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We present the quantitative and qualitative details towards synthetic plasmonic lattice formation in this
supplementary information. We start by presenting an example of the nonlinear waveguide, comprising a
coherent multi-level atomic medium situated on top of an ultra-low loss double graphene layer. Specifically,
we elucidate the specific mechanisms required to excite and probe the system within this design, the
multi-level structure, and transitions of the 87Rb atoms. We also represent the detailed explanation of
scheme feasibility by introducing a realistic source-waveguide-detection triplet in § S.1. Next, we present
the detailed quantitative description of our double graphene layer, its optical properties and Ohmic-loss
compensation through gain-loss modulation in § S.2. Then, in § S.3 we provide a detailed mathematical
steps towards spectral dynamics of the SPP pulse through the hybrid interface and finally in § S.4 we
elucidate the additional quantitative steps towards the synthetic plasmonic lattice formation.

S.1. DETAILED DESCRIPTION OF THE WAVEGUIDE CONFIGURATION: AN EXAMPLE WITH
MULTI-LEVEL ATOMIC MEDIUM

In this section, we proceed with our approach, by elucidating a specific example of the nonlinear waveguide that
meets our conservation conditions, which comprises an atomic ensemble situated on top of the ultra-low loss double-
layer graphene. Consequently, first, we present all detailed explanations of the waveguide operation in § S.1 A, and
next in § S.1 B, we explain the experimental feasibility for this specific waveguide design. Finally, we discuss the
system parameters and challenges of our suggested setup in § S.1 C.

A. Detailed explanation of waveguide operation

To excite invariant PFCs and establish SPL formation, the nonlinear waveguide should possesses suppressed loss
and tunable nonlinearity. The dual conditions of loss compensation and tunable nonlinear control can be achieved
in an atomic ensemble irradiated with laser fields. The proper injection of laser fields would yield formation of
electromagnetically induced transparency windows, for which, the electronic transitions of atomic medium interfere
to eliminate or reduce resonant atomic absorption and modulate the linear dispersion. Atomic medium with this
spectral transparency windows possesses ultra-low linear absorption and giant nonlinear coefficient. The width related
to transparency window nonlinear parameters off this atomic ensemble can be controlled via intensity and detuning of
the driven laser fields. Consequently, nonlinear waveguide with double graphene layer as bottom layer and multi-level
atomic medium situated on top can be a possible candidate to achieve invariant PFCs and SPL formation. In what
follows, we describe the details of the waveguide configuration in details.

To uncover the invariant parameters of NSPPs, we suggest a plasmonic nanostructure as shown in Fig. 1. This
waveguide comprises three parts (i) source, (ii) waveguide, and (iii) detection. On one end of the waveguide, a fiber-
based connector is attached to couple the source fields to the waveguide, and on the other end, a detection system
is connected to detect the output SPP waves. The source fields produce SPPs, plasmonic waveguide controls their
spatiotemporal profile that yields linear/nonlinear SPP generation and the detector collects the output intensity of
plasmonic fields.

General description- Coherent laser source (CLS) and terahertz generator (THG) are attached to our waveguide
using the end-fire coupling technique and irradiate hybrid structure as field sources. THG produces a weak SPP
field that is resonant with |1〉 ↔ |3〉 dipole transition [S3] and CLS provides lights that coupled atomic transition
as represented in Fig. S1. We employ controllability over intensities and detunings of fields to suppress losses and
controlling nonlinearity through the interaction interface. Finally, we detect NSPPs at the output using NSOM
technique. In our analysis, we consider a strong couple (c), a signal (s), and a terahertz probe (p) as driving fields
that are linearly polarized, possess temporal coherence longer than the waveguide decay, and longitudinally coherent
enough to cover the waveguide. The couple and signal laser are obtained through a dye laser and we also control their
frequencies through acousto-optic modulators.

On the other hand, our hybrid waveguide comprises a graphene multi-layer as a bottom medium and a cold atomic
gas as the upper layer (see Fig. S1). We consider graphene-dielectric-graphene as a multilayer structure that possesses
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FIG. S1. Source-waveguide-detection triplet to construct an SPL: CLS, and THG irradiate the system and act as source. The
waveguide comprises cold atomic gas situated on top a double-layer graphene structure. Detection system is attached as an
atomic force microscope tip at the end of the waveguide. Right inset represents the atomic medium transitions and the left inset
is the double-layer graphene structure design. Detuning frequencies are ∆l and Rabi frequencies are Ωl ∝ El; l ∈ {c, s, p}. The
inset also shows the atomic states |j〉 and the details of the coupling mechanism. The symbols are: THG:terahertz generator,
CLS: coherent laser source, AO: acousto-optic modulator, L.G: lossy graphene, Ph.G: photo-inverted graphene.

ultra-low loss for our SPP wavelength of interest. Above this structure, an ensemble of 87Rb cold atoms are situated.
Specifically, we consider D line of 87Rb atoms as four-level N-type atomic medium (4NA) with

|1〉 = |52S1/2, F = 1〉 , |2〉 = |52S1/2, F = 2〉 ,
|3〉 = |52P3/2, F = 2〉 , |4〉 = |52P3/2, F = 3〉 , (S1)

as transition levels. Atomic density of this ensemble is Na, homogeneous decay rate of the |m〉 ↔ |n〉 transition is
γnm, dephasing rate is γdeph

nm , and the corresponding atomic dipole moment is dnm.
Design of the waveguide- To sum up, our structure is a specific design that includes cold 4NAs and multi-layer

graphene structure. 4NAs are appealing due to suppressed absorption commensurate with giant Kerr nonlinearity,
thereby this medium provides stable NSPP propagation and FCs generation. On the other hand, we exploit multilayer
graphene due to its stable optical properties against the external magnetic field gradient, giant field concentration, and
opportunities to provide ultra-low loss plasmonic field propagation. Consequently, our process is coherent, possesses
ultra-low loss, and is suitable to provide control over optical nonlinearity. These conditions are necessary to provide
suppressed loss and careful nonlinear modification, which are dual requirements for robust PFCs propagation and
conservative conditions, and hence our design are the best candidate for SPL formation.

