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NOTE A. TYPES OF INTENSITY-DEPENDENT NONLINEARITY FUNCTIONS 
Intensity-dependent nonlinearities can be classified into saturable responses [1, 2] and 

multiphoton processes [3, 4] such as two- or three-photon absorption (TPA [5] or 3PA [6]) and 

emission (TPE [7] or 3PE [8]). Saturable responses indicate a decrease in a gain or loss 

coefficient as the light intensity increases, which is observed in the gain saturation of lasers and 

amplifiers [1, 9] and saturable absorption [2, 10, 11]. These responses are described by the 

nonlinearity function N(I) = η / [1 + (I/Is)], where η > 0 for saturable gain, η < 0 for saturable 

loss, and Is denotes the saturation intensity. On the other hand, multiphoton absorption and 

emission processes exhibit nonlinearity functions with polynomial expressions, as shown in the 

TPA and TPE with N(I) = ηI [5, 7] and the 3PA and 3PE with N(I) = ηI2 [6, 8], where η > 0 for 

emission and η < 0 for absorption. Figure S1 shows the N(I) functions for different types of 

intensity-dependent optical nonlinearities. 

 
Fig. S1. Nonlinearity functions N(I) of intensity-dependent optical nonlinearities: red lines for 

TPA and TPE with N(I) = ±η0I and blue lines for saturable gain and loss with N(I) = ±η0 / [1 + 

(I/Is)]. The green dashed lines represent linear gain and loss with N(I) = ±η0. We set η0 > 0 for 

all cases. 

 

 

 

NOTE B. PHASE EQUATIONS 
By replacing am with Im

1/2exp(iφm) in Eq. (1) and employing Eq. (2) in the main text, we achieve 
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Because the imaginary parts of Eq. (S1) are zero, an equation for the field phase φm inside each 

resonator is derived, as 
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The time derivatives of the phase functions dφ1,2(t)/dt represent the instantaneous frequencies 

of the fields in resonators 1 and 2, correspondingly. The static condition of the phase difference 

θ(t) = φ1(t) – φ2(t) = θs is found in Eq. (S2), which will be discussed later in Note G. 

 

 

 

NOTE C. PHASE DIFFERENCE FUNCTION 
With the resonator synchronization that achieves dam/dt = iωam and static Nm(Im), Eq. (1) in the 

main text becomes an eigenvalue equation of general PT-symmetric two-level systems [12, 13] 
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From Eq. (S3), a1/a2 of each eigenmode is obtained as 
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which is plotted in Fig. S2 with various values of parameter γ = [N2(I2) – N1(I1)]/(2κ). 

 
Fig. S2. The ratio between each resonator field near equilibria. (a,b) The ratio a1/a2 of two 

steady-state eigenmodes with various values of γ. The blue curve is for γ < 0, and the red curve 

is for γ ≥ 0. 

 

Depending on the magnitude of γ, Eq. (S4) is divided into 
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with |a1/a2| = 1 for |γ| ≤ 1 (unbroken PT symmetry) and |a1/a2| = |γ ± (γ2 – 1)1/2| for |γ| > 1 (broken 

PT symmetry). From a1/a2 = |a1/a2|exp(iθs), we obtain sinθs = |a2/a1|Im(a1/a2), which leads to 

Eq. (3) in the main text. Although θs, the angle in the complex plane in Fig. S2, depends on 

N1,2(I1,2), the values of sinθs = sin(π–θs) in both eigenmodes are always the same. 

