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Abstract: Surface-response functions are one of the most
promising routes for bridging the gap between fully
quantum-mechanical calculations and phenomenological
models in quantum nanoplasmonics. Among all currently
available recipes for obtaining such response functions,
the use of ab initio methods remains one of the most con-
spicuous trends, wherein the surface-response functions
are retrieved via the metal’s non-equilibrium response to
an external time-dependent perturbation. Here, we present
acomplementary approach to approximate one of the most
appealing surface-response functions, namely the Feibel-
man d-parameters, yield a finite contribution even when
they are calculated solely with the equilibrium properties
of the metal, described under the local-response approx-
imation (LRA) but with a spatially varying equilibrium
electron density, as input. Using model calculations that
mimic both spill-in and spill-out of the equilibrium elec-
tron density, we show that the obtained d-parameters are in
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qualitative agreement with more elaborate, but also more
computationally demanding, ab initio methods. The ana-
Iytical work presented here illustrates how microscopic
surface-response functions can emerge out of entirely local
electrodynamic considerations.

Keywords: electrodynamics; Landau damping; nonlocal
response; quantum plasmonics; surface-response formal-
ism.

1 Introduction

The plasmonic response of metallic nanostructures is com-
monly explored within the framework of classical elec-
trodynamics [1], typically describing the free electrons
of metals classically within the Drude-like local-response
approximation (LRA) [2]. The classical LRA prescription
thus treats a metal as a homogeneous gas of noninteract-
ing electrons confined by a hard wall at the metal’s surface.
In this fashion, any aspects of nonlocal (i.e., g-dependent)
response [3-5] are commonly neglected both in the bulk
of the metal (e.g., finite compressibility of the Fermi gas)
and at its surface (e.g., Friedel oscillations and electronic
spill-out associated with a finite work function).

Despite neglecting quantum-mechanical effects, the
LRA has constituted a critical theoretical framework in the
overall development of plasmonics [2, 6, 7]. More recently,
the importance of quantum phenomena has been pur-
sued via classical accounts, including smooth equilibrium
electron-density profiles [8-10], semiclassical hydrody-
namic models [11-13], and ab initio studies [14, 15]. The
former approaches can be criticized for only dealing with
some quantum aspects semiclassically, while the latter are
typically restricted by their complexity and by their prac-
tical applicability to small plasmonic systems [16—20]. In
this context, surface-response functions aim to capture the
dominant quantum phenomena and microscopic aspects
of the surface, while still allowing for a (semi)classical
treatment of the light—matter interactions in the bulk of
the metal. As such, there has recently been a renewed inter-
est in electrodynamic surface-response functions [21-23]
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in the context of plasmon-enhanced light—-matter interac-
tions [24-27] and quantum plasmonics [28—-30], empha-
sizing their importance in plasmon—emitter interactions in
nanoscale environments [26, 27], plasmon-enhanced inter-
actions with two-dimensional (2D) materials [27, 31], and
in revealing the detailed spectral properties of plasmon
resonances themselves [18, 26, 32-36].

Traditionally, surface-response functions have been
obtained through first-principle calculations of the elec-
trodynamics of metal surfaces subjected to time-varying
electric fields [37], e.g., by employing time-dependent
density-functional theory (TDDFT) [14], while they can, in
some cases, also be analytically evaluated, e.g., from semi-
classical hydrodynamic models [34, 38—40]. In all cases,
the common strategy has been to first evaluate the non-
equilibrium response to obtain the induced charge density,
Pina (@; 14), and extract from it the surface-response func-
tion(s), e.g., the Feibelman d -parameter (corresponding
to the centroid of induced charge density [21]). Here, we
explicitly show that even when using a local-response
approach along with the equilibrium electron density-
profile alone as input, there is a finite contribution to
the metallic surface-response functions provided that the
(equilibrium) electron density varies smoothly from its
bulk value deep inside the metal to zero near the metal’s
surface [41-43] (as opposed to terminating abruptly at it).
Such an approach, despite its simplicity and inherent limi-
tations, could nevertheless facilitate new physical insights
into the electrodynamic fingerprints associated with quan-
tum spill-out/spill-in, without resorting to computation-
ally demanding ab initio methods. We should, however,
emphasize that the approach presented below ignores
the finite compressibility of the electron gas, already cap-
tured by semiclassical hydrodynamic models [5], as well as
more complicated many-body effects and correlations that
time-dependent ab initio methods seek to capture, while
naturally still resorting to approximations [14].