B. Realistic description of the waveguide

In this section, we provide a detailed discussion of the experimental feasibility of our waveguide. As we elucidate
in § S.1 A, our waveguide comprises of three parts, namely, (i) source, (ii) waveguide, and (iii) detection. In what
follows, we explain the feasible experimental implementation of these parts.

Source- As for sources, two laser fields, a strong couple (c), a signal (s), a terahertz weak probe (p) field, and an
additional trigger laser, drive the waveguide. Signal, couple, and probe fields the same polarization and are obtained
from an external cavity diode laser that is narrow-band, frequency stabilized, linearly polarized, temporally longer
than the waveguide decay, and longitudinally coherent enough to cover the waveguide [S1]. The frequency of the
source fields is modified using acousto-optic modulators. Moreover, we propose generating probe field with linear
polarization in nanoscopic scale by assuming oxide nanojunctions that is suitable for producing terahertz radiation
using ultrafast frequency mixing [S2]. This probe wave will produce the SPP field with a wavenumber ωp that is
in resonance with atomic dipole transition wavelength [S3]. Forth field is a pulsed femtosecond fiber-laser with a
few MHz repetition rate, which is linearly polarized, acts as a trigger field, irradiates the plasmonic waveguide from
the bottom side and injected perpendicular to the driving laser fields to produce gain for graphene layer [S4]. the
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couple and signal fields are injected to the waveguide and co-propagate parallel to the emitter-graphene interface
using end-fire coupling technique [S5].

Waveguide- Our waveguide comprises a thin layer atomic medium doped on a lossless dielectric situated on top of
a hybrid nanostructure. This plasmonic apparatus comprises two parts. A thin layer foil as a bottom medium that
serves as a holder and a double-layer graphene scheme, which is a graphene-spacer-graphene multilayer. This plasmonic
scheme should possess low-loss for the dipole transition wavelength. Various methods such as optimization/design,
including virtual gain and parametric amplification serve to combat the loss of this plasmonic structure [S6] and hence
various ultra-low loss layers can be implemented as our dispersive layer. However, this layer should be robust against
magnetic gradient that should be employed for atom cooling.

Graphene structures can be a potential candidate as a metallic-like layer, due to loss tunability and wide spectral
bandwidth but producing resonant excitation of NSPPs in optical graphene within a single layer of this structure,
unfortunately is challenging due to Ohmic loss and the need for high doping level [S7]. To remedy these limitations,
we suggest a double- or multi-layer graphene structures, which is experimentally verified and equivalently act as a
single-layer graphene with suppressed dissipation and with high-doping. Our graphene reconfiguration is robust to
low magnetic gradients and hence is a suitable candidate for this scheme. We introduce trigger laser to the bottom
graphene layer to induce photo-inverted gain [S10] that is exploited to suppresses the Ohmic loss related to this
plasmonic structure. Consequently, this configuration would be ultra low-loss for the dipole transition wavelength
and we expect stable propagation of linear/nonlinear SPPs within the atomic medium-plasmonic scheme interface.

The interaction interface is filled with a four-level N -type atomic gas (4NA), that is cooled to ultra-low tempera-
tures [S11]. This cold gas serves as electrical dipoles and we also assume the dopant thickness is a few dipole transition
wavelengths. 4NAs are appealing due to its efficiency for providing controllable nonlinearity/dispersion and specifi-
cally, we consider D line of 87Rb atoms with |1〉 = |52S1/2, F = 1〉, |2〉 = |52S1/2, F = 2〉, |3〉 = |52P3/2, F = 2〉 and

|4〉 = |52P3/2, F = 3〉 as transition levels. Atomic density is Na, homogeneous decay rate of the |n〉 ↔ |m〉 transition

is γnm, dephasing rates are γdeph
nm and we neglect the inhomogeneous broadening due to weak Doppler effect. Our laser

fields with Rabi frequencies Ωl and correspond detuning frequencies ∆l; l ∈ {c, s,p} drive the atomic medium through
dipole approximation. We also assume these fields are tightly confined to the interactive interface with evanescent
coupling function ζl(z) [S12].

Detection- The nonlinear plasmonic processes and excited frequency combs are characterized using a detection
system. To this aim, a sharpened multimode fiber is attached to the end of the plasmonic waveguide that is called
tip, and the plasmonic interface commensurate with tip is illuminated using an infrared focused beam. This field
then interacts with NSPPs within the interaction interface, the scattered intensity field profile corresponds to this
near-field is then propagates through the tip, the intensity pattern would collects using an image intensifier [S15] and
would detect exploiting an atomic force microscope [S3].

Our waveguide reconfiguration is consequently experimentally feasible from source to detection and is efficient
to generate controllable linear and Nonlinear SPPs. We achieve the invariant parameters of the NSPPs in three
steps. First, we obtain the spatiotemporal and spectral-spatial dynamics of the NSPPs in the presence of nonlinear
parameters of the hybrid system. Next, we exploit the quantum properties of nonlinear gain modulation through
the hybrid interface and establish a modified nonlinear evolution equation based on invariant parameters of this
plasmonic scheme. Finally, we establish the robustness of frequency combs, number of excited plasmon modes, and
phase singularity within the interaction interface. Using the robustness of frequency combs, we exploit a synthetic
lattice to elucidate the invariant of spectral dynamics and establish the apparition of the anomalous artificial gauge
field.

C. Discussion on scheme feasibility

Now, we present the system parameters for which the PFCs serve as invariant of the plasmonic system and can be
interpreted as SPL. Then we discuss the challenges and outlook of our suggested scheme.

