## Supplementary Material for: Surface-response functions obtained from equilibrium electron-density profiles

N. Asger Mortensen, <sup>1,2,3</sup> P. A. D. Gonçalves, <sup>1</sup> Fedor A. Shuklin, <sup>1</sup> Joel D. Cox, <sup>1,2</sup> Christos Tserkezis, <sup>1</sup> Masakazu Ichikawa, <sup>4</sup> and Christian Wolff<sup>1</sup>

<sup>1</sup>Center for Nano Optics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark

<sup>2</sup>Danish Institute for Advanced Study, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark

<sup>3</sup>Center for Nanostructured Graphene, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark

<sup>4</sup>Department of Applied Physics, Graduate School of Engineering,

The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan

Throughout this Supplementary Material, the superscript "cl" (classical) has the same meaning as the superscript/subscript "PCA" (piecewise-constant approximation) used in the main manuscript.

## S1. FEIBELMAN d-PARAMETERS: CHARACTERIZING THE DIFFERENCE BETWEEN THE MICROSCOPIC AND FRESNEL FIELDS

Since we are considering a planar system, we may make use of translational symmetry to write the fields—for p-polarized waves—as

$$\mathbf{F}(\mathbf{r}) = \mathbf{F}(z) e^{iqx} e^{-i\omega t}, \tag{S1}$$

without loss of generality. Exploiting this, the classical, "Fresnel" fields (i.e., the reference/asymptotic fields which are only *strictly* valid for  $|z| \gg |z_{1,2}|$ ; see Fig. 1) take the form ( $\omega$ -dependence implicit):

$$\mathbf{E}^{\text{cl}}(z) = \mathbf{E}^{-}(z)\Theta(-z) + \mathbf{E}^{+}(z)\Theta(z), \tag{S2a}$$

$$\mathbf{D}^{\mathrm{cl}}(z) = \epsilon_0 \left[ \epsilon_{\mathrm{m}} \mathbf{E}^{-}(z) \Theta(-z) + \epsilon_{\mathrm{d}} \mathbf{E}^{+}(z) \Theta(z) \right], \tag{S2b}$$

$$\mathbf{H}^{\mathrm{cl}}(z) = \mathbf{H}^{-}(z)\Theta(-z) + \mathbf{H}^{+}(z)\Theta(z), \tag{S2c}$$

where

$$\mathbf{H}^{+}(z) = \left[ e^{-ik_{z,d}z} + r_{p} e^{ik_{z,d}z} \right] \hat{\mathbf{y}} \equiv H_{y}^{+}(z) \hat{\mathbf{y}}, \tag{S3a}$$

$$\mathbf{H}^{-}(z) = t_{p} e^{-ik_{z,m}z} \hat{\mathbf{y}} \equiv H_{v}^{-}(z) \hat{\mathbf{y}}, \tag{S3b}$$

$$\mathbf{E}^{+}(z) = \underbrace{\frac{k_{z,d}}{\omega \epsilon_{0} \epsilon_{d}} \left[ -e^{-ik_{z,d}z} + r_{p} e^{ik_{z,d}z} \right]}_{E_{z}^{+}(z)} \mathbf{\hat{x}} + \underbrace{\frac{q}{\omega \epsilon_{0} \epsilon_{d}} \left[ -e^{-ik_{z,d}z} - r_{p} e^{ik_{z,d}z} \right]}_{E_{z}^{+}(z)} \mathbf{\hat{z}}, \tag{S3c}$$

$$\mathbf{E}^{-}(z) = \underbrace{-\frac{k_{z,m}}{\omega\epsilon_{0}\epsilon_{m}}t_{p}\,\mathrm{e}^{-\mathrm{i}k_{z,m}z}\,\mathbf{\hat{x}}}_{E_{x}^{-}(z)} + \underbrace{\frac{-q}{\omega\epsilon_{0}\epsilon_{m}}t_{p}\,\mathrm{e}^{-\mathrm{i}k_{z,m}z}\,\mathbf{\hat{z}}}_{E_{z}^{-}(z)}.$$
(S3d)

