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Abstract: By placing a single Au nanoparticle on the sur-
face of a cadmium sulfide (CdS) nanowire, we demonstrate
strong coupling of localized surface plasmon resonance
(LSPR) modes in the nanoparticle and whispering gallery
modes (WGMs) in the nanowire. For a 50-nm-diameter
Au-nanosphere particle, strong coupling occurs when the
nanowire diameter is between 300 and 600 nm, with a
mode splitting up to 80 meV. Using a temperature-induced
spectral shift of the resonance wavelength, we also observe
the anticrossing behavior in the strongly coupled system.
In addition, since the Au nanosphere has spherical sym-
metry, the supported LSPR mode can be selectively
coupled with transverse electric (TE) and transverse mag-
netic (TM) WGMs in the nanowire. The ultracompact
strong-coupling system shown here may provide a versa-
tile platform for studying hybrid “photon-plasmon”
nanolasers, nonlinear optical devices, and nanosensors.
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1 Introduction

Plasmonic nanoparticles, as typical plasmonic nano-
cavities [1-6], can support localized surface plasmon
resonance (LSPR) and confine optical field into the nano-
scale in all three dimensions [3], and have laid the foun-
dation for applications including strong coupling [1, 2,
4-6], Raman spectroscopy [7, 8], and LSPR-based bio-
sensors [9]. However, due to its intrinsic metal Ohmic loss
and extremely small cavity size, an individually-used
plasmonic nanoparticle typically suffers from short
dephasing time of the coherent resonance [3], broad LSPR
bandwidth, and difficulty in tailoring plasmonic charac-
teristics, which may limit the performance of LSPR-based
applications such as sensitivity in optical sensing [9],
threshold in nanoplasmonic lasing [10-12] and nonlinear
optical effects [13]. Strong coupling of a localized plas-
monic mode to a low-loss photonic mode in a hybrid
plasmonic—photonic cavity [14-17] provides a promising
solution to elongate the LSPR lifetime via coherent energy
exchange and recirculation between the two otherwise
uncoupled modes, and thus offers an opportunity to
manipulate characteristics of the original modes, such as
dephasing time [18], energy distribution [19], and damping
pathways [16]. Among various photonic cavities,
whispering-gallery-mode (WGM) cavity, owing to its high-
quality factor [20, 21], strong and easily accessible surface
evanescent fields [22], has been proven a versatile platform
for exploiting strongly coupling with excitons [23, 24],
atoms [25, 26], and ions [27]. When coupled to plasmonic
cavities, as the bandwidth of the LSPR is relatively broad at
optical frequency (e.g., tens of nanometers [3]), a relatively
large mode splitting is required for identification and
manipulation of the strong coupling effects, and therefore
a small WGM cavity size is preferred to match the lifetime of
the LSPR (e.g., ~10 fs). Previously, WGMs in a silica
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microfiber have been employed to strongly couple with an
Au nanorod [17], however, limited by the relatively low
refractive index of the silica glass (~1.46), the cavity size
(i.e., the microfiber diameter) is much larger compared
with the resonance wavelength.

Semiconductor nanowires grown by a bottom-up
chemical vapor deposition (CVD) method [28] have high
refractive indices and submicrometer diameters, and can
offer atomic-level sidewall smoothness [29] that is much
lower in surface roughness compared with other cavity
structures fabricated by top—down lithography [21]. Previ-
ously, WGMs have been observed in semiconductor
nanowires with diameter down to 270 nm [30], which is
close to or smaller than the resonance wavelength of light.
Also, compared with the circular cross section of a glass
microfiber with amorphous structure, a single-crystal
semiconductor nanowire typically has a polygon cross
section.

In this letter, by depositing single Au nanospheres on
the surface of a suspended CdS nanowire with high
refractive index (~2.7), we demonstrate the strong coupling
of a plasmonic nanoparticle to a semiconductor nanowire
at room temperature. Large mode splitting is observed with
nanowire diameter down to 300 nm, much smaller than the
resonance wavelength of ~530 nm. Using a temperature-
induced spectral shift of the resonance wavelength, we
observe anticrossing behavior in these strongly coupled
systems. Besides, the dependence of coupling behavior on
wire diameter has also been investigated.

