalized) spectra (magnitude). (D)Magnified details of the
BW spectrum [yellow-shaded area in panel (C)], compared with the theoretical prediction (purple-dashed curve).
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(via finite-element simulations) has confirmed the pos-
sibility to attain nearly reflectionless, broadband fre-
quency conversion, in excellent agreement with the
theoretical predictions. Moreover, the approach can also
be applied to bounded regions.

These outcomes shed further light on the formal
analogies underpinning wave propagation in spatially
modulated and time-varying media and set the stage for
new exciting developments in the emerging field of
space-time metastructures. To this aim, current and
future studies are aimed at exploring the synthesis of
broader class of spectral responses which may find a

variety of interesting applications, including broadband
absorbers [26], filters, photonic devices for frequency
conversion, and analog signal processing [47].

Our proposed approach could potentially be experi-
mentally implemented at microwaves using transmission
lines loaded with reactive elements [48] and metasurfaces
which can be actively controlled in time [49]. While our
approach may be challenging to achieve at optical fre-
quencies, we are hopeful that further technological de-
velopments may provide possibilities for enabling an
experimental validation by using exotic scenarios such as,
for instance, optical cavities [50].

Figure 8: Spatial discontinuity between two stationary media with ni = 1 and ne = 2.
(A), (B) Numerically computed instantaneous field maps (normalized electric field) at two-time instants (before and after the initial and final
temporal boundaries, respectively), by assuming a central region −2.5λ0 < x < 2.5λ0 where the refractive-index profile is modulated in time
according to the binomial design (with parameters given in the caption of Figure 2). (C) Corresponding space-time map (normalized electric
field). The continuous and dashed lines indicate the spatial and temporal boundaries, respectively. (D), (E), (F) As in panels (A), (B), (C),
respectively, but for the Chebyshev design (with parameters given in the caption of Figure 5). (G), (H), (I) As in panels (A), (B), (C), respectively,
but in for a single-stepmodulation, where the refractive index of the central region is abruptly switched from ni to ne at the temporal boundary
t0 = 15T 0, and then maintained constant.

3696 G. Castaldi et al.: Exploiting space-time duality in impedance synthesis



5 Methods

5.1 Analytical modeling

For the spatial multilayers in Section 2.1 (see Figure 1(A)), our transfer-
matrix formalism relies on effective voltages and currents related to
the electric and magnetic (transverse) field components

V ↔ Ey , I ↔ η
ni
Hz  , (22)

with η = ̅̅̅̅̅
μ0/ϵ0

√
denoting the vacuum intrinsic impedance. Accord-

ingly, the transfer matrix in Equation (1) relates the input and output
values of these quantities for a generic layer, viz.,

[Vm

Im
] = S

m
⋅ [Vm−1

Im−1
], m = 1,…,M . (23)

Assuming a unit-amplitude incident electric field, the total
electric and magnetic fields outside the multilayer can be written as

Ey(x, t) = exp (−iωt){ exp (iknix) + ρexp (−iknix), x < 0,
τexp [ikne(x − xM)],     x > xM  ,

(24)

Hz(x, t) = exp (−iωt)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ni
η
[exp (iknix) − ρexp (−iknix)], x < 0,

neτ
η

exp [ikne(x − xM)],       x > xM  ,

(25)

with ρ and τ denoting the conventional reflection and transmission
coefficients, respectively. From Equations (24) and (25), we can
straightforwardly obtain the effective voltage and current at the input
interface (x = 0) as V0 = 1 + ρ,  I0 = 1 − ρ, and at the output interface
(x = xM ) as VM = τ,  IM = νeτ, which are connected by multilayer the
transfer matrix in Equation (2),

[VM

IM
] = [ s11 is12

is21 s22
] ⋅ [V0

I0
]. (26)

By solving the above linear system with respect to ρ and τ, we
obtain the expression in Equation (3) and

τ = 2
s22 − is21 + νe(s11 − is12) . (27)

For the temporal multisteps in Section 2.2 (see Figure 1(B)), our
transfer-matrix model relies instead on effective voltages and currents
that are related to the (normalized) magnetic and electric induction,
respectively,

V ↔ cBz

ni
, I ↔ − Dy

n2
i ϵ0

 , (28)

where

Bz = μ0Hz , Dy = ϵ0n2Ey . (29)

We highlight that the specific expressions and normalizations in
Equation (28) are instrumental to obtain the transfer matrix in Equa-
tion (4), which is formally analogous to that for the spatial case in
Equation (1); this is crucial to reveal the space-time duality. Once
again, assuming a unit-amplitude electric field, the total electric and
magnetic fields before the first temporal boundary and after the final
one can be written as