In the absence of external charges, we have [1]

$$\nabla \cdot \mathbf{D} = 0 \longrightarrow \mathrm{i} q D_x(z) + \partial_z D_z(z) = 0,$$
 (S4)

for the microscopic displacement field. Naturally, the same holds for its classical counterpart, that is,

$$\nabla \cdot \mathbf{D}^{\text{cl}} = 0 \qquad \longrightarrow \qquad \text{i}qD_x^{\text{cl}}(z) + \partial_z D_z^{\text{cl}}(z) = 0,$$
 (S5)

Combining Eqs. (S4)–(S5) and integrating over the surface region  $z \in [z_1, z_2]$ , we find

$$D_z^+(0^+) - D_z^-(0^-) = -iq \int_{z_1}^{z_2} dz \left[ D_x(z) - D_x^{cl}(z) \right],$$
 (S6)

where we have used the fact that, by definition of  $z_{1,2}$ ,  $D_z(z_1) = D_z^-(z_1)$  and  $D_z(z_2) = D_z^+(z_2)$ . Notice that, for an infinitesimally thin surface region (or, in other words, for an abrupt dielectric–metal interface), the classical Maxwell's boundary condition  $\hat{\mathbf{z}} \cdot (\mathbf{D}^+ - \mathbf{D}^-)|_{z=0} = 0$  is recovered. Alternatively, the same is true in the q = 0 case.

Next, proceeding in a similar fashion, but now considering Maxwell's curl equation  $\nabla \times \mathbf{E} = i\omega \mu_0 \mathbf{H}$  instead, one obtains

$$E_x^+(0^+) - E_x^-(0^-) = iq \int_{z_1}^{z_2} dz \left[ E_z(z) - E_z^{cl}(z) \right],$$
 (S7)

up to first-order in  $q|z_2 - z_1|$  and ignoring other "second-order small" terms (e.g., second-order in  $\frac{\omega}{c}|z_2 - z_1|$ ). Similarly to Eq. (S6), the previous equation amount to a "generalized boundary condition" which expresses the discontinuity of the tangential component of the electric field across the interface, with such discontinuity being proportional to the "surface integral" in the right-hand side of Eq. (S7).

Following Refs. [2, 3], we introduce the quantities

$$\Delta \bar{D}_{x}(z) \equiv \int_{z_{1}}^{z_{2}} dz \frac{D_{x}(z) - D_{x}^{cl}(z)}{E_{x}^{-}(0^{-})},$$
 (S8a)

$$\Delta \bar{E}_z(z) \equiv \int_{z_1}^{z_2} dz \frac{E_z(z) - E_z^{\text{cl}}(z)}{E_z^{-}(0^{-})},$$
 (S8b)

and thus write Eqs. (S6)-(S7) as

$$D_z^+(0^+) - D_z^-(0^-) = -iq E_z^-(0^-) \Delta \bar{D}_x(z), \tag{S9a}$$

$$E_{r}^{+}(0^{+}) - E_{r}^{-}(0^{-}) = iq E_{r}^{-}(0^{-}) \Delta \bar{E}_{z}(z).$$
 (S9b)

Then, substituting the fields (S2)–(S3) into Eqs. (S9), we arrive to

$$1 + r_p - t_p \left[ 1 - i \frac{k_{z,m}}{\epsilon_0 \epsilon_m} \Delta \bar{D}_x(z) \right] = 0, \tag{S10a}$$

$$\frac{k_{z,d}}{\epsilon_{d}} \left[ 1 - r_{p} \right] - t_{p} \left[ \frac{k_{z,m}}{\epsilon_{m}} + i \frac{q^{2}}{\epsilon_{m}} \Delta \bar{E}_{z}(z) \right] = 0.$$
 (S10b)