2 Results

We consider a metallic nanostructure where n,(x) is the
equilibrium electron density (see Figure 1a), which is spa-
tially inhomogeneous in the vicinity of the metal’s surface,
possibly including, e.g., quantum spill-out and/or Friedel
oscillations [44] due to a finite work function [45]. In
the presence of time-harmonic electromagnetic fields, the
electrodynamics of the system is governed by the integro-
differential wave equation

VxVXxE®r)= %2 / dr’ e(xr,Y)E(r), )
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where w is the angular frequency, c is the speed of light in
vacuum, and &(r,¥’) is the nonlocal linear-response func-
tion, i.e., the (nonlocal) dielectric function of the quantum
electron gas (here assumed to be isotropic, for the sake of
simplicity). The microscopic and analytical understanding
of e(r, 1') is in general limited to bulk considerations within
the random-phase approximation (RPA) or the hydrody-
namic model (HDM) [4, 5, 27, 41, 46, 47].

2.1 Local-response approximation

In order to proceed with the nonlocal, integro-differential
wave equation (1), it is common to invoke further approxi-
mations — in the context of plasmonics, the prevailing one
being the LRA, epitomized by
e(t, 1) ~ g ()6 — 1), (2a)
Here, the inherently finite-range associated with the non-
local response of the electron gas is neglected in favor of
a zero-range, local response (mathematically represented
by the Dirac delta function in the previous expression).
Physically, this is equivalent to neglecting spatial disper-
sion represented by a finite wave vector dependence of
the dielectric function [4, 5, 27], and thus ignoring, for
instance, the finite dynamic compressibility of the electron
gas [4, 5. In spite of this — and as we show in what follows
— some quantum aspects associated with an inhomoge-
neous electron gas (Figure 1a), like electronic spill-out,
can still be incorporated to some extent in the LRA. In par-
ticular, the LRA reduces the nonlocal wave equation (1) to
the familiar local-response one:
2
V x V xE(@) = %eLRA(r)E(r), (2b)
which is conceptually simpler and computationally more
tractable [48].

2.2 Piecewise-constant approximation
(PCA)

Inspired by the long-established traditions in the electrody-
namics of composite dielectric problems [49], it is common
in plasmonics [2] to invoke yet another approximation: the
step-like, abrupt surface termination of the metal, thereby
neglecting any microscopic inhomogeneities in the vicinity
of the surface [herein defined by z = 0, without loss of gen-
erality, with the metal and the dielectric each occupying
the z < 0 and z > 0 half-spaces, respectively (Figure 1a)].
Under this approximation, e;g,(2) = €pca(2), with
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Figure 1: Schematic representation of the microscopic features of a
metal-vacuum interface. (a) Metal-vacuum interface, indicating the
surface region where the electron density varies from its asymptotic,
bulk values ¢, = €3a(z < 2)) and g4 = €3p(z > 2,) = 1 (where

|z1,1 > 0). (b) Top: schematic of the (normalized) equilibrium
electron-density profile i, (z) characterized by a smearing length a
in the vicinity of the surface (here defined by the z = 0 plane).
Bottom: Real part of the system’s dielectric function Re g ,(2)

[Eq. (8)] associated with fiy(2) = [1 — tanh(z/a)]/2, along with the
ensuing Re E,(2) and Re p; 4(2) [note that ;4 « d,¢, in the
long-wavelength regime]. All quantities are in arbitrary units.
Parameters: w = a)p/\/g, and for visualization purposes a
Drude-type bulk damping of y /w, = 0.3.