Au nanosphere 2.48
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2 Structure and fabrication

The hybrid strong coupling system is schematically illus-
trated in Figure 1a. An Au nanosphere deposited on one of
the six sidewalls of a CdS wire is used as a nanoplasmonic
resonator for concentrating light through LSPR and
coupling it into WGMs of the hexagonal cavity. When the
resonant frequencies of the two cavities are matched, and
energy exchange between the two cavities is efficient
enough, strong coupling between the LSPR modes and the
WGMs may occur. Experimentally, CdS wires were syn-
thesized via a CVD method [28]. By controlling the growth
temperature and pressure, single-crystal CdS wires with
diameters ranging from 100 nm to 2 um and lengths up to
0.5 mm were obtained (see Figure Sla in the Supplemen-
tary Material). As-grown CdS wires exhibit high crystalli-
zation quality and hexagonal cross section (see inset of
Figure 1b and Figure S1b-d in the Supplementary Mate-
rial). Figure 1b shows a typical dark-field scattering spec-
trum of a 1.5-um-diameter CdS wire. Illuminated by a
broadband white light (EQ-99, ENERGETIQ, see the spec-
trum of the white light in Figure S2 in the Supplementary
Material) filtered by a 500-nm long-pass filter (FEL0500,
Thorlabs), the wire gives clear resonance modes, agreeing
well with that of a hexagonal WGM microcavity [31]. Au
nanospheres were chemically synthesized using a seed-
mediated method and are relatively uniform in sizes with
an average diameter of 50 + 5 nm (see Figure S3 in the
Supplementary Material). Figure 1c shows a typical
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Figure 1: Hybrid strong-coupling system.
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~45 nm. The insets show a transmission
electron microscopy (TEM) image (upper)
and a dark-field optical microscope image
(bottom) of a typical Au nanosphere. (d)
SEM image of an as-fabricated hybrid
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spectrum of a 50-nm-diameter Au nanosphere on a glass
slide. The measured LSPR peak wavelength is 542 nm, with
a linewidth of 45 nm (for reference, typical scattering
spectrum of a 50-nm-diameter Au nanosphere deposited
on a CdS crystal is provided in Figure S4 in the Supple-
mentary Material). By immersing a CdS wire into a dilute
Au nanosphere aqueous solution for a few seconds and
drying it in the open air, a hybrid structure was observed
with an Au nanosphere deposited on one sidewall of a
650-nm-diameter CdS wire (Figure 1d).

3 Experimental setup and results

To investigate the spectral response of the hybrid structure,
we use an unpolarized white light for side-illuminated
excitation and a dark-field microscope for scattering signal
collection. As shown in Figure 2a, the white light is focused
onto the wire at 30° with respect to the c-axis of the wire. The
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scattered light is collected by a 100x objective and directed
into a spectrometer (QE pro, Ocean Optics) and a charge-
coupled device camera (DS-Filc, Nikon), respectively.
Figure 2b shows a dark-field scattering image of three
separated 50-nm-diameter Au nanospheres deposited on a
500-nm-diameter CdS wire, in which the scattering signal
from each nanosphere can be used for studying the coupling
behavior between the nanosphere and the wire. Also, since
the separation between the neighboring nanospheres is
much larger than the cross section of the WGM mode, there
is no effective coupling between neighboring WGMs.
Hexagonal cavity of a CdS wire can support transverse
magnetic (TM, electric field parallel to the c-axis) and
transverse electric (TE, magnetic field parallel to the c-axis)
polarized WGMs [31]. Figure 2c and d shows calculated field
distribution of a TM and a TE WGMs in a 500-nm-diameter
CdS wire at a resonant wavelength of 520 nm, respectively.
Experimentally, the efficiency of launching WGMs in such
a wire via direct free-space illumination is very low. When
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Figure 2: Optical response of the coupled
system.
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an Au nanosphere is deposited on the surface of the wire, it
can work as an antenna to receive incident light, recircu-
late the light through LSPR and couple light into WGMs
with a much higher efficiency. Unlike the Au nanorod used
in the previous work [17], the highly symmetric Au nano-
sphere used here can support LSPR with three degenerate
modes in free space, making it possible to couple light into
both TE and TM WGMs in the wire. Figure 2e demonstrates
a scattering spectrum of an Au nanosphere coupling to a
500-nm-diameter CdS wire under unpolarized excitation,
in which there are three dominant resonance modes. To
identify the origin of these modes, the polarization of the
scattering spectrum is examined (Figure 2f). The first and
second modes exhibit the same TM polarization, while the
third mode shows TE polarization. The scattering spectra
(Figure 2g) under polarized excitation further confirm the
polarization of these modes.

