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1. Co-circular simulations in the three-level system
2. Simulations in the ultrafast pulse limit
3. Impact of decay channels
4. Estimation of carrier concentrations
5. Determination of the pulse duration

1 Co-circular simulations in the
three-level system

Figure 1(a) shows simulations for the co-circularly polar-
ized excitation carried out in the three-level system (3LS).
These are compared to cooresponding simulations in the
two-level system (2LS) in Fig. 1(b), which are the same
as in Fig. 4(b) in the main text. Regarding the spectral
oscillations for negative delays and the energy shift and
relaxation for positive delays, which are highlighted in
Fig. 1(c), we find a good agreement. This shows that the
experiment is well reproduced in both models. However,
we find one slight difference in the 3LS compared to the
2LS: The amplitude of the signal recovers significantly
slower for positive delays after it is quenched for τ ≳ 0.
This leads to an overall better agreement with the ex-
periment in Fig. 4(a) in the main text. The reason for
this is that the decay rate in the 3LS is smaller than the
effective one in the 2LS Γ < Γ′. Given that the scattering
does not reduce the total occupation and that the EID
depends on this total exciton occupation, the influence
of the EID decays much slower in the 3LS. Therefore the
signal recovery takes much longer in the 3LS.
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Fig. 1: Delay scan of simulated pump-probe spectra for co-
circular polarization. (a) Simulation in the 3LS and (b) in the
2LS. (c) Local spectral maxima in the 2LS (red circles) and the
3LS (green circles).

To demonstrate that also the pump-probe spectra at
τ = 0 in co-circular polarization can be well reproduced
in the 2LS Fig. 2(a) shows the respective results. Panel
(b) is the same as Fig. 5(a) in the main text. To reach
the excellent agreement between simulation (bright) and
measurement (dark) we determined the system parameters
to Γ′ = 1.6 ps−1, β = 3 ps−1, and ℏθ
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2.2 meV. We again find that the effective decay rate has to
be increased with respect to Γ in the 3LS to compensate
for the missing inter-valley scattering channel. The energy
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shift as a function of the pump intensity is depicted in
Fig. 2(c) and shows an excellent agreement between the
2LS, the 3LS simulations and the experiment.
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Fig. 2: Pump-probe spectra at pulse overlap. (a) Co-circular po-
larization with experiment in dark and simulation in the 3LS
in bright colors. The smallest pulse area was determined to
ℏθ(0)1

2
V = ℏθ(0)1

2
W = 2.2 meV. (b) Same as (a) but in the

2LS (Fig. 5(a) in the main text). (c) Positions of the spectral
maxima against the exciton density (bottom axis) in the experi-
ment and the pulse area (top axis) in the simulation.

2 Simulations in the ultrafast
pulse limit

In Fig. 3 we directly compare the numerically simulated
spectra at pulse overlap, i.e., τ = 0, in the 2LS with the
ones from the analytical derivations. The solid lines stem
from the numerical simulation and are the same as in
Fig. 5(a) in the main text. The dashed lines are the re-
spective results in the ultrafast pulse limit in Eq. (11) in
the main text. In Fig. 3(a) we choose exactly the same pa-
rameters for the numerical and the analytical calculations.
Overall we find that the spectral shapes agree very well
for each considered pump pulse area. But we find that
each spectrum in the delta-pulse limit shows a larger shift
to higher energies. There are two reasons for this: (i) In
the analytic result we entirely disregard the exciton decay
(Γ′ = 0), which leads to a larger occupation and therefore
a larger local field induced shift. (ii) During the excitation
in the numerical calculation the system already dephases,
which results in reduced polarization and occupation com-
pared to the analytic result. This additionally results in an
increased energy shift as explained before. To confirm this
in the numerical simulations in Fig. 3(b) be set Γ′ = 0 and

choose a renormalized pulse area to compensate for the
dephasing during the pulse (see following section for more
details). Now we indeed find an almost perfect agreement
between the two sets of simulations. The remaining devi-
ations stem from the still non-vanishing pulse durations
of Δt = 21 fs in the numerical treatment. If this value
is reduced to approximately 1 fs both simulations agree
perfectly (not shown here).
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Fig. 3: Comparison of simulated spectra for vanishing delay τ = 0.
(a) Numerical simulations for a pulse duration Δt = 21 fs from
Fig. 5(a) in the main text in sold. Corresponding analytical results
from Eq. (11) in the main text. (b) Same as (a) but with Γ′ = 0

and renormalized pulse areas.

3 Impact of decay channels
As briefly discussed in the Theory section of the main
text, the occupation after a single pulse depends on the
considered system. As a reference we choose the pure
2LS without any decay excited with an ultrafast pulse
where the occupation is given by n = sin2(θ/2), which is
shown as black solid line in Fig. 4(a). When considering a
non-vanishing pulse duration of Δt = 21 fs and adding
the dephasing rate β and the effective decay rate Γ′ from
Fig. 5(a) in the main text we have additional contributions
reducing the occupation after the pulse. This leads to the
solid blue curve which clearly exhibits smaller occupations
for a given pulse area. The occupation is further reduced
when local field V and EID W from Fig. 5(a) are included
in the red curve. Finally going to the 3LS by including
the inter-valley scattering λ, and choose Γ from Fig. 5(b)
(main text) instead of Γ′ we get the green dashed curve
with the smallest occupations. This discussion explains
why we needed to choose smaller pulse areas in the 2LS
than in the 3LS because be needed to reach approximately
the same occupation in the different systems. It also shows
why the simulations in the ultrafast pulse limit in Fig. 3
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exhibit a larger energy shift because we chose the same
pulse area as for the non-vanishing pulse duration.
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Fig. 4: (a) Pulse area dependence of the exciton occupation in
the 2LS and 3LS model considering different contributions in the
system dynamics. Black: pure 2LS in the ultrafast pulse limit,
blue: including a non-vanishing pulse duration and dephasing rate
β and effective decay rate Γ′, red: additionally including local
field and EID, dashed green: adding inter-valley scattering int he
3LS. (b) Occupation decay after a pulse excitation in the 2LS
(dashed blue) and the 3LS in red for n+ and green for n−.