(3a)
(3b)

epca(2) = e1pp(—00)0(=2) + 135 (c0)O(2)

= £,0(-2) + £40(2),

where O is the Heaviside step function, and the system’s
dielectric function is constructed from two interfac-
ing piecewise-constant (bulk) local-response functions,
en = ey (w) and g4 = g4(w) (and Eq. (2b) is then solved by
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invoking the classical pillbox arguments at the interface
[1]). Here, €, is the Drude-like dielectric function of the
free-electron gas [2, 11]

w2

Em = €4 — ﬁpia)y’ (4)
withe, = e, (w) allowing for the incorporation of the polar-
ization due to the positive ionic background or for a
heuristic account of interband transitions. It should be
emphasized that the PCA has been tremendously success-
ful in advancing the field of plasmonics, being sufficient to
interpret the majority of experimentally observed phenom-
ena [2]. What makes the PCA legitimate in most cases is the
fact that the electron density is only non-uniform across
an extremely small region in the vicinity of the metal sur-
face, typically spanning only a few angstréms (i.e., on the
order to the metal’s bulk Fermi wavelength, ;). In spite of
this, such a “classical” PCA is currently being challenged
by the recent developments in nanoscale plasmonics and
plasmon-empowered light—matter interactions at nano-
metric scales [15, 25-27, 31, 35, 50].

2.3 Surface-response formalism

In the PCA, the induced charge is strictly a (singular) sur-
face charge, i.e., pjnq(2) « 8(2) [1, 21, 27], while in reality, the
induced charge actually assumes a nonsingular density of
a finite, surface-peaked nature (Figure 1b). In this context,
the Feibelman d-parameters, d, = d, (») and d; = d;(w),
are dynamical surface-response functions that correspond
to the first moment (i.e., the centroid) of the induced
charge density and of the normal derivative of the tangen-
tial current density, given, respectively, by (w-dependence
implicit) [21]

[Sdzz %]j(“d(z)
= o 9 7ind >
/_oodz ;]x (Z)

— /_o;dZZpind(Z)

d = o> s
AR E)

(5)

which are complex-valued surface-response functions, i.e.,
d,(w) = d (») + id] (w) witha € {L,]}. The general appeal
of the d-parameters is that, once they are obtained, the
system’s optical response can be calculated by solving a d-
parameter-modified electrodynamic problem, namely, the
LRA wave Eq. (2b) together with the “classical” PCA [recall
Eq. (3a)] but now subjected to the d-parameter-corrected,
mesoscopic boundary conditions [26, 27, 33—35]. Computa-
tionally, this is clearly more attractive than having to solve
the more complex integro-differential problem typified by
Eg. (1), while at the same time such reformulation into a
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quantum-informed “classical-equivalent” electrodynamic
problem also paves the way for further analytical work [26,
27, 34]. Naturally, different mechanisms can be incorpo-
rated (together or separately) via the d-parameters, e.g.,
nonlocality, quantum spill-out/spill-in, Landau damping,
etc. [21, 51]. In the following, we limit our consideration to
the LRA contribution to the d-parameters emerging solely
from a spatially varying dielectric function, i.e., £,z (2).
Alternatively to Eq. (5), the d-parameters can also be
written in terms of surface integrals associated with the
difference between the actual, microscopic fields and the
classical, “Fresnel” fields stemming from the PCA [21, 22,
52-58], specifically (see Supplementary Material):

[se]

_ &4 EZ(Z) - EECA(Z)
d, = Em — Ed/dz EECA(O_) ’ (62)
1 T D@-DAQR)
%‘%—%/“ oEFA(0) (6b)

—00

where E}:SA,DECA are fields obtained within the classi-
cal, piecewise-constant approach. In the long-wavelength
regime and to leading-order in g|z, — z,|, the Feibelman
d-parameters (6) associated with a local, but smoothly
varying dielectric function e, (z) can be written as [55,
59-62] (see Supplementary Material)

d, = e_%edl / &z [, -], ()