Scheme feasibility and simulation parameters- First, we test the feasibility of our scheme. We assume gs = gv = 2,
electron Fermi velocity as vF = 106 m/s, chemical potentials for electron (hole) as µe = µh = µ/2 ≈ 0.34 eV, dielectric
constant of spacer as εd = 2, and d ≈ 5 nm. 4NAs are cooled to T ≈ 10 mK using a magneto-optic trap with
dB/dz = 10 G/cm and we set λp = 1.55 eV, Na = 9 × 1010 cm−3, Ωc ≈ 30 MHz, ∆c = −2 MHz, Ωs = 35MHz,
∆s = 16 MHz and ∆p = 0 and choose relaxation for 87Rb from Ref. [S8]. The typical gradient magnetic field to change
the optical response of graphene is a few T for a cm interaction length [S9] which is far from gradient field that is
needed for magneto-optic trap and hence its effect on NSPP propagation is negligible. With these parameters a SPP
with K2 = (−4.42 + 0.4i)× 10−12s2 · cm−1, W = (2.98 + 0.6i)× 10−11s2 · cm−1, with group velocity vg = 2× 104m/s
propagates, we have gK2

= 1.01, f = 0.045, and Im[Ka(ω)] ≈ 0.06 cm−1. For gain graphene Im[kG] = −0.07 cm−1,
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and for our system Im[kC] = −0.02 cm−1, therefore ᾱ = Im[Ka(ω) + kC(ω)] = 0.04 ≈ 0 that justifies ultra-low loss
NSPP propagation.

Our waveguide consequently is suitable for ultra-low loss propagation of NSPPs within the atomic dipole transition
wavelength. To simulate SPP propagation in this nonlinear plasmonic system, we assume (i) SPP waves propagate
as far plasmonic fields, (ii) the plasmonic phases are constant (i.e. Kx − ωt = Const.), and (iii) employ mean field-
averaging [S12, S13, S14] to consider the evanescent coupling effect. We note that our waveguide for invariant PFCs
generation and SPL formation is based on the source-waveguide-detection triplet. The use of coherent laser fields as a
source and multi-level atomic layer as the tunable nonlinear medium has two main advantageous, the PFCs excitation
process is coherent and the maximum probe laser peak needed to generate NSPPs is very low. Consequently, NSPP
generation is efficient and PFCs propagate through the interaction interface for a few tens of nonlinear propagation
length.

Finally, we note that our suggested nonlinear waveguide comprises a multi-level atomic medium situated on top of
the ultra-low loss plasmonic layer has two challenges. First, the waveguide is a combination of cold atomic medium,
double-layer graphene, and coherent laser sources, and its feasibility in a real-life experiment seems a challenge.
Consequently, our specific example contains an explicit formalism to achieve invariant PFCs and SPL formation, but
its feasibility is challenging and needs further investigation, whose investigation goes beyond the scope of this current
work. Second, invariant PFCs and SPL formation is based on justification of the conservation conditions, for which
a stable propagation of NSPP provides robust PFC excitation. As a detection system of our specific example, we
suggest NSOM (near-field scanning optical microscope) technique, due to efficiency for collecting output NSPP fields.
The suitability of this technique to establish the conservation condition and the efficiency of NSOM technique to
invariant PFC generation looks challenging that need further consideration. We leave the suitable detection technique
for uncovering invariant PFCs as a future work.

S.2. LINEAR RESPONSE OF A GRAPHENE LAYER

In this section, we investigate the technical details and mathematical steps towards SPP excitation within our
graphene structure. We achieve the loss-compensated plasmonic scheme in three steps: First, we excite the SPP
by end-fire coupling of driven laser fields to the graphene-dielectric-graphene multilayer. Next, we suppress the
loss related to upper graphene layer by inducing gain to the bottom graphene layer using a photo-inverted scheme
introduced in Ref. [S10] for the atomic dipole transition wavelength. The graphene SPP mode for lossy graphene
and gain-assisted graphene propagate through this multilayer graphene apparatus. Finally, we couple these two SPP
modes using formalism developed in Ref. [S16], to derive the dynamical evolution of the stable graphene SPP mode
in the interface between the atomic medium and upper graphene layer.

First, we establish the excitation of SPP wave within graphene layer. This plasmonic field is a TM wave with
wavenumber k, frequency ω, phase θ = kx− ωt, and field profile

E(r, t) =E(z) exp{iθ}, (S2)

H(r, t) =− eyH(z) exp{iθ}. (S3)

This field propagates along atomic medium-graphene layer interface whose current density J = σE and surface charge
density ρext describe by

J :=Jsδ(z), (S4)

ρext :=ρsδ(z). (S5)

The boundary conditions related to this plasmonic system are

E1t =E2t, D1n −D2n = ρs, (S6)

B1n =B2n, H1t −H2t = Js × n. (S7)

Now, we replace Eqs. (S2)-(S5) into Maxwell equations, employ the boundary conditions (S6), (S7) to achieve the
characteristic dispersion of the SPP wave as

ε1

k1
+
ε2

k2
− 4πe2

k2
χ(k, ω) = 0. (S8)

for

iωχ(k, ω) = k2σ(k, ω). (S9)
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Finally we define

ε̃12 :=
(
ε2

1 − ε2
2

)
(ε1µ2 − ε2µ1), ρ̃s :=

ρsωε1ε2

C
, (S10)

to achieve the propagation constant of the SPP wave

k =

[
(ω/c)2ε1ε2ε̃12 + 2ρ̃skε1ε2

√
ε̃12 + ρ̃2

s + ρ̃2
s (ε2

1 + ε2
2)

ε2
1 − ε2

2

]1/2

, (S11)

here kzj wavevector component is

kzj =

√
k2 − ω2εjµj

c2
, j ∈ {1, 2}. (S12)

Eq. (S8) with propagation constant (S11) demonstrates the excitation of SPP in our hybrid waveguide [S17].
Next, we represent the SPP wave excitation within our proposed double layer graphene plasmonic waveguide. Our

quantitative approach is for characterizing SPP through this interface is based on (i) random phase [S18], and (ii)
relaxation time [S19, S10] approximations. Single-graphene layer has valance λ = −, and conduction λ = +, bands
touching at Dirac points that can be described with chemical potential µ, the interaction interface A, spin (s) and
valley (v) degeneracies gν = 2; ν ∈ {s, v}, and with electron Fermi velocity vF [S20]. Single layer susceptibility within
interaction interface that is obtained using random phase approximation

χ(k, ω) =
gsgv
A

∑
q,λ,λ′=±

nq,λ − nq+k,λ′

~ω + Eq,λ − Eq+k,λ′ + i0+
[1 + λλ′ cos (θq − θq+k)], (S13)

for q the wave vector, θq the deviation from x-axis, and Eq,λ = λ~vFq the energy dispersion of electrons with λ and
|q|. We evaluate (S13) using Fermi distribution function nq,λ for near zero temperatures as nq,λ = Θ(µ−Eq,λ); with
µ the chemical potential. We calculate (S13) by employing relaxation approximation (RA) as ω̃ = ω + iγ to achieve
density response for single graphene layer, which includes an undoped part χ0 and a doped part χµ. This doped part
characterises the optical properties of the lossy graphene layer for µ 6= 0 through [S18, S21]