The first two modes are attributed to splitting modes
due to strong coupling between a TM mode of the CdS wire
and an LSPR mode of the Au nanosphere (Figure 2e), and
the third mode is an unsplit TE mode in a weak coupling
regime. During the coupling process, partial energy of the
LSPR mode radiates into the WGM of the wire cavity. The
eigenmodes (Eyp, and Ejoy) of the coupling system can be
estimated from a coupled oscillation model [32] (see
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Section 5 in the Supplementary Material). Experimentally,
Eyp (231 eV) and Ejoy (2.26 €V) can be obtained from the
peaks of the first two modes in the scattering spectrum, and
their dissipation rates (y; = 17 meV and y, = 36 meV) can be
calculated from their corresponding linewidths of the
scattering spectra fitted by Lorentzian shapes. The
coupling strength can be estimated by Q =Ey, — Ejow
(50 meV), where the detuning of the two original modes is
close to zero. In this case, Q > szz (i.e., average dissipation
of the coupled system), so the interaction is in a strong
coupling regime. The reason why the TE mode is not
strongly coupled to the LSPR mode is that it locates much
far away from the peak of the LSPR (Figure 2f and g), and it
also provides a relatively weak evanescent field on the wire
surface for interacting with the nanosphere (Figure 2c
and d).

To investigate the coupling behavior of the hybrid
system, scattering spectra of 50-nm-diameter Au nano-
spheres coupled individual CdS wires of different
diameters are studied under TM-polarized excitation
(Figure 3a—d). When the wire diameter (1.9 um) is relatively
large, the scattering spectrum of the LSPR is simply
modulated by the WGMs, as a result of the coupling be-
tween the nanosphere and the wire. As the least time
required for establishing the WGM estimated by the
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Figure 3: Coupling behavior of the hybrid system.
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(a—d) Dark-field scattering spectra of single Au nanospheres coupled to CdS wires with diameters of (a) 1.9, (b) 1.1, (c) 0.6 and (d) 0.3 pm,
respectively. Insets show the SEM images of the corresponding coupling system. (e) The calculated symmetric TM-polarization eigenwave-
lengths in CdS wire cavities with small sizes. Each eigenwavelength is labeled by an azimuthal mode number, m. The dash lines show the
eigenwavelength of each mode number against diameters. The red shading region is the spectrum range for the LSPR of Au nanospheres. The

insets are simulated field distributions for different mode numbers res
FSR curve fits well to a a/D function (a is ~43 nm pm).

pectively. (f) The dependence of FSR on the diameter of CdS wires. The
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single-cycle dwelling time of photons in a 2-pm-diameter
wire (>100 fs) is much larger than the lifetime of the LSPR
(~10 fs) in the Au nanosphere, the coupling behavior is
difficult to be identified in the scattering spectrum. As the
wire diameter decreases, the establishment time of the
WGM is approaching the LSPR lifetime, and the coupling
strength is also enhanced by the increasing fractional
evanescent field (see Figure S5 in the Supplementary
Material). When the wire diameter decreases to ~1.1 um,
evident mode splitting emerges (Figure 3b), but the
splitting has not yet exceeded the average dissipation of
two original modes, and the system is still in the weak
coupling regime. When the wire diameter decreases
further to 600 nm, strong coupling behavior is clearly
seen (Figure 3c). The coupling strength (80 meV) extrac-
ted from the scattering spectrum is larger than the average
dissipation (y, = 33 meV, y, = 34 meV). Because of the large
free spectral range (FSR) of the WGM (~65 nm), only one
dominant TM mode (splitted into a doublet) couples with
the LSPR. When the wire diameter is reduced to 300 nm,
strong coupling still exists (Figure 3d), which is the
smallest WGM cavity that can strongly couple with Au