 

 

 

NOTE D. JACOBIAN MATRIX AT EQUILIBRIUM 
From Eq. (2) of the form dI1/dt = F1(I1, I2) and dI2/dt = F2(I1, I2) in the main text, each 

component of the 2×2 Jacobian matrix A is Ai,j = ∂Fi/∂Ij, leading to  
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When the state of the system approaches equilibrium, the time-varying phase difference θ(t) 

and the related derivative ∂sinθ(t,I1,I2)/∂Im converge to the static function θs(I1,I2) and the 

derivative ∂sinθs(I1,I2)/∂Im, respectively. At equilibrium (I1 = I1E and I2 = I2E), Eq. (4) in the 

main text derives 
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By substituting Eq. (S7) into Eq. (S6) and using the θs function from the equilibrium condition, 

the Jacobian matrix A at equilibrium (I1E, I2E) is obtained, as  
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NOTE E. EQUILIBRIUM AND JACOBIAN MATRIX OF UNBROKEN PT 
For unbroken PT symmetry that satisfies sinθE(I1E, I2E) = [N2(I2E) – N1(I1E)]/(2κ), Eq. (4) in the 

main text becomes 
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The emergence of a nontrivial equilibrium with I1E,2E ≠ 0 and N1,2 ≠ 0 requires I1E = I2E = IHE, 

which represents the homogeneous steady state (HSS) [14]. The obtained HSS condition 

simplifies Eq. (S9) to N1(IHE) = –N2(IHE), which corresponds to balanced nonlinear gain and 

loss. The intensity value IHE of the equilibrium is then obtained from the specific mathematical 

forms of N1 and N2, which are determined by the type of optical nonlinearity. The condition of 

unbroken PT symmetry is also simplified as |κ| ≥ |N1(IHE)| = |N2(IHE)|. 

Using the conditions of I1E = I2E = IHE, ∂sinθE/∂I1 = –N1′/(2κ), and ∂sinθE/∂I2 = N2′/(2κ), the 

Jacobian matrix A for unbroken PT symmetry is derived from Eq. (S8) as 
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For nontrivial equilibria (IHE ≠ 0), Eq. (S10) results in a single eigenvalue λHE = [N1′(IHE) + 

N2′(IHE)]IHE due to the degeneracy of the matrix A with the HSS condition N1(IHE) = –N2(IHE). 

 

 

 

NOTE F. EQUILIBRIUM AND JACOBIAN MATRIX OF BROKEN PT 
For broken PT symmetry that satisfies sinθE(I1E, I2E) = sgn([N2(I2E) – N1(I1E)]/(2κ)), Eq. (4) in 

the main text becomes 
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It is noted that Eq. (S11) leads to the condition of N1(I1E)N2(I2E) = –κ2. The intensity ratio at the 

equilibrium I2E/I1E = –N1(I1E)/N2(I2E) does not need to be unity, generally resulting in the 



inhomogeneous steady state (IHSS) [15]. Notably, the condition of broken PT symmetry is 

automatically satisfied with N1(I1E)N2(I2E) = –κ2, regardless of the value of κ. 

For broken PT symmetry, sinθE is constant (Eq. (3) in the main text); thus, ∂sinθE/∂I1 = 

∂sinθE/∂I2 = 0. The Jacobian matrix A for broken PT symmetry is derived from Eq. (S8) as 
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which has two eigenvalues λ±E = [N1(I1E) + N2(I2E)]/2 + N1′(I1E)I1E + N2′(I2E)I2E ± ρ1/2/2, and ρ is 

defined as 
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NOTE G. PROOF OF STATIC PHASE DIFFERENCE 
In the analysis of the equilibrium and its stability, we employed the static phase difference 

condition θ(t,I1,I2) = θs(I1,I2) for separate analysis of the phases of PT symmetry. This condition 

requires dθ/dt = d(φ1 – φ2)/dt = 0. From Eq. (S2), we achieve 
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Therefore, dθ/dt = 0 for the equilibria in all phases of PT symmetry, due to the conditions of (i) 

I1E = I2E = IHE for unbroken PT symmetry and (ii) cosθE(I1E, I2E) = 0 from sinθE(I1E, I2E) = ±1 

for broken PT symmetry. 

 

 

 

NOTE H. ANALYTICAL SOLUTIONS OF THE EXAMPLE SYSTEM 
For the set of the nonlinearity functions N1(I1) = η11I1 + η10 and N2(I2) = η20, the relation N1(IHE) 

= –N2(IHE) for unbroken PT symmetry derives the HSS equilibrium, as IHE = –(η10 + η20)/η11. 