1
€m — €q

/ Az [e1a@ — epa@] . (7b)

Equations (7) unambiguously illustrate how &ga(x) #
epca(X) contributes to a finite d, and d,. Naturally, in gen-
eral, there will be further contributions to the d-parameters
stemming from the nonlocal response of the electron gas
(e.g., treated within the nonlocal RPA or the HDM); never-
theless, it is important to emphasize that there is a nonzero
contribution to the surface-response already within the
LRA once the PCA is relaxed. In the following, we shall
illustrate this in more detail with an elementary model
that elucidates the physics — within the constraints asso-
ciated with the LRA — of both spill-out and spill-in of the
metal’s electron density. Despite its inherent simplicity,
the strength of the simple model adopted below lies in its
ability to render analytical results in closed form.
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2.4 Metal surface with a smoothly varying
electron density

As mentioned previously, a more realistic representation
of a metal surface is to abandon the assumption of an
infinitely sharp dielectric—metal interface and instead
allow the metal’s electron density to vary smoothly from
its value deep inside the metal, n?"* = ny(z — —c0), to zero
well inside the vacuum (Figure 1). This can be modeled
through a simple generalization [21, 38, 41-43, 63, 64] of
Eq. (4), that is

2

em@=%@—ﬁﬁmm@,m@=%ﬁ.@)

where n,(r) = n,(z) is the spatial profile of the equilibrium
electron density. Here, ¢ (z) takes into account the vari-
ation from the background polarization, subjected to the
requirement that deep inside the metal (dielectric) it con-
verges to the polarization due to the jellium background of
positive ions, €, (z > —o0) = €, (to the dielectric’s permit-
tivity £, (z = +00) = £4). As a complementary perspective,
this can also be interpreted as the common local response
of the Drude kind, but with a spatially varying plasma fre-
quency, w,(z) = w, /1, (2). In passing, we note that Eq. (8)
has been used widely over the years, including Refs. [8,
9, 65-70], while smoothly varying profiles have also been
considered in model discussions of local-field corrections
[71]. Finally, we note how the PCA mathematically emerges
upon replacing 71,(z) by a Heaviside function in Eq. (8),
i.e.,ny(z) » O©(—2), corresponding to the classical, step-like
termination of the equilibrium electron density.

2.5 Transition from spill-in to spill-out

To illustrate the transition from spill-in to spill-out, we
consider a model electron-density profile of the form [62]

fl,(z) = tanh’ (Z_TZO> 0(z, — 2), )

which is smooth and has the desired properties
lim, ,_#,(z) =1and lim,_, 7,(z) = O [in fact, the latter
can be made more stringent, e.g., limz_,zor'zo(z) = 0]. The
value z, indicates the position where the metal’s electron
density vanishes, whereas the quantity a charactokerizes
the steepness of the spatial profile of the (normalized) equi-
librium electron density [with lim,_,7,(z) = ©(z, — 2)].
The quantity z,, in particular, governs whether the induced
electron density spills inwards or outwards. For bulk elec-
tron densities of typical plasmonic metals, both a and z,
amount to a few angstréms, and the model qualitatively
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captures the main results of self-consistent jellium consid-
erations [45], while more refined models are needed to also
represent finer details, e.g., Friedel oscillations [44, 72].

Further, we assume that the transition from the jel-
lium background (i.e., the metal’s positively charged ions)
to the dielectric remains infinitely sharp because these
only contain tightly bound electrons which are thus essen-
tially immobile! when compared with the conductive free-
electrons; hence, in the following we take

£(2) = £,0(=2) + £40(2), (10)
where we have assumed, without loss of generality, that
the edge of jellium background is located at z, = 0. In
passing, we note that if we enforce charge neutrality, then
a and z, are not independent, and d” = 0 (for the electron-
density profile considered here (9), this would set z, = a).
In spite of this, in what follows we assume that a and z,, can
be varied independently, as this may facilitate the treat-
ment of charged metal surfaces (i.e., arising from either
surface roughness, molecular adsorption, or the presence
of Shockley surface states).