χ(L)(k, ω̃) =χ(0)(k, ω̃) + χ(µ)(k, ω̃), (S14)

χ(0)(k, ω̃) =
−igsgvk

16~
√
ω̃2 − v2

Fk
2
, χµ(k, ω̃) =

gsgvµ

8π~2v2
F

[
−4 +

(
~vFk

µ

)2
G(x+) +G(x−)

2
√
ω̃2 − v2

Fk
2

]
, (S15)

for

G±(x) = x
√
x2 − 1− ln

(
x+

√
x2 − 1

)
, x± =

~ω̃ ± 2µ

~vFk
, (S16)

and we take into account the collision loss as a relaxation to perturbation frequency by employ mapping

ω 7→ ω̃ = ω + iγ, (S17)

for γ = τ−1 the electric relaxation frequency [S10]. Eq. (S15) commensurate with (S17) describes the spectral evolution
of the lossy graphene. Next, we couple a trigger field IG to modulate electron (hole) chemical potential µe (µh) for a
gain-assisted graphene medium, and obtain corresponding density response function through mapping

χ(µ)(k, ω̃) 7→ χ(µe)(k, ω̃) + χ(µh)(k, ω̃). (S18)

Next we exploit (S15) to achieve [S10]

χ(G)(k, ω̃) = χ(0)(k, ω̃) + χ(µe)(k, ω̃) + χ(µh)(k, ω̃). (S19)

Eqs. (S15) and (S19) justify SPP propagation in our hybrid plasmonic system.
Finally, we investigate the coupling between these gain-loss doublet in our configuration.To this aim, we assume

a dielectric spacer between gain-loss paired graphene layers εd, neglect the orbital overlap and employ Coulomb
interaction to achieve the effective susceptibility of the coupled layer as χC, and evaluate the hybrid plasmonic system
dielectric function as

ε(k, ω) = 1− χ(C)(k, ω)V (k), (S20)
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FIG. S2. Spectral evolution of the graphene SPP within hybrid interface as a function of normalized energy ~ω/µ and normalized
momentum k/kF: Panel (a) represent the SPP dispersion for lossy graphene, panel (b) depicts the SPP in a hybrid interface
with gain assisted graphene and panel (c) shows the SPP behavior in coupled gain-loss graphene bi-layer. Parameters used
for these simulations are: ε1 = ε2 = 1, gs = gv = 2, c = 3 × 108 m/s and vF = 106 m/s, ~τ−1/µ = 0.08Hz [S10]. For panel
(c) εd ≈ 2 and kFd = 4.43 [S24]. Normalized waveguide decay is characterized by ~γ/µ as a color bar. See text for detailed
explanation.

in which potential matrix is characterized by diagonal intra-layer V11 = V22 and off-diagonal inter-layer V12 = V21

elements [S22]

Vij =
8πe2

kD
εd, (S21)

Vii =
4πe2

kD
[(εd + ε1) exp{kd}+ (εd − ε2) exp{−kd}] , (S22)

with [S23]

D = (ε1 + εd)(εd + ε2) exp{kd}+ (ε1 − εd)(εd − ε2) exp{−kd}. (S23)

In our analysis, we assume the density response of the coupled gain-loss system χ(C)(k, ω̃) as a diagonal matrix

(i.e. with χ
(C)
ij (k, ω̃) = 0). Each diagonal element of which represents the corresponding density response of each

layer in coupled gain-loss system. Plugging Eq. (S22) into (S20) would yield the characteristic equation for SPP
dispersion [S24, S25][

1− V11(k)χ
(C)
11 (k, ω)

] [
1− V22(k)χ

(C)
22 (k, ω)

]
− V12(k)V21(k)χ

(C)
11 (k, ω)χ

(C)
22 (k, ω) = 0, (S24)

which establishes excitation of stable SPP mode for coupled gain-loss graphene layers.
We represent the spectral evolution of the excited SPPs for single lossy graphene, gain assisted graphene and gain-

loss paired double graphene layers in Fig. S2. The SPP within Pauli-blocked inter-band characterized by ~(ω+vFk) <
2µ and ω > vFk would be dissipative along graphene-dielectric interface due to relaxation decays as clearly shown in
Fig. S2(a). For a gain assisted graphene, however, we couple a trigger laser to induce population inversion between
valance and conduction band, hence the gain is provided for effective zero carrier density µh = µe = µ/2 [S10]. This
laser-induced mechanism yields modification in graphene density response, suppresses the loss due to additional gain
induction and consequently results in loss-free propagation of graphene SPP as we establish in Fig. S2(b). Finally, in
a gain-loss paired graphene double layers separated by a spacer, two-mode graphene SPP propagation is expected due
to coupled-mode theory [S24], which are propagated along the hybrid interface and characterized by dashed-dotted
and solid lines in Fig. S2(c). We consider the dynamical evolution of the solid line SPP mode due to gain-assisted
loss compensation. The dashed-dotted line SPP mode is highly dissipative and consequently its propagation length
is highly limited due to total loss of graphene layer.

We test the feasibility of loss-free SPP mode propagation along gain-loss paired double-layers by choosing the
realistic parameters. The carrier density is [S26]

ns =
gsgvµ

2

4π~2v2
F

≈ 1011 cm−2, (S25)
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and the Fermi surface momentum is kF = 109m−1. Considering the degeneracies as gν = 2, and vF = c/300, the
low-loss propagation of the SPP within this coupled plasmonic scheme would be excited for our dipole transition
wavelength λ = 800 nm and k/kF ≈ 0.5 [S20], which establishes our assumptions within Fig. S2(c). Consequently,
this SPP mode interacts with the nonlinearity and dispersion of the interface and possess spatiotemporal evolution.

