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Supplementary Figure S1. Spin distributions for (A) positive and (B) negative skyrmions generated with l = ±1 RP beams, respectively, simulated for the Co magnetization in a positive x direction. The illumination configuration is the same as in Figure 3A.


Supplementary Note 1. Derivation of near-field MO effect in a multilayer configuration
For a medium magnetized along the z-axis, Eq. 2 in the main text yields a matrix equation

	 .	(S1)




[bookmark: OLE_LINK58][bookmark: OLE_LINK59][bookmark: OLE_LINK64][bookmark: OLE_LINK65]The nontrivial solution for the electric field can be found from the expansion of the determinant of the matrix in Eq. S1, which gives the longitudinal wave vector . Taking account of that |gz| << |εi|, kzi can be approximated as , whereand . Hence, the magnetic (electric) field Hy (Ey) in a magnetic layer i can be expressed as

		(S2a)

with the common term  omitted. For a non-magnetic layer j, the electromagnetic field is represented by

	.	(S2b)
By applying the tangential continuous condition at each interface, the connection of the electromagnetic field between the input layer 1 and output layer n can be expressed in the form of a 4×4 transfer matrix (row 1 to row 4 denote the continuity of Hy, Ex, Ey, Hx respectively) as

	 ,	(S3)
where Di and Pi (for i = 1, 2, …n) are the transfer and propagation matrices respectively. For a magnetic layer,


 and ,


where,, Z0 is the wave impendence in vacuum and di is the thickness of an i-th layer.
For a non-magnetic layer,


 and .
The dispersion equation is established from the non-trivial solution of the field coefficients Anp and Ans as

	,	(S4)





[bookmark: OLE_LINK113][bookmark: OLE_LINK114][bookmark: OLE_LINK83][bookmark: OLE_LINK84]which can be expressed in the basis of the nonmagnetic system: , where and  are the matrix elements in Eq. S4 when the magnetic layer is demagnetized. Since the dispersion equation for a demagnetized system is  for TM mode and  for TE mode (because TM and TE mode are decoupled, in other word, the non-trivial solutions for Anp and Ans are independent), the mode propagation constant β obtained from Eq. S4 changes insignificantly compared to a non-magnetic case, taking into account the smallness of gz. The electric field ratio η = Ey / Ex in medium 1 can be obtained as

	,	(S5)
where C is a constant and higher orders of gz are omitted.
  Considering SPP at the interface between dielectric (medium 1) and ferromagnetic metal (medium 2) as an example, the key elements in matrix M can be obtained as

.



The propagation constant can be obtained as , while the ratio η can be obtained by applying  and  into Eq. S5 as

	.	(S6a)

In the case of longitudinal magnetization, the magneto-optical contribution of the nonmagnetic kzi is represented by . Equations S3-S5 are also applicable to the transfer matrix in a magnetic layer changing to

,

where. Same near-field features can be obtained as in the case of polar magnetization, and the ratio η is expressed as

	.	(S6b)

Supplementary Note 2. Numerical simulations
The electromagnetic simulations are performed using the finite difference time domain (FDTD) method. In Figure 1, the boundary conditions in x and z directions are set as PML absorbing boundary conditions, while y direction is set as periodic boundary conditions. To excite the SPP at the air/Co interface, a nanoslit (width 200 nm, depth 150 nm) etched in a Co film (thickness 150 nm) is illuminated at normal incidence by an x-polarized plane wave. A line monitor along x axis is placed at the air/Co interface to measure electromagnetic fields. The simulation domain is set to be 10 μm  0.2 μm  2 μm. In Figures 3-5, the boundary conditions are set as PML absorbing boundary conditions in all directions. A tightly focused (NA=1.49) radially polarized beam (λ=633 nm) with a spiral phase propagates in a silica substrate, with the focal point set at air/Co interface. A plane monitor is placed 50 nm away from the cobalt/air interface (in an air superstrate) to measure electromagnetic fields. The simulation domain is set to be 10 μm  10 μm  2 μm. A non-uniform mesh is used throughout the whole simulation domain and the minimum mesh size is 2 nm.

Supplementary Note 3. Skyrmion number of photonic skyrmions in the presence of polar magnetization
The SAM for a TM polarized eOV in the presence of the MO effect can be calculated from Eqs. 4-6 in the main text. In polar magnetization, the SAM components are expressed as

	,	(S7)
where A is a constant and η is the in-plane electric field ratio defined in Eq. 3. It can be obtained from Eq. S7 that the presence of the MO effect results in the modulation on each SAM component, transforming the photonic skyrmion into a twisted Neel-type skyrmion due to the nonzero S. The skyrmion number is calculated as

	,	(S8)
where n=S/|S|=(cosθcosϕ, cosθsinϕ, sinθ) represents the unit spin vector. By applying the coordinate transformation and homogeneity for  (∂/∂ = 0) to Eq. S8, the skyrmion number can be found as

	,	(S9)
where r0 denotes the second zero point of Jl (krr). The value of integral in Eq. S9 can be calculated as Q = ±1 accordingly, which is determined by the sign of topological charge l.

Supplementary Note 4. Derivation of γs near the focal point in the presence of in plane magnetization via vectorial diffraction integral
According to the Richards–Wolf vectorial diffraction method, the electric field distribution near the focus in Figure 3a is given by the diffraction integral as

	,	(S10)


[bookmark: OLE_LINK1][bookmark: OLE_LINK2]where tpp and tps are the complex transmission coefficients for the TM polarized incident and TM and TE polarized transmitted beams, respectively, which can be calculated from the 4×4 transfer matrix in Eq. S3: and. For the magnetization orientation along the surface plane, tpp depends only on the incident angle θ, while tps depends on both θ and the angle between a plane of incidence and magnetization direction. For longitudinal magnetization, the magnetization direction is in the surface plane and in the plane of incidence, and |tpp| and |tps| for the structure used in Figure 3 are shown in Figure S2.
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Supplementary Figure S2. Angular dependence of the transmission coefficients for TM and TE polarized transmitted light under TM polarized illumination through a 50 nm Co film in the presence of longitudinal magnetization.




The transmission coefficient tpp can be approximated as, whereis a d-function at the resonant angle of the SPP excitation θr. While tps can be considered as a combination of a d-function and a constant:. For each polar angle ϕ, tps depends on the projection of the incident light onto the magnetization direction φ0 as. Substituting the approximated tpp and tps into Eq. S10, the electric field distribution at z=0 plane can be expressed as

	.	(S11)
At the vicinity of focal point (r~0), the integral for the third term in Eq. S11 can be calculated by expanding the Bessel functions near r=0. For l=1, the in-plane electric field is expressed as

	,	(S12a)

where . And for l=-1, the in-plane electric field is expressed as

	.	(S12b)
Superposed spin state can be calculated accordingly from Eq. S12 as

	.	(S13)

Introducing, the property of γs in Eq. S13 is determined by the sign of σ. Figure S3 shows the relation between σ and r, demonstrating an oscillation at the vicinity of a focal point in Figure 4.
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Supplementary Figure S3. Dependence of the coefficient σ in Eq. S13 on the distance to a focal point r, which is responsible for oscillations of the sign of γs near a focal point.
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