Going beyond jellium models, we note that care should
be taken when turning to atomistic representations of the
surface, where the choice of origin is reflected in the cor-
responding surface-response functions [36] (although the
overall quantum surface-response is unchanged provided
that both d, and d, are considered).

2.6 Simple jellium next to vacuum

For clarity purposes, we first ignore background polariza-
tion effects or interband transitions and consider a simple
jellium-vacuum interface, sothate = ¢4 = 1. Inthis case,
the integrals in Egs. (7) yield

d,(Q) =z, — aQarctanh (Q7), (11a)

d,(Q) =z, -a (11b)
where Q = w/w, and Q = \/Q(Q +iI), with ' = y /w,. As
we shall see, the frequency-independent result for d| is a
particular consequence of having assumed ¢, = 4. In the
absence of bulk damping (I' = 0%), Eq. (11a) can be written
as [62]

Q-1
Q+1

dl(Q)=zo+a% [ln

’ +i76(1 — g)] W

1 We note, however, that this might not be the case for polar materials
near optical phonon frequencies.
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with the low-frequency behavior of d, given by

Red, (Q <« 1) =~ z,, (13a)

Imd, (Q < 1) ~a %g (13b)

Notice that, even in the absence of bulk damping,
there is a nonzero contribution of surface-assisted damp-
ing embodied through Imd, # O [see Eq. (13b)]. More
fundamentally, this is a consequence of Kramers—Kronig
relations (wherein a dispersive Red, renders Imd, # 0)
[73]. Moreover, we emphasize that the asymptotic limits
(13) are in agreement with results emerging from sum-rule
considerations [74, 75]. Interestingly, in the above result,
z, resembles the so-called static image-plane position that
emerges from a self-consistent solution of the jellium per-
turbed by a static field [74—76], being a quantity of interest
in surface science at large (a particular example being
that of the van der Waals interaction of an atom near a
metallic surface [52, 74]). Recently, acoustic graphene plas-
mons have been proposed as a mean to probe the quantum
surface-response of metals [31] by placing a graphene sheet
only a few nanometers away from a metal surface [77, 78].
In particular, the static surface-response, d, (0) [which,
within our simple treatment, amounts to z,; see Eq. (13a)],
dependence could be experimentally probed in this way
[31].

The results [Egs. (11)-(12)] for a simple jellium sur-
face next to vacuum are presented in Figure 2, show-
ing how Red, is always negative for z, = O (Figure 2a;
black curve). Increasing z, /a brings the low-frequency part
of Red, to positive values (Figure 2a; light-red and red
curves), potentially extending into the frequency regime
w,/ \/5 < < w, supporting semiclassical (specifically,
within the HDM) localized surface plasmon (LSP) reso-
nances in metal nanoparticles [79]. Consistent with causal-
ity and Kramers—Kronig relations, the dispersiveness of
Red, is accompanied by a finite Imd, (green, Figure 2a;
orange, Figure 2b) [73-75].

2.7 Dipolar resonance of a metallic
nanosphere

To illustrate how the surface-response functions d, and
d, jointly influence the optical response of a metallic
nanostructure (Figure 2b), we consider the prototypical
case of a spherical nanoparticle of radius R; for simplic-
ity, we take £, =1 and assume that the nanosphere is
in vacuum (g4 = 1). Within the classical quasistatic LRA
description the spectrum of LSP resonances is dominated
by a size-independent dipole resonance at the frequency
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Figure 2: Feibelman d-parameters in the LRA for a jellium-vacuum
interface (e, = €4 = 1) characterized by a smooth electron-density
profile. (a) Real, Re d, (black, light-red, red), and imaginary part,
Imd, (green) [Eq. (11a)] of the d-parameters for the electron-density
profile described in Eq. (9) with varying z,/a (whose effect is a
simple vertical shift of the Re d, curve); we assume a Drude bulk
damping of I' = y /w, = 0.1. (b) Effective surface-response
function do¢ = d, — d| [from Eq. (12)]. The dashed curves depict
the result in the lossless case [62] [using Egs. (11b) and (12)]. The
grey-shaded region indicates the frequency window supporting
semiclassical localized plasmon resonances in metallic
nanoparticles.