From Eqs. (S10), it then follows that the "generalized" reflection and transmission coefficients for a dielectric-metal interface are given by

$$r_{p} = \frac{\epsilon_{\rm m} k_{z,\rm d} - \epsilon_{\rm d} k_{z,\rm m} + \left[ -\mathrm{i}q^{2} \epsilon_{\rm d} \Delta \bar{E}_{z}(z) - \mathrm{i}k_{z,\rm d} k_{z,\rm m} \epsilon_{0}^{-1} \Delta \bar{D}_{x}(z) \right]}{\epsilon_{\rm m} k_{z,\rm d} + \epsilon_{\rm d} k_{z,\rm m} - \left[ -\mathrm{i}q^{2} \epsilon_{\rm d} \Delta \bar{E}_{z}(z) + \mathrm{i}k_{z,\rm d} k_{z,\rm m} \epsilon_{0}^{-1} \Delta \bar{D}_{x}(z) \right]}, \tag{S11a}$$

$$t_p = \frac{2\epsilon_{\rm m}k_{z,\rm d}}{\epsilon_{\rm m}k_{z,\rm d} + \epsilon_{\rm d}k_{z,\rm m} - \left[-{\rm i}q^2\epsilon_{\rm d}\Delta\bar{E}_z(z) + {\rm i}k_{z,\rm d}k_{z,\rm m}\epsilon_0^{-1}\Delta\bar{D}_x(z)\right]}, \tag{S11b}$$

from which we recognize (e.g., by comparing Eqs. (S11) with the d-parameter-corrected reflection and transmission coefficients [4–6]) the Feibelman d-parameters as [2]

$$d_{\perp} = -\frac{\epsilon_{\rm d}}{\epsilon_{\rm m} - \epsilon_{\rm d}} \int_{-\infty}^{\infty} \mathrm{d}z \, \frac{E_z(z) - E_z^{\rm cl}(z)}{E_z^{\rm c}(0^-)},\tag{S12a}$$

$$d_{\parallel} = \frac{\epsilon_0^{-1}}{\epsilon_{\rm m} - \epsilon_{\rm d}} \int_{-\infty}^{\infty} \mathrm{d}z \, \frac{D_x(z) - D_x^{\rm cl}(z)}{E_x^{-}(0^{-})},\tag{S12b}$$

where we have changed the limits of integration from  $[z_1, z_2]$  to  $]-\infty, \infty[$ , as this leaves the d-parameters unchanged (since, by definition of  $z_{1,2}$ , the microscopic fields are equal to the classical fields for  $|z| \ge |z_{1,2}|$ ).

<sup>&</sup>lt;sup>1</sup> Recall that, here, the superscripts "cl" correspond to the "PCA" ones used in the main manuscript.

## S2. d-PARAMETERS ASSOCIATED WITH A METAL SURFACE DESCRIBED BY A CONTINUOUS DIELECTRIC FUNCTION

We consider a planar dielectric–metal interface described by a spatially varying dielectric function  $\epsilon(z)$ , treated in the local-response approximation (LRA), that characterizes a metal surface where the electron density varies smoothly between a constant value deep inside the metal's bulk and the dielectric's permittivity far away from the said surface. Below, we present (following Refs. [2, 7–12]) a concise derivation of the main steps leading to the expressions for the *d*-parameters taking  $\epsilon(z)$  as input [i.e., instead of the fields as in Eqs. (S12)].

 $d_{\perp}$ -parameter. In the long-wavelength limit (frequency-dependence implicit throughout),

$$D_z(z) = \epsilon_0 \int_{-\infty}^{\infty} dz' \epsilon_{zz}(q \to 0; z, z') E_z(z') \simeq \text{const.} \equiv \epsilon_0 \epsilon_m E_z^-(0^-). \tag{S13}$$