To again embark on the interplay between the inter-
valley scattering λ and the decay rates Γ(′) in Fig. 4(b) we
plot the occupation dynamics after a pulse excitation at
t = 0. The dashed blue curve depicts the 2LS with effective
Γ′, while the solid red and green curve show n+ and n− in
the 3LS, respectively. The laser pulse only addresses the
|+⟩ exciton in the 3LS, which after the excitation rapidly
scatters into the |−⟩ exciton. After the two occupations
are balanced the decay slows down significantly. As ex-
plained in the Theory section of the main text the loss
rate changes over time due to the scattering process. To
compensate for this time dependence in the 2LS we choose
the effective decay rate Γ′ such that the mono-exponential
decay is slower at the beginning and faster at the end of
the relaxation as seen in Fig. 4(b).

4 Estimation of carrier
concentrations

One of the consequences of the spatial separation of pump
probe laser beams in the setup is the misalignment of
the pump beam with the optical axis of the lens. This
in turn results in a larger excitation spot on the sample,
which on the one hand fully encompasses the probing area,
but on the other hand makes it difficult to estimate the

actual density of photogenerated excitons. In order to
calibrate the concentration of carriers during the pump-
probe measurement we measured the reflection from the
sample with a single probing beam as a function of its
power. The path of the probe laser beam lies on the optical
axis of the lens allowing for good control over the size
and shape of the laser spot on the surface of the sample.
The final results presented in Fig. 5(c) show a pronounced
blueshift of the exciton resonance that increases with
the power of the laser. From this we can extract how it
depends on the concentration. To do so we calculate the
photogenerated carriers via n = γnphoton/(πr2), where
γ is the total absorption of the ML, nphoton = PT/Eavg
is the number of photons per pulse with the laser power
P , the laser repetition period T , the average energy of
photons Eavg, and the laser spot radius r.

To calculate the absorption one needs to look at the
overlap of the ML absorption coefficient and the fs pulse
spectrum. In order to take into account contributions
originating from light interfering between different layers of
our sample we simulate the reflection by a transfer matrix
method (TMM) similarly to previous works [1, 2]. In this
approach the total reflection from the heterostructure
is given by the ratio of transfer matrix elements R =
|M21/M11|2. Here, M is the product of all successive
interface and layer matrices of the full heterostructure.
The propagation of light on a single interface is given by

Minterface(n1, n2) = 1
2n2

(
n1 + n2 −n1 + n2

−n1 + n2 n1 + n2

)
(1)

where n1 and n2 are the refraction coefficients of neigh-
boring materials 1 and 2. The propagation within a layer
is described by

Mlayer =
(

eiknidi 1
1 e−iknidi

)
(2)

where k is the wavevector in vacuum and ni the refraction
index and di the thickness of layer i.

In the simulation we use the following values for the
refractive indexes of the heterostructure materials: nhBN=
2.1, nSiO2= 1.54, nSi= 3.9 [3–5]. In Fig. 5(a) we present
the measured reflectance contrast from the heterostructure
(blue) and the TMM simulation (red). The fitting was done
via the resonance parameters included as an imaginary
addition to the permittivity function of an isolated optical
transition

ϵIm = k
g

(E − EX)2 + g2 ,

where k is the amplitude, g the resonance width, and E0
the resonance energy. The obtained resonance shape shown
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in Fig. 5(b) bares close resemblance to the imaginary sus-
ceptibility derived from a Kramers-Kronig transformation
used in the main text. The absorption coefficient function

α(λ) = 4πϵIm(λ)
2nλ

is then used in order to calculate the total absorption of
our laser while considering its overlap with the resonance.
Finally, γ = (6.3 ± 0.5)% is used to calculate the density
of photogenerated carriers in the reflection measurement.
In Fig. 5(d) we show the exciton resonance as a function
of carrier density. By fitting a linear function ΔE = βn

to the data in the low excitation regime we retrieve β =
(0.9 ± 0.7) × 10−12 meV cm2 which is a value equivalent
to what can be found in other works for similar MoSe2
heterostructures and falls within an order of magnitude to
a theoretical estimation of β = 5 × 10−12 meV cm2 [1, 6].
Finally, by considering the blueshift in the pump-probe
measurements we can translate the measured pumping
power into the density of photogenerated excitons (see
Fig. 5 in the main text). For the data presented in Fig. 5
an average pumping power of 100 µW corresponded to
n = 1012/cm2.

5 Determination of the pulse
duration

The temporal resolution of the pump-probe experiment
is given by the laser duration, which we determine by
an autocorrelation measurement. In order to take into
account possible dispersion effects the probing point for
the autocorrelation was chosen right before entering the
cryostat after the beams have passed through all optical
elements in the setup. The signal intensity is presented
in Fig. 6 and fitted with a gaussian function of standard
deviation Δtint = 30 fs. To retrieve the correct pulse
duration for the electric field in Eq. (2) in the main text
we have to scale fitted value for the intensity via

Δt = Δtint√
2

≈ 21 fs

and a corresponding full width at half maximum (FWHM)
of 50 fs.
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