®=w, / \/§ [2, 79, 80]. Accounting for nonclassical sur-
face effects in a generalized Clausius—Mossotti relation,
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the pole associated with the dipolar LSP resonance is, to
leading-order in d, /R, given by [26, 27, 34]

2(d, - dy)

O=¢e,+2—-(e, 1) R ,

(14)
which illustrates how the smearing of the jel-
lium near the surface of the particle causes
nonclassical a/R size-dependent redshifts rela-
tive to the classical dipole resonance frequency
(Figure 2b). Crucially, in this case, i.e., with
e, =€gq=1, the “effective” surface-response func-
tion dog = d; —d, [22, 27, 34] has a “universal” behavior,
namely, it is (i) independent of z,, and (ii) proportional
to the smearing of the spatially varying electron-density
profile, characterized by the length a. Thus, interestingly,
these behaviors indicate that, independently of z,, the
smearing itself contributes to a net nonclassical redshift
(Red.s > 0; spill-out) of the dipolar LSP resonance
position of a jellium nanosphere in vacuum [81].

In the following, we simultaneously relax the assump-
tions of 4 = 1 and of ¢, = 1. Allowing the latter quantity
to be larger than unity is commonly used to heuristi-
cally incorporate semiclassical accounts of background
polarization effects or contributions arising from interband
transitions in noble metals [2, 11].

2.8 Background and dielectric screening
contributions

Turning to the general case of arbitrary £, and ¢, the effort
required to perform the integrals (7) becomes somewhat
more elaborate, but nevertheless these integrals can still
be evaluated analytically, reading (assuming z, > 0)

Sd Q

d, 1-Q%, z, Q!
L _¢C = "+ 20 _ tanh [ 22—
a l{l—stda Ve arcan <\/a>
&-1
—arctanh< Q tanh(zo))]
N a
B ;-1
- ﬂg arctanh Q7 tanh<Z—°> s
em+(eq—€,) \/a a

(15a)

QU

=C ;

(15b)
a

R |

where C, = [1+ (g4 — €,)%7 < and Cp=(en—¢€,)
(e — €4) are both being resonantly enhanced in the
vicinity of ® = @,/ /e, — &4; this Bennett-type resonance
[82, 83] should not be confused with the common surface
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plasmon resonance occurring at w = w,/+/e, + £4. More-
over, contrasting with the previous case (where e, = ¢4
=1), now both d, and d, are dispersive (i.e., exhibit
frequency dependence). Finally, we note that these factors
reduce to C;, = C; = lin the e, = ¢4 case. Additionally, in
this particular case, d, and d; are given by Eq. (11) upon
replacing Q™' - Q'//e, wheree = ¢, = 4.

Returning to the discussion surrounding Eq. (14), we
note that, in addition to the nonclassical a/R-dependent
redshift of the resonance frequency, the term «(d, — d,)/R
emerging in the pole of the polarizability [26, 34] [the gen-
eralized version of Eq. (14) for arbitrary £, and £4] now
acquires a finite contribution also from z,, which may
lead to a net blueshift of the dipolar LSP resonance. This
behavior is also in line with recent experimental obser-
vations of the dependence of quantum size effects on the
local dielectric environment of the interface [84] (notice
that Egs. (15) also enable further explorations of situations
where g4 > 1). As illustrated in Figure 3, the combined
effects of a non-unity interband permittivity, ¢,, and of
a finite z, may render the redshift of the classical dipolar
LSP resonance frequency into a net blueshift, depending

