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NOTE A. TYPES OF INTENSITY-DEPENDENT NONLINEARITY FUNCTIONS
Intensity-dependent nonlinearities can be classified into saturable responses [1, 2] and
multiphoton processes [3, 4] such as two- or three-photon absorption (TPA [5] or 3PA [6]) and
emission (TPE [7] or 3PE [8]). Saturable responses indicate a decrease in a gain or loss
coefficient as the light intensity increases, which is observed in the gain saturation of lasers and
amplifiers [1, 9] and saturable absorption [2, 10, 11]. These responses are described by the
nonlinearity function N(I) = » / [1 + (I/15)], where # > O for saturable gain, # < 0 for saturable
loss, and Is denotes the saturation intensity. On the other hand, multiphoton absorption and
emission processes exhibit nonlinearity functions with polynomial expressions, as shown in the
TPA and TPE with N(I) = #I [5, 7] and the 3PA and 3PE with N(I) = 412 [6, 8], where 5 > 0 for
emission and n < 0 for absorption. Figure S1 shows the N(I) functions for different types of
intensity-dependent optical nonlinearities.
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Fig. S1. Nonlinearity functions N(I) of intensity-dependent optical nonlinearities: red lines for
TPA and TPE with N(I) = £l and blue lines for saturable gain and loss with N(1) = 70/ [1 +
(I/15)]. The green dashed lines represent linear gain and loss with N(I) = £#0. We set 5o > 0 for
all cases.

NOTE B. PHASE EQUATIONS
By replacing am with In'2exp(ipm) in Eq. (1) and employing Eg. (2) in the main text, we achieve
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Because the imaginary parts of Eq. (S1) are zero, an equation for the field phase ¢ inside each
resonator is derived, as
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The time derivatives of the phase functions dg1 2(t)/dt represent the instantaneous frequencies
of the fields in resonators 1 and 2, correspondingly. The static condition of the phase difference
O(t) = pa(t) — a(t) = s is found in Eq. (S2), which will be discussed later in Note G.

NOTE C. PHASE DIFFERENCE FUNCTION
With the resonator synchronization that achieves dam/dt = iwam and static Nm(Im), Eq. (1) in the
main text becomes an eigenvalue equation of general PT-symmetric two-level systems [12, 13]
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From Eq. (S3), ai/a; of each eigenmode is obtained as

ﬁ=i(NZ_Nl)i\/l——(NZ_Nl)T, (S4)
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which is plotted in Fig. S2 with various values of parameter y = [Na(l2) — N1(11)]/(2x).
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Fig. S2. The ratio between each resonator field near equilibria. (a,b) The ratio ai/a; of two
steady-state eigenmodes with various values of y. The blue curve is for y < 0, and the red curve
is for y > 0.

Depending on the magnitude of y, Eq. (S4) is divided into
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with |as/ag| = 1 for |y| < 1 (unbroken PT symmetry) and |ai/az| = |y = (y% — 1)¥?| for |y] > 1 (broken
PT symmetry). From ai/a; = |ai/azlexp(ifs), we obtain sinéds = |a./ai|Im(ai/az), which leads to
Eg. (3) in the main text. Although &, the angle in the complex plane in Fig. S2, depends on
N12(l12), the values of sinds = sin(z—0s) in both eigenmodes are always the same.

NOTE D. JACOBIAN MATRIX AT EQUILIBRIUM
From Eq. (2) of the form dli/dt = Fa(l1, I2) and dlo/dt = Fa(l4, I2) in the main text, each
component of the 2x2 Jacobian matrix A is Aij = 0Fi/0l;, leading to
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When the state of the system approaches equilibrium, the time-varying phase difference 6(t)
and the related derivative osiné(t,l1,12)/0In converge to the static function 6s(I1,12) and the
derivative osinfs(11,12)/0Im, respectively. At equilibrium (11 = lig and |2 = &), Eq. (4) in the

main text derives
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By substituting Eq. (S7) into Eq. (S6) and using the &5 function from the equilibrium condition,
the Jacobian matrix A at equilibrium (l1g, I2€) is obtained, as
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NOTE E. EQUILIBRIUM AND JACOBIAN MATRIX OF UNBROKEN PT
For unbroken PT symmetry that satisfies sinfe(l1e, 12e) = [N2(l2e) — N1(l1e)]/(2x), Eq. (4) in the
main text becomes

Nl(llE)IlE = _NZ(IZE)IZE = _%[NZ(IZE) - Nl(llE)]' (89)

The emergence of a nontrivial equilibrium with lig e # 0 and N1z # 0 requires lig = loe = Iy,
which represents the homogeneous steady state (HSS) [14]. The obtained HSS condition
simplifies Eqg. (S9) to Ni(lne) = —N2(lneg), which corresponds to balanced nonlinear gain and
loss. The intensity value Ine of the equilibrium is then obtained from the specific mathematical
forms of N1 and N2, which are determined by the type of optical nonlinearity. The condition of
unbroken PT symmetry is also simplified as |«| > |[N1(Ing)| = [N2(1rg)).