Ey(x, t) =

exp(iknix)
⎧⎪⎪⎨⎪⎪⎩

exp [ − iω(t − t0)],               t < t0,

Texp [ − iω
νe

(t − tM)] + Rexp [iω
νe

(t − tM)], t > tM  ,

(30)

Hz(x,t)=

exp(iknix)
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ni
η
exp [− iω(t−t0)],               t<t0,

ne
η
{Texp [− iω

νe
(t−tM)]−Rexp [iωνe (t−tM)]}, t>tM  ,

(31)

with R and T denoting the BW and FW wave coefficients, respec-
tively [34]. By comparison with the spatial case in Equations (24)
and (25), we note the conservation of the wavenumber (instead of
frequency), and the different role played by the reflection coeffi-
cient, which does not appear before the first temporal boundary in
view of causality. By proceeding as in the spatial case, we can write
the effective voltage and current at the initial temporal boundary
(t = t0) as V0 = 1,  I0 = −1, and those at the final one (t = tM) as
VM = νe(T − R), IM = −ν2e(T + R), and we can solve the resulting
linear system, analogous to that in Equation (26), in terms of R and
T. This yields the expression in Equation (5) and

T = s22 + is21
2ν2e

+ s11 + is12
2νe

. (32)

5.2 Riblet-type synthesis

For completeness, we summarize the salient steps of the synthesis
procedure, referring the reader to Ref. [43] for its theoretical founda-
tions and more details. In essence, starting from the insertion-loss
function in Equation (11), the complex-valued reflection coefficient is
reconstructed as

ρ(θ) = αQM(cos θ)
cosM  θ + cosM−2  θ +⋯ + isin θ(cosM−1  θ + cosM−3 +⋯)  , (33)

where themultiplicative constant αmust be chosen so as to satisfy the
self-consistency relationship in Equation (9), and the denominator has
been constructed by retaining only the poles in the upper half of the
complex ω-plane [i.e., Im(ω) ≥ 0], so as to ensure unconditional
stability.

From Equation (33), the normalized impedance at the input
interface x = 0 can be derived as

Z0 = V0

I0
= 1 + ρ(θ)
1 − ρ(θ) . (34)

Then, recalling the transport formula of the normalized imped-
ance through a layer,

Zm = Vm

Im
=

cos θZm−1 + isin θ
νm

cos θ + iνmsin θZm−1
 , (35)

it is possible to iteratively solve for the unknownnormalized refractive
indices νm, m = 1, ...,M. Specifically, starting from the first layer
(m = 1), we obtain
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Z1 =
cosθZ0 + isinθ

ν1
cosθ + iν1sinθZ0

 , (36)

where Z0 is given in Equation (34), and ν1 can be computed by enforcing
that the degree of the numerator and denominator is M − 1. By pro-
ceeding iteratively, form = 2, 3,…,M, and enforcing that at each step the
degree is lowered by one, we can compute all remaining values of νm.

5.3 Numerical modeling

All the numerical simulations in this study are carried out bymeans of
the finite-element-based commercial software COMSOLMultiphysics®

[51]. Specifically, we utilize the time-domain solver, and consider a
two-dimensional computational domain truncated by top and bottom
perfectly electric conducting walls and left and right scattering
boundary conditions to excite the incident field and prevent re-
flections, respectively. The computational domain is discretized via a

triangular mesh with size ranging from 10−4λ0 to 0.15λ0.
For the narrowband excitation in Figures 2 and 5, a number of

separate simulations are carried out, with Gaussian pulses featuring
different modulation frequencies (ωmod ranging from 0.2ω0 toω0) and
standard deviations 2Tmod = 4π/ωmod; these pulses include approxi-
mately 12 cycles.

For the broadband excitation in Figures 3, 4, 6–8 we consider
instead a modulated Gaussian pulse with ωmod = ω0 and standard
deviation 0.3Tmod = 0.6π/ω0, which includes approximately one cy-
cle. The spectra in Figures 4(C) and 7(C) are obtained via fast Fourier
transform of the corresponding waveforms, implemented via the fft

routine available in Matlab® [52].
The abrupt refractive index changes are implemented via rect-

angular analytical functions with smooth transitions. The duration of
the transitions is much smaller than the modulation period
(∼0.01Tmod) in order to induce the temporal boundary, and two
continuous derivatives are applied to the smooth transitions to ensure
the convergence of the simulations.
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