S.3. SPECTRAL EVOLUTION OF THE PLASMONIC FREQUENCY COMBS IN THE PRESENCE OF
INVARIANTS

In this section, we provide the main steps towards the mathematical details of the derivation of the Eq. (8).
We present our quantitative approach in two subsections. First in § S.3 A, we use a classical treatment and employ
nonlinear modification to establish the existence of system invariant through our nonlinear dissipative interface. Next,
in § S.3 B we employ the quantum theory of soliton [S33] and employ mean-value quantum field evolution to achieve
the spectral field dynamics of the plasmonic frequency combs in the presence of conserved energy and conserved
number of excited SPP modes, thereby derive Eq. (8) of the main text.

A. Existence of system conservatives and derivation of Eq. (6)

We represent the qualitative approach towards system conservatives in two sub-sections. First, we evaluate the
dynamical evolution ot the nonlinear SPP field within our interaction interface and derive Eq. (3) of the main text.
Next, we introduce energy and number of excited SPP mode as the two nonlinear parameters that affect the dynamics
of frequency combs and establish the conservations of these quantities through nonlinear interaction, thereby present
detailed derivation of Eq. (6).

1. Nonlinear SPP field dynamics and derivation of Eq. (3)

Our starting point is the propagation of the field within the nonlinear interface

∇×∇×E +
1

c2

∂2D

∂t2
= − 1

ε0c2

∂2P

∂t2
, (S26)

for

D(r, t) =

∫ tS

0

dt′ε(t′)E(r, t− t′), (S27)

P (r, t) =E(r, t)

∫ tS

0

dt′χ(3)(r, t′)|E(r, t− t′)|2, (S28)

the displacement vector and nonlinear polarization, respectively and for ε(t′), χ(3)(t′) the susceptibility and Kerr
nonlinear coefficient of the interaction interface. In the Fourier space, we represent the electric field as Ψ(r, ω) with

Ψ(r, ω) := F (r, ω)Ã(x, ω), (S29)

F (r, ω) the spectral-spatial mode distribution in the interaction interface, Ã(x, ω) the field distribution along inter-
action direction and K(ω̃) the dispersion of the plasmonic field. We assume the Fourier transform of the probe field
as

E(r, t) =

∫
dωΨ(r, ω) exp{iK(ω)x− iωt}. (S30)

We exploit Eq. (S30) to evaluate temporal dynamics of the displacement vector and nonlinear polarization as

∂2D

∂t2
=−

∫
dω
[
ω2ε(r, ω)F (r, ω)Ã(x, ω) exp{iKx}

]
, (S31)

∂2P

∂t2
=−

∫
dω

[
ω2

∫∫
dω′dν exp{i∆Kx}χ(3)

ω−ν(r)Ãω−ν+ω′(x)Fω−ν+ω′(r)Ã∗ν(x)F ∗ν (r)Ãω′(x)Fω′(r)

]
, (S32)
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with

∆K = K(ω − ν + ω′)−K(ν) +K(ω′)−K(ω), (S33)

and we also ignore the spatial distribution of the optical Kerr nonlinearity χ
(3)
ω−ν(r) ≈ χ(3)(ω−ν). Next, we substitute

Eqs. (S31) and (S32) into Eq. (S26) and exploit

K2 =
ε2(r, ω)ω2

c2
(S34)

to achieve

E(x, ω)∇2
⊥F (r, ω) + F (r, ω)

[
2iK(ω)

∂

∂x
+

∂2

∂x2

]
E(r, t) =

− ω2

ε2
0c2

∫∫
dω′dν exp{i∆Kx}χ(3)

ω−ν(r)Ãω−ν+ω′(x)Fω−ν+ω′(r)Ã∗ν(x)F ∗ν (r)Ãω′(x)Fω′(r). (S35)

In this work we employ slowly varying amplitude approximation (i.e. ∂2/∂x2 7→ 0). We then multiple both sides of
Eq. (S35) by F (r, ω) and perform integration over all possible transverse coordinates. Using

E(x, ω)

∫
drF (r, ω)∇2F (r, ω) = 0, (S36)

define the Green’s function of the medium as

G(ω, ω′, ν) :=

∫
drFω(r)Fω′(r)F ∗ν (r)Fω−ν+ω′(r)∫

drF 2
ω(r)

, (S37)

and effective refractive index of the medium as

neff(ω) =
cK(ω)

ω
(S38)

we achieve the spectral evolution of the field in the interaction interface as

∂Ψ(ω, x)

∂x
=

2iπω

neff(ω)c

∫∫
dω′dνχ(3)(ω − ν)G(ω, ω′, ν)Ãω′(x)Ã∗ν(x)Ãω−ν+ω′(x). (S39)

In this work, we neglect the field variation along longitudinal direction y and we assume the field is concentrate
at interface through the transverse direction as |E(z)| ∼ exp{−Im[K(ω)]z}. We assume this coupling coefficient as
ζ(z). Our predicted nonlinear field propagation, therefore, is valid for effective propagation length Leff and interaction
interface Seff that can be evaluated using the transverse distribution and Eq. (S37) as

Leff =
1

αeff
[1− exp{−aeffxmax}] , (S40)

Seff =

(∫ +∞
−∞

∫ +∞
−∞ dxdz |ζ(z)F (y, z;ω′)|2

)2

∫ +∞
−∞

∫ +∞
−∞ dxdz |ζ(z)F (y, z;ω′)|4

. (S41)

Now we define the coefficient characterizing the self-phase modulation W(ω) as

W(ω′) :=
n2(ω′)

cSeff
. (S42)

In our analysis, the hybrid interface possesses ultra-low Ohmic loss only for the small deviation of the SPP field
frequency. as a result, consiedring the small frequency perturbation as ω′ = ω + ωSPP, the self-phase modulation can
be expanded as a Tylor series

W(ω) =W0 +W1δω +W2δω
2 +O(δω3). (S43)
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Our predicted nonlinear plasmonic effects are valid for certain coherence timescale that we evaluate by plugging
Eq. (S43) to Eq. (S42) and truncate the Taylor expansion only to first order. The specific nonlinear timescale then is

tS = τ0 +
d

dω

[
ln

(
1

neffSeff

)]
ω=ωSPP

, (S44)

that is defined as the characteristic time-length for which the nonlinear interaction of the system can be described by
the nonlinearity modulated as Eq. (S43).