Using the conditions of lig = le = g, 0sinde/oh = —N1'/(2k), and 6sinfe/ol, = N2'[(2k), the
Jacobian matrix A for unbroken PT symmetry is derived from Eq. (S8) as
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For nontrivial equilibria (Ine # 0), Eq. (S10) results in a single eigenvalue Ane = [N1'(Ing) +
N2'(I1e)]1He due to the degeneracy of the matrix A with the HSS condition Ni(Ing) = —N2(lng).
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NOTE F. EQUILIBRIUM AND JACOBIAN MATRIX OF BROKEN PT
For broken PT symmetry that satisfies sinde(lig, l2e) = sgn([N2(l2g) — N1(11£)1/(2%)), Eq. (4) in
the main text becomes
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It is noted that Eq. (S11) leads to the condition of N1(11e)Na(l2e) = —«2. The intensity ratio at the
equilibrium Ize/lie = —N1(l1e)/N2(l22) does not need to be unity, generally resulting in the
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inhomogeneous steady state (IHSS) [15]. Notably, the condition of broken PT symmetry is
automatically satisfied with N3(1:g)Na(l2e) = —#2, regardless of the value of «.

For broken PT symmetry, sinfe is constant (Eq. (3) in the main text); thus, dsinde/ol; =
0sinde/ol, = 0. The Jacobian matrix A for broken PT symmetry is derived from Eq. (S8) as

A{NJIEHZN;(IE)IE Na(e) ] (s12)

N, (1) NZ(IZE)+2N2’(|2E)|2E
which has two eigenvalues A:g = [N1(l1g) + N2(l2)]/2 + N1'(l1g) lie + N2'(12e) 12 + p1/2/2, and p is
defined as
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NOTE G. PROOF OF STATIC PHASE DIFFERENCE

In the analysis of the equilibrium and its stability, we employed the static phase difference
condition 4(t,11,12) = 65(11,12) for separate analysis of the phases of PT symmetry. This condition
requires do/dt = d(p1 — ¢2)/dt = 0. From Eq. (S2), we achieve
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Therefore, do/dt = 0 for the equilibria in all phases of PT symmetry, due to the conditions of (i)
l1ig = loe = Ine for unbroken PT symmetry and (ii) cosée(lig, l2g) = 0 from sinfe(lig, l2e) = 1
for broken PT symmetry.

NOTE H. ANALYTICAL SOLUTIONS OF THE EXAMPLE SYSTEM

For the set of the nonlinearity functions Ni(l1) = 71111 + 710 and Na(l2) = 720, the relation N1(lng)
= —Nz(Ing) for unbroken PT symmetry derives the HSS equilibrium, as lue = —(710 + #720)/711.
Due to N1'(Ing) = 711 and N2'(Isg) = O, the Jacobian eigenvalue becomes Ane = —(#10 + #720). The
necessary condition of unbroken PT symmetry |«| > [N1(lng)| = |[N2(Ing)| also becomes x > |520|
with x> 0.

The relations of N1(11£)Na(l2e) = —«2 and I2e/11e = —N1(l1e)/Na(l2¢) for broken PT symmetry result
in the IHSS equilibrium as
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The Jacobian eigenvalues for the equilibrium are then achieved as
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NOTE I. EQUILIBRIA IN THE TPA EXAMPLE

Figure S3 shows the equilibria of unbroken (Fig. S3a, Ixe) and broken (Fig. S3b and c, each for
l1ie and I2e) PT symmetry. In the parameter space #710-7720, the nontrivial equilibria exist except
for the gray areas, which represent the “forbidden regions” of nontrivial equilibria. First, due
to the necessary condition x > |520| for unbroken PT symmetry, the equilibrium in Fig. S3a is
defined only in the range of —1 < (520 / k) < 1, while broken PT symmetry is automatically
satisfied with the equilibrium condition Ni(li)N2(l2e) = —«2 The other forbidden regions



originate from negative intensity values (Ine < 0 and l1g2e < 0). The equilibrium in broken PT
symmetry satisfies l1g # le except for « = |5720| shown in Eq. (S15), leading to IHSS equilibria.
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Fig. S3. Equilibria in the system parameter space #nio-720. (@) Ine for unbroken PT symmetry.
(b) lie and (c) le for broken PT symmetry. The gray areas denote the forbidden regions,
originating from unbroken PT symmetry and nonnegative intensity values. #11/x = -0.5.