Y. Jin et al.: Strong coupling of a plasmonic nanoparticle =— 2879

nanospheres in our case. Although a thinner wire can
support WGMs theoretically (see insets of Figure 3e), the
cavity loss due to the diffraction becomes too large to
maintain the condition for strong coupling. Figure 3f
shows measured FSRs of WGMs around 550-nm wave-
length with different wire diameter, fitting well to a a/D
function (ais a fitting constant and D is the wire diameter).
The experimentally fitted a is (~43 nm pm), in good

. . . 2
agreement with the theoretical calculation (a = %ﬂeﬁ
~ 45 nm pm, A ~ 550 nm, and neg ~ 2.6).

To map the dispersion of the coupled system, we
measured its temperature-dependent dark-field scattering
spectra in a cryostat system (ST-500, Janis). For the WGMs
in a CdS nanowire, as temperature increases, the peaks of
resonance modes redshift because of the positive
temperature-dependent coefficient of the refractive index
(~4 x 107" K™ of CdS [33], which can change the detuning
between the WGMs and the LSPR mode, while the thermal
expansion effect on the CdS-nanowire-cavity size (coeffi-
cient of thermal expansion [34], ~4.6 x 10 K™) can be
ignored. Figure 4a shows the calculated dispersion of TM
modes in a 550-nm-diameter CdS nanowire, in which a
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Figure 4: Temperature-dependent dispersion behavior of the coupled system.
(a) Calculated dispersion curve of WGMs in a 550-nm-diameter CdS wire with temperature increasing from 100 to 400 K. (b) Temperature-

dependent dark-field scattering spectra of an Au nanosphere coupled to a 550-nm-diameter CdS wire. The temperature is scanned from 100 to
350 Kwith a step of 50 K. The gray dash lines denote the peak wavelengths of the uncoupled LSPR mode (vertical line) and the TMs ; WGM (oblique
line), respectively. (c) Calculated dispersion of the TM5 ; WGM coupling with the LSPR mode using the coupled oscillation model to fit the
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TM;; and a TM,, ; modes (TM,, ,: m is the azimuthal mode
number and r is the radial number) redshift ~15 nm from
100 to 400 K. For comparison, the LSPR peak of a 50-nm-
diameter Au nanosphere is almost temperature indepen-
dent [35] (see Figure S6 in the Supplementary Material).
Figure 4b shows the temperature-dependent scat-
tering spectra of an Au nanosphere coupled with a
550-nm-diameter nanowire. Initially, the two modes in
Figure 4b follow the dispersion behavior of the uncoupled
WGM and LSPR modes respectively at relatively high tem-
peratures (about over 320 K) due to a large detuning. As the
temperature decreases, the modes deviate from the original
dispersions and enter the strong coupling region, with an
evident anticrossing behavior in the dispersion curve
(Figure 4c), agreeing well with the coupled oscillation
model. The coupling strength (28 meV) is larger than the
average dissipation (y; = 17 meV, y, = 30 meV), confirming
the occurance of the strong coupling in the coupled system.

4 Conclusion

In conclusion, we have demonstrated strong coupling of an
Au nanosphere to a CdS nanowire with a mode splitting up
to 80 meV at room temperature. The coupling of a 50-nm-
diameter Au nanosphere to single CdS wires with different
diameters (0.3-1.9 um) were investigated. Strong coupling
between WGM and LSPR modes is observed with wire
diameter between 300 and 600 nm, offering a scheme to
realize a strongly coupled hybrid “photon—plasmon” sys-
tem with ultracompactness. The coupling scheme can be
applied to many other semiconductor nanowires, and the
LSPR modes in a nanosphere can be selectively coupled
with TE and TM WGMs in the nanowire. Owing to the high
optical gain and nonlinearity in semiconductor nanowires,
this kind of strong-coupling hybrid structures may open
new opportunities for a variety of applications such as ul-
tracompact low-threshold nanolasers and nonlinear opti-
cal devices.
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