-1.0 -0.5 0 0.5 1.0
25]
20f ]
(] ~-~-~""---:
> 15¢ 1
N
1.0}
05F -
0_0_ L .,.r-_
1 2 3 4 5
&

Figure 3: Density plot of Re(d, — d,) /a in the (e, z;)-parameter
space, computed at the classical quasistatic dipole LSP resonance
frequency, » = @,/+/e, + 2, of a spherical particle of radius R. The
black dashed line indicates Re(d, —d,) = 0, thus separating
regimes with nonclassical 1/R size-dependent spectral redshifts
[reddish regions; Re(dL - d”) > 0] from blueshifts [bluish regions;
Re(d, —d,) < 0]. We have assumed: ey = 1and y /o, = 0.1.
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on both ¢, and z,/a (and also on the particular value of
the bulk-damping parameter, y, which “softens” the sharp
feature at v = wp; see Figure 2b). In this way, the model
conceptually explains how different metals may exhibit
contrasting 1/R size-dependencies of their surface plas-
mon resonances [22, 51, 85], towards the blue for d g < 0
(spill-in) and toward the red for d.s > O (spill-out). An
example of the former is silver (characterized by signifi-
cant interband and valence band screening contributions
to the optical response) [22, 36, 86], while an example of the
latter is sodium (whose optical response is well described
by a simple jellium treatment) [22]. The imaginary part
Im (d, — d)isasourceof nonclassical 1/R size-dependent
broadening [26, 34]. To experimentally resolve nonclassi-
cal size-dependent shifts, it is naturally preferable that
|Re (d, —d,)| > Im(d, —d,), so that the spectral shift is
not rendered unobservable due to damping.

3 Discussion and conclusions

In this article, we have revisited the concept of surface-
response functions, highlighting that a finite contribution
to the Feibelman d-parameters emerges even in an LRA-
treatment with a spatially varying equilibrium electron-
density profile. While this insight has appeared in some
form within the early literature [59-62], it has seemingly
remained unnoticed in the more recent revival of surface-
response functions and the widespread use of ab initio
accounts for quantum plasmonics. In working out the
equilibrium contribution to the dynamic surface-response
functions, we have deliberately omitted nonlocal correc-
tions. In this context, the bulk nonlocal hydrodynamic
response associated with the quantum compressibility of
the electron gas would contribute with a negative Red,
(well below the plasma frequency, and for a hard-wall j?};

lium—vacuum interface), namely d, = —f/ (cof) - a)2>

and d =0 [21, 26, 34, 40], with § « vg [5, 27, 87] being
a characteristic velocity of longitudinal plasmons. Quali-
tatively, this could enhance regimes in Figure 3 with a net
blueshift, while consequently also reducing the spectral
shift in regimes with a net redshift. This possible inter-
play of quantum compressibility and quantum spill-out
is manifested in self-consistent hydrodynamic treatments
[13, 88, 89].

In conclusion, our analytical solution of the electro-
dynamics at metal surfaces transparently and unambigu-
ously illustrates how the microscopic surface-response
functions have a finite contribution originating entirely
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from equilibrium and local-response considerations as
input. We believe that this finding offers important insights
for the understanding and further advancement of first-
principle methods for the computation of accurate surface-
response functions, as well as for the experimental explo-
ration of mesoscopic optical phenomena at metal surfaces
[35, 84, 86, 90, 91]. The latter is now becoming even
more tangible with the advent of ultraconfined acoustic
graphene plasmons [27, 31, 77, 92-94]. Beyond the fun-
damental interest in surface-response functions, we note
that the underlying quantum nonlocal response of met-
als should also pose fundamental limitations for many
light—matter interaction phenomena [95], ranging from
plasmon-emitter interaction dynamics [26, 96, 97], through
surface-enhanced Raman spectroscopy [98] and plasmon-
exciton strong-coupling dynamics [99], to hyperbolic meta-
materials [100], non-reciprocal plasmon propagation [101],
and the perfect-lens concept [102] — the final example
also illustrating the many insightful contributions by Mark
Stockman.
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