For the modulated SPP field characterised as Eq. (S29), we achieve the propagation constant as K(ω) := β(ω)+k(ω);
β(ω) is the linear chromatic dispersion of the atomic medium and k(ω) given by Eq. (S29). Consequently, we include
this dispersion into the spectral evolution of the SPP field to achieve

∂Ψ(ω, x)

∂x
= iK(ω)Ã(x, ω) +

2iπω

neff(ω)c

∫∫
dω′dνχ(3)(ω − ν)G(ω, ω′, ν)Ãω′(x)Ã∗ν(x)Ãω−ν+ω′(x). (S45)

Eq. (S45) contains a nonlinear term that acts as a convolution that connects the amplitudes of the SPP field with
different amplitudes. This term hence characterizes the nonlinear interaction through the interface. In this work, we
aim to investigate the plasmonic frequency combs, which connects the three nearest neighbor frequencies ω − ωm,
ω and ω + ωm and we assume the frequency combs are equally distanced and descritized. Therefore the frequency
indices in Eq. (S45) should change to ω, ω± ωm, respectively and we also consider mapping

∫
dν 7→

∑
m to includes

all the stable frequency combs. Then we achieve

i
∂Ψ̃(r, ω)

∂x
= K(ω)Ψ̃ +

∫∫
dνdω′

W0(ω′)

(2π)2
Ψ̃∗ω′−ν(r, ω′)Ψ̃ω′(r, $)Ψ̃ω′+ν(r, ν)ei∆Kx, (S46)

that is Eq. (3) of the main text.

2. Existence of conservation and nonlinear plasmonic field modulation

In this section, we elucidate our quantitative description towards existence of conserved parameters and then
modulate the nonlinearity for simultaneous conservation of energy and number of excited SPP mode. We notice that
the frequency combs then excite due to nonlinearity and dispersion management similar to Ref. [S28]. These plasmonic
combs would possess ultra-low loss of the frequencies within electromagnetically induced transparency windows of
the atomic medium due to suppressed dissipation. In this interface with modulated nonlinearity characterized by
Eq. (S43) these combs take the form

Ψ(r, t) ∼
NEIT∑
m=1

Am(x) exp{iωmt}, (S47)

the total energy of the excited SPP frequency combs are

E ∝
NEIT∑
m=1

|Am(x)|2 , (S48)

and we take the number of excited frequency combs as

N ∝
NEIT∑
m=1

|Am(x)|2

ωSPP + ωm
. (S49)

We then take derivative with respect to x from both side of Eqs. (S48) and (S49) and evaluate the spatial variation
of the energy ∂E/∂x and number of excited frequency combs ∂N/∂x as

∂E

∂x
∝− ᾱ

∑
m

|Am(x, ω̃)|2 +
∑
m

[W(ωch) +W(ω0)−W(ω−)−W(ω+)]∆, (S50)

∂N
∂x
∝− ᾱ

∑
m

|Am(x, ω̃)|2

ω0 + ωm
+
∑
m

[
W(ω0)

2ω0
+
W(ω−)

ω0 + ω−
+
W(ω+)

ω0 + ω+

]
∆, (S51)
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for W(ωch)/(ω + ωch) ≈ 0. In writing Eqs. (S50) and (S51) we assume

∆ := 4Im [A∗1A2A3A
∗
4 exp{i∆Ktx}] (S52)

as the detuning of the SPP fields through four-wave mixing process with

∆Kt = K(ωch) +K(ω+)−K(ω0)−K4(ω−), (S53)

denotes the phase mismatch between the different SPP field and

K(ωl) = β(ωl) + k(ωl) +

′∑∑
n

(2− δln)W(ωl)|An(ωl)|2, (S54)

for n ∈ {+,−, 0, ch}, represent the nonlinear wavenumber of the plasmonic interface. Also, the prime in Eq. (S54)
denotes that the summation performed over all possible frequency combs.

It is obvious from Eq. (S50) that by modulatingW(ω) =W0+W1ω the energy becomes invariance of the system but
the number of excited frequency combs would be varying. On the other hand, by choosing W(ω) =W ′1(ω + ωSPP) +
W ′2(ω + ωSPP)2, the number of modes become the invariant off the system, but we loose the energy conservation.
However, the simultaneous invariant for both energy and number of excited SPP waves is achieved through nonlinearity
modulation as

W =W0 +

(
W0

ωSPP

)
ω, (S55)

that is Eq. (5) of the main text for ωSPP 7→ ω0. As it is clear from Eq. (S55), energy and number of excited SPP
modes would become conserved parameter of the system if we linearize the nonlinearity as this equation and also
perturb the frequency only for ω̃ = ω + ωSPP. We refer these two conditions as the conservation conditions for the
plasmonic system.

B. Mean-field evolution of quantum nonlinear SPP mode and derivation of Eq. (6)

In this section we elucidate our quantitative approach for the derivation of Eq. Eq. (6) of the main text. We notice
that our conservative parameters do not depend on the dispersion of the system, then we can set K(ω) = 0 To obtain
this equation, we use the quantum theory approach of optical soliton within a nonlinear fiber [S33] and extend it to
our dissipative hybrid nonlinear interface. Similar to Ref. [S33], we assume that our nonlinear Schrödinger equation
can also be derived through mean-value evolution of the quantum SPP field operator through Schödinger equation

∂

∂x
|ψ〉 = HI |ψ〉 . (S56)

We introduce |ψ〉 as the quantum state of light, and

HI =
∑
m

∫∫
dω̃dω

W0

2
b̂†ωb̂

†
ω̃b̂ω̃−ωm b̂ω̃+ωm . (S57)

as the nonlinear interaction Hamiltonian of the SPP field.
Here we assume the most general case for which b̂(r, ω) (b̂†(r, ω));  ∈ {e,m} as annihilation (creation) operators

associated with the electrical (e) and magnetic (m) response of the medium, whose components are described by usual
bosonic commutation relation [

b̂i(r, ω), b̂′j(r
′, ω′)

]
=0, (S58)[

b̂i(r, ω), b̂†′j(r
′, ω′)