NOTE J. JACOBIAN EIGENVALUES OF BROKEN PT SYMMETRY IN THE TPA
EXAMPLE

Figure S4 shows the imaginary part of A+ (Fig. S4a) and complex-valued 1_¢ (Fig. S4b and c)
to provide all the information of 1:e for broken PT symmetry with Fig. 1d in the main text. In
the region of 720 / x > 0 except for the forbidden region (gray color), the saddle (D) phase of
(n+,n-) = (1,1) consists of Re[A+&] < 0 (Fig. 1d in the main text) with Im[4.£] = 0 and Re[1¢] >
0 with Im[A.g] = 0.
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Fig. S4. Complex-valued Jacobian eigenvalues. (a) Im[A:e], (b) Re[Ag], and (c) Im[Ag]. The
red lines denote the AH bifurcation, and the black dashed lines represent the boundaries
between the node and focus phases. 711/x = —0.5 for all cases.



The S and U phases in the region of 720 / ¥ < 0 can be further classified by the types of phase
portraits (Fig. S5): node (SN and UN) and focus (SF and UF) phases, which are topologically
equivalent [16] if the phases have the same (n.,n_). While node phases have Jacobian
eigenvalues on the real axis, focus phases have a complex-conjugate pair of eigenvalues. It is
noted that the AH bifurcation occurs only between the focus phases ST and UF.
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Fig. S5. Node-focus classifications in the S and U phases. (a) Re[/+€], (b) Re[1 -], (c) Im[A«],
and (d) Im[A_g]. The red lines denote the AH bifurcation, and the black dashed lines represent
the boundaries between the node and focus phases. 711/x = -0.5.
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NOTE K. THE TPE EXAMPLE

We also analyze photonic molecules with the TPE nonlinearity having #11 > 0 (Figs. S6 and
S7), which lead to a topological classification that contrasts with the TPA example: a single
U(1,0) phase in unbroken PT symmetry and broad U(2,0) and narrow S(0,2) phases in broken
PT symmetry. As shown in the analytical solutions Ane = —(10 + #20) and A:e in Eq. (S16), the
Jacobian eigenvalues in unbroken and broken PT symmetry are independent of #11. Instead, the
values of the equilibria Ie and 112 depend on 711, which determines the forbidden regions of
nontrivial equilibria from negative intensity values (Ine < 0 and lig2e < 0) and thus results in
differences between the topological phases of the TPE and TPA photonic molecules.
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Fig. S6. Equilibria of TPE photonic molecules in the system parameter space #10-720. (&) Ine for
unbroken PT symmetry. (b) lie and (c) I2e for broken PT symmetry. The gray areas denote the
forbidden regions of nontrivial equilibria. #11/x = +0.5 for all cases.

2
4 3 2 4 0 1 2 3 4
y;w/l(

4 3 2 41 0 1 2 3 4 4 3 2 1 0 1 2 3 4
Tyl e

Fig. S7. Topological classification of TPE photonic molecules. (a) Ane for unbroken PT
symmetry. (b) Re[4+£], (c) Re[Ag], (d) Im[A:€], and (e) Im[A¢] for broken PT symmetry. The
red lines denote the AH bifurcation, and the black dashed lines represent the boundaries
between the node and focus phases. 711/« = +0.5 for all cases.



NOTE L. TOPOLOGICALLY PROTECTED DYNAMICS IN THE SADDLE AND
UNSTABLE PHASES

The phase portraits in the saddle and unstable phases are presented in Fig. S8. While Fig. S8a
shows the saddle phase dynamics obtained with the TPA resonator (711 < 0), Fig. S8b and ¢
represent the unstable dynamics obtained with TPE resonators (711 > 0). Although both phases
are unstable with respect to the nontrivial equilibrium, some of the initial states can converge
to (l1g,12e) = (0,0), depending on the topological phase of the trivial equilibrium (0,0).
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Fig. S8. Phase portraits of the saddle and unstable topological phases. (a-c) Trajectories of
(I11,12). (a) D(1,1) phase with broken PT symmetry where (1710/x, 1720/xc) = (1.0, 0.5) and #11/x =
-0.5. (b) U(0,2) phase with broken PT symmetry where (110/x, 120/xc) = (2.0, 1.5) and #11/x =
+0.5. (¢) U(0,1) phase with unbroken PT symmetry where (#10/x, n20/xc) = (=1.0, 0.5) and #11/x
= +0.5. All other parameters are the same as those in Fig. 2 in the main text.



NOTE M. TEMPORAL SYSTEM PERTURBATIONS

To examine the effect of noise time scales on topological protection, we introduce temporal
system perturbations that are realized by adding random square pulses Anio(t) and Anzo(t) to
(n0/x, naolx) = (1.0, —0.5) for the S(0,1) phase and (y10/k, 720/x) = (2.0, —1.5) for the S(0,2)
phase, forming 710(t) and #20(t) (Fig. S9). For the analysis in Supplementary Note N, the square
pulse is defined by the widths twign, intervals tinena, and amplitudes A» of the square pulses,
which are defined by the uniform random distribution u[p,q] between p and g.
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Fig. S9. An example of temporal variations in the system perturbations. (a,b) #10(t) and #20(t)
for the (a) S(0,1) phase and (b) S(0,2) phase.