Due to N1′(IHE) = η11 and N2′(IHE) = 0, the Jacobian eigenvalue becomes λHE = –(η10 + η20). The 

necessary condition of unbroken PT symmetry |κ| ≥ |N1(IHE)| = |N2(IHE)| also becomes κ ≥ |η20| 

with κ ≥ 0. 

The relations of N1(I1E)N2(I2E) = –κ2 and I2E/I1E = –N1(I1E)/N2(I2E) for broken PT symmetry result 

in the IHSS equilibrium as 
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The Jacobian eigenvalues for the equilibrium are then achieved as 
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NOTE I. EQUILIBRIA IN THE TPA EXAMPLE 
Figure S3 shows the equilibria of unbroken (Fig. S3a, IHE) and broken (Fig. S3b and c, each for 

I1E and I2E) PT symmetry. In the parameter space η10-η20, the nontrivial equilibria exist except 

for the gray areas, which represent the “forbidden regions” of nontrivial equilibria. First, due 

to the necessary condition κ ≥ |η20| for unbroken PT symmetry, the equilibrium in Fig. S3a is 

defined only in the range of –1 ≤ (η20 / κ) ≤ 1, while broken PT symmetry is automatically 

satisfied with the equilibrium condition N1(I1E)N2(I2E) = –κ2. The other forbidden regions 



originate from negative intensity values (IHE < 0 and I1E,2E < 0). The equilibrium in broken PT 

symmetry satisfies I1E ≠ I2E except for κ = |η20| shown in Eq. (S15), leading to IHSS equilibria. 

 
Fig. S3. Equilibria in the system parameter space η10-η20. (a) IHE for unbroken PT symmetry. 

(b) I1E and (c) I2E for broken PT symmetry. The gray areas denote the forbidden regions, 

originating from unbroken PT symmetry and nonnegative intensity values. η11/κ = –0.5. 

 

 

NOTE J. JACOBIAN EIGENVALUES OF BROKEN PT SYMMETRY IN THE TPA 
EXAMPLE 
Figure S4 shows the imaginary part of λ+E (Fig. S4a) and complex-valued λ–E (Fig. S4b and c) 

to provide all the information of λ±E for broken PT symmetry with Fig. 1d in the main text. In 

the region of η20 / κ > 0 except for the forbidden region (gray color), the saddle (D) phase of 

(n+,n–) = (1,1) consists of Re[λ+E] < 0 (Fig. 1d in the main text) with Im[λ+E] = 0 and Re[λ–E] > 

0 with Im[λ–E] = 0. 

 
Fig. S4. Complex-valued Jacobian eigenvalues. (a) Im[λ+E], (b) Re[λ–E], and (c) Im[λ–E]. The 

red lines denote the AH bifurcation, and the black dashed lines represent the boundaries 

between the node and focus phases. η11/κ = –0.5 for all cases. 



The S and U phases in the region of η20 / κ < 0 can be further classified by the types of phase 

portraits (Fig. S5): node (SN and UN) and focus (SF and UF) phases, which are topologically 

equivalent [16] if the phases have the same (n+,n–). While node phases have Jacobian 

eigenvalues on the real axis, focus phases have a complex-conjugate pair of eigenvalues. It is 

noted that the AH bifurcation occurs only between the focus phases SF and UF. 

 
Fig. S5. Node-focus classifications in the S and U phases. (a) Re[λ+E], (b) Re[λ–E], (c) Im[λ+E], 

and (d) Im[λ–E]. The red lines denote the AH bifurcation, and the black dashed lines represent 

the boundaries between the node and focus phases. η11/κ = –0.5. 

 



NOTE K. THE TPE EXAMPLE 
We also analyze photonic molecules with the TPE nonlinearity having η11 > 0 (Figs. S6 and 

S7), which lead to a topological classification that contrasts with the TPA example: a single 

U(1,0) phase in unbroken PT symmetry and broad U(2,0) and narrow S(0,2) phases in broken 

PT symmetry. As shown in the analytical solutions λHE = –(η10 + η20) and λ±E in Eq. (S16), the 

Jacobian eigenvalues in unbroken and broken PT symmetry are independent of η11. Instead, the 

values of the equilibria IHE and I1E,2E depend on η11, which determines the forbidden regions of 

nontrivial equilibria from negative intensity values (IHE < 0 and I1E,2E < 0) and thus results in 

differences between the topological phases of the TPE and TPA photonic molecules. 