]
=δijδ′δ(ω − ω′)δ(r − r′). (S59)

W0 contains the frequency dependent, but we assume the frequencies are all exist within the stable NSPP frequency
range. In this case, Eq. (S57) yields stable multiple plasmonic four-wave mixing. As in § S.3 A to consider the energy
and number of excited frequency combs as conservatives of the system, we employ mapping ω 7→ ωm + ωSPP, and
assume W) =W0∗. The quantum SPP field within the interaction interface takes the form

Ψ(r, t) =

∫
r′,ω̃

~ω̃
[
A(r, r′; ω̃) · ĵ(r′, ω̃)eiω̃t + h.c

]
. (S60)
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for A(r, r′; ω̃) the green function of the interface [S29],

ĵ(r, ω) = −2πiωα(r, ω)b̂e(r, ω), (S61)

the quantized current density of the graphene interface and with

α(r, ω) =

{
~ε0

π
Im[ε(r, ω)]

}1/2

, (S62)

the constant of the system depends on the medium. Plugging Eqs. (S61) and (S62) into Eq. (S60) and making use of

(S29), we see that the quantized plasmonic frequency combs Âm are

Âm(r, ω) ∝
√

~ω
ε0V

b̂(r, ω) + c.c.. (S63)

Next, we substitute the necessary condition for energy and number of SPP mode conservation (i.e. ω 7→ ωm + ωSPP)
and substitute into Eq. (S56) we achieve the mean value evolution of the stable plasmonic frequency combs in the
presence of the conservatives of the system as

∂ 〈Âm〉
∂x

= i

∫∫
dω̃dωΛ(ω, ω̃, ωm)b̂†ωb̂

†
ω̃b̂ω̃−ωm b̂ω̃+ωm . (S64)

Λ the nonlinearity of four-wave mixing process for frequency around ωSPP, which we define as

Λ ∝

〈
(W0

ω,ω̃,ω−ωm,ω̃+ωm
+W0

ω̃,ω,ω̃+ωm,ω−ωm
)
√
~(ω + ωSPP)/ε0V

2
√

(ωSPP + ω − ωm)(ωSPP + ω̃ + ωm)(ωSPP + ω̃)

〉
z

, (S65)

and we consider the SPP field properties as evanescence coupling and employ field-averaging as in Ref. [S12].
Eq. (S65) is obtained from mean-field evolution of the quantum plasmonic frequency combs in the presence of the

SPP field dispersion and dissipation and represents the nonlinearity, which is obtained in the presence of energy and
number of excited SPP modes conservation. Due to quantum theory of soliton [S33], we expect the nonlinearity
is equivalent to the nonlinearity obtained in NLSE. Therefore, in order to modulates the nonlinearity to include
conservatives to NLSE, we employ mapping Λ 7→ W in Eq. (S46). Next, we include the dispersion of the system as
K(ω). Finally we define ∫∫

dωdω̃ 7→ F (S66)

as Fourier transform operator. In this case by substituting into Eq. (S64) we achieve

∂Ã

∂x
= iK(ω)Ã+

∑
m

F
[
Λ(ω̃)|Am|2Am

]
+ c.c., (S67)

which is the Eq. (6) of the main text. This equation is the same as nonlinear Schödinger equation, as it includes
the nonlinear parameters of the system, however this equation differs trivial nonlinear Schrödinger equation as we
introduce the energy and number of excited SPP modes as the conservatives of the system.

S.4. CONSTRUCTION OF PLASMONIC SYNTHETIC LATTICE

In this section we present the detailed steps towards synthetic lattice formation within our hybrid nonlinear plas-
monic interface. Our quantitative method for constructing the synthetic lattice is based on two steps. First, we
explore the NSPP dynamics and excitation of the NSPPs within hybrid interface in § S.4 A, and next, we elucidate
the main steps towards mapping to a synthetic lattice in § S.4 B. It is worth noting to indicate that the formation
of this synthetic lattice is crucially depend on the existence of invariants of the NSPPs. Formation of the synthetic
lattice corresponds to lossy NSPPs needs further consideration and can be considered as a future work.
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A. Formation of NSPP and generating frequency combs through interaction interface

In this section, we elucidate the main steps towards NSPPs excitation in normalized length (ξ := x/LNL) and
normalized time (% := τ/τ0) and then establish the existence of surface polaritonic frequency combs. The dynamical
evolution of a normalized SPP field (u(ξ, %) := Ωp(ξ, %)/U0) in the interface between a nonlinear medium, and a
metallic-like interface, whose nonlinear parameters are characterized by self-phase modulation (W ) and group-velocity
dispersion (K2), is described by nonlinear Schrödinger equation [S12, S28]

i
∂u(ξ, %)

∂ξ
+

1

2
K2

∂2u(ξ, %)

∂%2
+W |u(ξ, %)|2u(ξ, %) = 0. (S68)

Similar to other nonlinear systems, Eq. (S68) possesses exact solutions that are known as peregrine waves uPe(ξ, %)
and Akhemediev breather uAB(ξ, %) [S30]. Next, we employ a Fourier transform of these exact solutions

Am(ξ, ω̃) =
1√
2π

∫ ∞
0

d%ul(ξ, %) exp{iω̃m%}, l ∈ {Pe,AB}, (S69)

and evaluate the integral to obtain the spectral harmonic side-band amplitudes Am(ξ) for ω̃ = ω ± mΩ/2; m ∈
{±2,±4, . . .} and we define Ω := ωEIT/N as frequency spacing. In our plasmonic interface, we achieve the harmonic
side-bands amplitudes correspond to resonant mode A0 as and other frequency side-band as

A0(ξ) = 1− ib sinh{bξ}+ p2 cosh{bξ}√
cosh2{bξ} − 2a

, (S70)

and higher-order spectral side-band as

Am(ξ) =
ib sinh{bξ}+ p2 cosh{bξ}√

cosh2{bξ} − 2a

1−
cosh{bξ}

√
cosh2{bξ} − 2a
√

2a

|m| . (S71)

Here, we assume P0 as the input power of the SPP field, and also consider ω as the modulation frequency off the SPP
field. Also, we define

ωC =

√
4γP0

|K2|
, (S72)

as the characteristic frequency of the system. Then we achieve the modulation parameters a, b in terms of these
quantities as

2a =

√
1−

(
ω

ωC

)2

, b =
√

8a(1− 2a), (S73)

In the limiting case a 7→ 0.5 SPP will propagated as plasmonic peregrine wave and we find the spectral harmonic
side-band amplitudes by employing harmonic a 7→ 0.5 to Eqs. (S70), (S71).