NOTE N. TIME SCALES OF SYSTEM PERTURBATIONS

We examine the effect of the time scale of system perturbations in the topological protection at
the S(0,1) and S(0,2) phases. The time scale is controlled with the widths of the square pulses
for n10(t) and #20(t). As shown, the perturbation with larger time scales leads to the stronger
deviation of (l1,l2) from the original equilibrium point (lig,l2e), though the topological
protection is eventually achieved when the original system parameters are recovered.
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Fig. S10. Effects of the time scale of noises on their suppression based on topologically protection.
Trajectories of (l1,1,) for the (a-c) S(0,1) phase around (y10/x, 1720/x) = (1.0, —0.5) and (d-f) S(0,2)
phase around (y10/x, n20/x) = (2.0, —1.5). S(0,1) phase: (8) twign = U[200/w0,500/wq], (0) twigin =
u[900/m0,1200/cwq], and () twidth = U[1600/cwo,1900/wq], With tinterval = U[500/w0,1000/cwo] and Ay =
U[-0.4x,+0.4k]. S(0,2) phase: (a) twisih = U[10/@0,30/cw0], (b) twidth = U[50/wo,70/wq], and (C) twign =
u[90/0,110/wo], With tinterval = U[30/w0,60/wo] and An = u[-1.0x,+1.0x].



NOTE O. TEMPORAL COUPLED MODE THEORY FOR A LASER PLATFORM
The TCMT formulation for the platform of Figs. 4 and 5 in the main text is

d . 1 . 2
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where S+ 2+ denote the incident waves through each waveguide. The emitted waves S;_»_ from
the nonlinear photonic molecule are obtained as

S, =-S5, + i ,
Ty (S18)

The incident waves Si. o+ are used for the initial excitation of the nonlinear photonic molecule.
We thus set Si+2+ ~ 0 after a sufficient time from the excitation. Equation (S17) then takes the
form of Eq. (1) in the main text with the transformed nonlinearity functions Ni(l1) = 71111 + 710
— 1/zw and Na(l2) = 7720 — 1/zw. Accordingly, the topological phases in Fig. 1 in the main text are
achieved by assigning an additional linear gain of 1/tzw to each resonator. Additionally, the
emitted wave intensities are obtained as [S1-2 [ = (2/zw)|as2|? near the equilibrium with Sy4 2+ ~
0. Therefore, amplitude death (AD) and OD in each topological phase are successfully
manifested in the emission intensities |S;_ |°.

NOTE P. NOISE IN TIME-VARYING LOSS
In the time domain analysis in Figs. 4 and 5 in the main text, sinusoidal and square pulses
including noise components are applied to test noise-immune laser rectification and
modulation, respectively. For the target signal fuarger(t) (Square pulse in Fig. 4b and sinusoidal
pulse in Fig. 5b in the main text), we set the modulation input 72(t) by adding a random
perturbation d2o(t) t0 frarget(t) S 720(t) = frarget(t) + d20(t), where:

S(t) = [ ul0, 5]cos(at +u[-7, 7])d . (S19)

W = [wi,wn] is the spectral bandwidth of the noise component, and u[p,q] is the uniform random
function. The strength of the noise is then determined by the magnitude of ¢ (Fig. S11a for Figs.
4c and 5¢, and Fig. S11b for Figs. 4d and 5d). In both examples, o = 0.1wo and wn = 0.2awo.
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Fig. S11. Noise components d20(t) defined by the uniform random function and the magnitude
0.(@) 0=775/woand (b) 6 = 155/ we.
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NOTE Q. NOISE-IMMUNE OPERATION FOR SLOWER PERTURBATIONS

Figure S12 shows the effect of noise rates on noise-immune signal processing performance.
For the square pulses including noise components (Supplementary Note P), we estimate the
noise immunity in signal modulation for different values of W = [wi,wn]: the spectral
bandwidth of the noise component. As demonstrated, better noise suppression is achieved with
faster system perturbations because slower noises operate as “signals” according to the
dynamical evolution of the equilibrium point (l1g,l2e) and the sufficient convergence to each
changed equilibrium.
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Fig. S12. Effect of noise rates on noise-immune signal processing. (a-c) x-normalized
modulation signals 720(t) with different spectral bandwidths W and (d-f) the corresponding
output signals |Si_|* and |Sz_|%. (a,d) L = 0.1wo and wn = 0.2wo. (b,e) wL = 0.01wo and wp =
0.02wo. (¢,f) wL = 0.001wo and wx = 0.002wo. All other parameters are the same as those in
Fig. 4 in the main text.
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