 
Fig. S6. Equilibria of TPE photonic molecules in the system parameter space η10-η20. (a) IHE for 

unbroken PT symmetry. (b) I1E and (c) I2E for broken PT symmetry. The gray areas denote the 

forbidden regions of nontrivial equilibria. η11/κ = +0.5 for all cases. 

 
Fig. S7. Topological classification of TPE photonic molecules. (a) λHE for unbroken PT 

symmetry. (b) Re[λ+E], (c) Re[λ–E], (d) Im[λ+E], and (e) Im[λ–E] for broken PT symmetry. The 

red lines denote the AH bifurcation, and the black dashed lines represent the boundaries 

between the node and focus phases. η11/κ = +0.5 for all cases. 



NOTE L. TOPOLOGICALLY PROTECTED DYNAMICS IN THE SADDLE AND 
UNSTABLE PHASES 
The phase portraits in the saddle and unstable phases are presented in Fig. S8. While Fig. S8a 

shows the saddle phase dynamics obtained with the TPA resonator (η11 < 0), Fig. S8b and c 

represent the unstable dynamics obtained with TPE resonators (η11 > 0). Although both phases 

are unstable with respect to the nontrivial equilibrium, some of the initial states can converge 

to (I1E,I2E) = (0,0), depending on the topological phase of the trivial equilibrium (0,0). 

 
Fig. S8. Phase portraits of the saddle and unstable topological phases. (a-c) Trajectories of 

(I1,I2). (a) D(1,1) phase with broken PT symmetry where (η10/κ, η20/κ) = (–1.0, 0.5) and η11/κ = 

–0.5. (b) U(0,2) phase with broken PT symmetry where (η10/κ, η20/κ) = (–2.0, 1.5) and η11/κ = 

+0.5. (c) U(0,1) phase with unbroken PT symmetry where (η10/κ, η20/κ) = (–1.0, 0.5) and η11/κ 

= +0.5. All other parameters are the same as those in Fig. 2 in the main text. 

 



NOTE M. TEMPORAL SYSTEM PERTURBATIONS 
To examine the effect of noise time scales on topological protection, we introduce temporal 

system perturbations that are realized by adding random square pulses Δη10(t) and Δη20(t) to 

(η10/κ, η20/κ) = (1.0, –0.5) for the S(0,1) phase and (η10/κ, η20/κ) = (2.0, –1.5) for the S(0,2) 

phase, forming η10(t) and η20(t) (Fig. S9). For the analysis in Supplementary Note N, the square 

pulse is defined by the widths twidth, intervals tinterval, and amplitudes Δη of the square pulses, 

which are defined by the uniform random distribution u[p,q] between p and q. 

 
Fig. S9. An example of temporal variations in the system perturbations. (a,b) η10(t) and η20(t) 

for the (a) S(0,1) phase and (b) S(0,2) phase. 

 



NOTE N. TIME SCALES OF SYSTEM PERTURBATIONS 
We examine the effect of the time scale of system perturbations in the topological protection at 

the S(0,1) and S(0,2) phases. The time scale is controlled with the widths of the square pulses 

for η10(t) and η20(t). As shown, the perturbation with larger time scales leads to the stronger 

deviation of (I1,I2) from the original equilibrium point (I1E,I2E), though the topological 

protection is eventually achieved when the original system parameters are recovered.   

 
Fig. S10. Effects of the time scale of noises on their suppression based on topologically protection. 