The spatial-spectral evolution of these harmonic side-bands are represented in Fig. S3(a). Consequently, generation
of NSPPs within a nonlinear hybrid plasmonic interface would yield the excitation of harmonic side-bands with
characteristic frequency ωm and amplitude Am(ξ) that are propagated along the interaction interface up to a few
nonlinear propagation length.

B. Synthetic lattice formation based on NSPP parameters

In this section we elucidate the necessary steps towards synthetic lattice formation of propagated frequency combs.
To this aim, first we describe the general properties of the synthetic lattice and describe the sites and hopping related
to this system, and next we explain the synthetic lattice Hamiltonian and elucidate the evolution of the synthetic
structure in terms of system parameters.
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FIG. S3. Spectral dynamics of localized NSPPs through nonlinear Schrödinger equation and its corresponding synthetic lattice:
panel (a) represents the evolution of spectral harmonic side-band amplitude of the SPPs for the case of Akhmediev breather
excitation for a = 0.415, P0 = 10 µW, W ≈ 3× 10−11s2 · cm−1. Other parameters of the simulation is represented in the main
text. Panel (b) of this figure also denotes the two-dimensional synthetic lattice of the excited frequency combs of NSPPs in the
presence of the invariants. See the text for more details.

1. General properties

In this section we elucidate the detailed steps towards SPL formation based on excited plasmonic frequency combs
and characterize the hopping in terms of nonlinear SPP field parameter. Qualitatively, the excited frequency combs
within hybrid plasmonic interface are harmonic side-bands with frequency spacing Ω that act as sites of the lattice.
The specific lattice lattice sites are connected to other side-bands through characteristic hoppings (ui) that can be
characterized through correlation between amplitudes of spectral harmonic frequencies.

The characteristic lattice sites and existence of well-defined hopping justify that our frequency combs map
into a synthetic frequency dimension [S32]. On the other hand, we rewrite the excited frequency combs as
Am(ξ, ω) := |Am(ξ, ω)| exp{iφS(ξ)} that are stable and can propagate up to a few nonlinear propagation length
x ≈ 2LNL. Specifically, we achieve invariant frequency combs for |ω| < ωch and −5.5LNL < x < 4LNL as it is clearly
shown in Fig. S3(a) with a well-established phase variation φS(ξ) but without serious amplitude distortion. Conse-
quently, the frequency combs are spatially connected via a deterministic phase that can be achieved via Fig. 3(a) and
(c). We consider this phase variation as a hopping between lattice sites in spatial space with hopping vj .

In our analysis, we consider the π phase shift due to apparition of phase singularity and NSPP formation through
Fermi-Pasta-Ulam-Tsingou recurrence [S31]. Following this assumption, we choose N := Lα/LNL with

Lα =
1

ᾱeff
, LNL =

1

WP0
, (S74)

as the number of lattice sites in spatial dimension. By setting experimentally feasible parameters, the phase singular-
ities excite for both peregrine and Akhemediev breather for xS ≈ Lα/2, NS ≈ N/2. Therefore, we assume the phase
pattern for spatial coordinate as

φS =

{
φNL 0 < j < NS ,

π − φNL NS < j < N,
. (S75)

We also use i, j dummy variables to represent the hopping along ω, x directions respectively. We define the hopping
along ω axis as

wi,j = Ai(ξj)A
∗
i+1(ξj), (S76)

for Ai := A(ξi) characterize as spectral harmonic side-band amplitudes of NSPPs (see Fig. S4(a) for more details).
Based on the reciprocity properties of the system we assume Am,j(ξ) = A−m,j(ξ) and achieve the hopping for specific
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FIG. S4. Explicit mapping between the nonlinear SPP frequency combs and synthetic lattice for Akhmediev breather excitation.
Panel (a) is an example of the stable propagation of nonlinear SPP field as Akhemediev breather, and panel (b) is the qualitative
representation of the coupling between the different synthetic lattice. The parameter used for this simulation is the same as
Fig. S3.

spatial position ξ through Eq. (S76). Moreover we assume

vi,j := exp{iϕi,j}, (S77)

with

ϕi,j := K(ωi)x− φS, (S78)

to characterize the spatial hopping for geometrical dimension, as it is clearly shown in Fig. S4(b). Consequently, we
construct the synthetic lattice with well-established hopping in both spatial and spectral dimensions that can be used
to investigate the dynamical evolution of the nonlinear SPP fields.

2. SPL Hamiltonian and validity of lattice description

In this section we evaluate the Hamiltonian of our synthetic lattice and achieve the dynamics of the nonlinear SPP
field using this multidimensional structure. Aforementioned explanations indicate that a square lattice with two basis
vector ex and eω describes our plasmonic frequency combs. Consequently, we describe the dynamical evolution of
the frequency combs within this hybrid nonlinear interface using a well-defined two-dimensional lattice with complex
hopping as it is shown in Fig. S3 (b).

Then, we achieve the Hamiltonian of this synthetic lattice HSL as

HSPL =

N∑
i=−N

N∑
j=0

∑
n

wi,j âi,j â
†
i+n,j +

N∑
i=−N

N∑
j=0

vi,j âi,j â
†
i,j+1 + H.C., (S79)

for n the order of coupling to other harmonic side-bands in frequency dimension. We achieve this Hamiltonian through
existence the invariance of energy E, the number of excited plasmon modes N and we describe the evolution of the
frequency combs within this synthetic lattice through

|ψ(x)〉 = exp{iHSPLx} |ψ(x = x0)〉 . (S80)

In this work, we consider two kinds of NSPPs. For Akhmediev breather the spectral harmonic side-band amplitudes
are obtained by Eqs. (S70), (S71), whereas for peregrine waves, we achieve the side-band by direct integration of
Fourier transform or by calculating the limiting case of Akhmediev breather for a 7→ 0.5.
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