Trajectories of (I1,I2) for the (a-c) S(0,1) phase around (η10/κ, η20/κ) = (1.0, –0.5) and (d-f) S(0,2) 

phase around (η10/κ, η20/κ) = (2.0, –1.5). S(0,1) phase: (a) twidth = u[200/ω0,500/ω0], (b) twidth = 

u[900/ω0,1200/ω0], and (c) twidth = u[1600/ω0,1900/ω0], with tinterval = u[500/ω0,1000/ω0] and Δη = 

u[–0.4κ,+0.4κ]. S(0,2) phase: (a) twidth = u[10/ω0,30/ω0], (b) twidth = u[50/ω0,70/ω0], and (c) twidth = 

u[90/ω0,110/ω0], with tinterval = u[30/ω0,60/ω0] and Δη = u[–1.0κ,+1.0κ].  

 



NOTE O. TEMPORAL COUPLED MODE THEORY FOR A LASER PLATFORM 
The TCMT formulation for the platform of Figs. 4 and 5 in the main text is 
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where S1+,2+ denote the incident waves through each waveguide. The emitted waves S1–,2– from 

the nonlinear photonic molecule are obtained as 
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The incident waves S1+,2+ are used for the initial excitation of the nonlinear photonic molecule. 

We thus set S1+,2+ ~ 0 after a sufficient time from the excitation. Equation (S17) then takes the 

form of Eq. (1) in the main text with the transformed nonlinearity functions N1(I1) = η11I1 + η10 

– 1/τW and N2(I2) = η20 – 1/τW. Accordingly, the topological phases in Fig. 1 in the main text are 

achieved by assigning an additional linear gain of 1/τW to each resonator. Additionally, the 

emitted wave intensities are obtained as |S1–,2–|2 = (2/τW)|a1,2|2 near the equilibrium with S1+,2+ ~ 

0. Therefore, amplitude death (AD) and OD in each topological phase are successfully 

manifested in the emission intensities |S1–,2–|2. 

 

 

NOTE P. NOISE IN TIME-VARYING LOSS 
In the time domain analysis in Figs. 4 and 5 in the main text, sinusoidal and square pulses 

including noise components are applied to test noise-immune laser rectification and 

modulation, respectively. For the target signal ftarget(t) (square pulse in Fig. 4b and sinusoidal 

pulse in Fig. 5b in the main text), we set the modulation input η20(t) by adding a random 

perturbation δ20(t) to ftarget(t) as η20(t) = ftarget(t) + δ20(t), where: 

20 ( ) [0, ]cos( [ , ])
W

t u t u d     = + − ,                    (S19) 

W = [ωL,ωH] is the spectral bandwidth of the noise component, and u[p,q] is the uniform random 

function. The strength of the noise is then determined by the magnitude of δ (Fig. S11a for Figs. 

4c and 5c, and Fig. S11b for Figs. 4d and 5d). In both examples, ωL = 0.1ω0 and ωH = 0.2ω0. 

 
Fig. S11. Noise components δ20(t) defined by the uniform random function and the magnitude 

δ. (a) δ = 77.5 / ω0 and (b) δ = 155 / ω0. 

 

 

NOTE Q. NOISE-IMMUNE OPERATION FOR SLOWER PERTURBATIONS 
Figure S12 shows the effect of noise rates on noise-immune signal processing performance. 

For the square pulses including noise components (Supplementary Note P), we estimate the 

noise immunity in signal modulation for different values of W = [ωL,ωH]: the spectral 

bandwidth of the noise component. As demonstrated, better noise suppression is achieved with 

faster system perturbations because slower noises operate as “signals” according to the 

dynamical evolution of the equilibrium point (I1E,I2E) and the sufficient convergence to each 

changed equilibrium. 



 
Fig. S12. Effect of noise rates on noise-immune signal processing. (a-c) κ-normalized 

modulation signals η20(t) with different spectral bandwidths W and (d-f) the corresponding 

output signals |S1–|2 and |S2–|2. (a,d) ωL = 0.1ω0 and ωH = 0.2ω0. (b,e) ωL = 0.01ω0 and ωH = 

0.02ω0. (c,f) ωL = 0.001ω0 and ωH = 0.002ω0. All other parameters are the same as those in 

Fig. 4 in the main text. 
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