Introducing the inverse dielectric function,  $\epsilon_{zz}^{-1}(q \to 0; z, z')$ , satisfying (dropping the  $q \to 0$  in the argument, which is implicitly assumed hereafter)

$$\int_{-\infty}^{\infty} \mathrm{d}z' \epsilon_{zz}(z,z') \epsilon_{zz}^{-1}(z',z'') = \delta(z'-z''),$$

we may write

$$E_{z}(z) = \epsilon_{\rm m} E_{z}^{-}(0^{-}) \int_{-\infty}^{\infty} \mathrm{d}z' \epsilon_{zz}^{-1}(z, z')$$

$$\equiv \epsilon_{\rm m} E_{z}^{-}(0^{-}) \langle \epsilon_{zz}^{-1}(z) \rangle, \tag{S14}$$

where we have defined

$$\langle \epsilon_{zz}^{-1}(z) \rangle \equiv \int_{-\infty}^{\infty} dz' \epsilon_{zz}^{-1}(z, z'),$$
 (S15)

and thus Eq. (S12a) becomes

$$d_{\perp} = -\frac{\epsilon_{d}}{\epsilon_{m} - \epsilon_{d}} \int_{z_{1}}^{z_{2}} dz \left[ \epsilon_{m} \left\langle \epsilon_{zz}^{-1}(z) \right\rangle - \underbrace{\frac{E_{z}^{-}(z)}{E_{z}^{-}(0^{-})}}_{\approx 1} \Theta(-z) - \underbrace{\frac{E_{z}^{+}(z)}{E_{z}^{-}(0^{-})}}_{\approx \frac{E_{z}^{+}(0^{+})}{E_{z}^{-}(0^{-})}} = \frac{\epsilon_{m}}{\epsilon_{d}}$$
(S16)

where the approximations are valid in the long-wavelength limit. Hence, we find

$$d_{\perp} = \frac{1}{\epsilon_{\rm m}^{-1} - \epsilon_{\rm d}^{-1}} \int_{z_1}^{z_2} dz \left[ \langle \epsilon_{zz}^{-1}(z) \rangle - \frac{1}{\epsilon^{\rm cl}(z)} \right], \tag{S17a}$$

where

$$\frac{1}{\epsilon^{\rm cl}(z)} \equiv \frac{1}{\epsilon^{\rm PCA}(z)} = \frac{1}{\epsilon_{\rm m}} \Theta(-z) + \frac{1}{\epsilon_{\rm d}} \Theta(z). \tag{S17b}$$

 $d_{\parallel}$ -parameter. Similarly, one may write

$$D_x(z) = \epsilon_0 \int_{-\infty}^{\infty} dz' \epsilon_{xx}(q \to 0; z, z') E_x(z') \approx \epsilon_0 E_x(0) \int_{-\infty}^{\infty} dz' \epsilon_{xx}(z, z')$$
 (S18)

since  $E_x(z)$  is slowly varying/approximately continuous in the long-wavelength regime. Therefore, adopting a similar approach as before [see Eq. (S15)], namely, defining  $\langle \epsilon_{xx}(z) \rangle \equiv \int_{-\infty}^{\infty} dz' \epsilon_{xx}(z,z')$ , leads to

$$D_{r}(z) = \epsilon_{0} E_{r}(0^{-}) \langle \epsilon_{rr}(z) \rangle, \tag{S19}$$

so that  $d_{\parallel}$  takes the form

$$d_{\parallel} = \frac{1}{\epsilon_{\rm m} - \epsilon_{\rm d}} \int_{z_{\rm l}}^{z_{\rm 2}} dz \left[ \langle \epsilon_{xx}(z) \rangle - \epsilon_{\rm m} \frac{E_{x}^{-}(z)}{E_{x}^{-}(0^{-})} \Theta(-z) - \epsilon_{\rm d} \frac{E_{x}^{+}(z)}{E_{x}^{-}(0^{-})} \Theta(z) \right],$$

$$\approx \frac{E_{x}^{-}(0^{-})}{E_{x}^{-}(0^{-})} = 1 \qquad \approx \frac{E_{x}^{+}(0^{+})}{E_{x}^{-}(0^{-})} = 1$$
(S20)

that is

$$d_{\parallel} = \frac{1}{\epsilon_{\rm m} - \epsilon_{\rm d}} \int_{z_1}^{z_2} dz \left[ \langle \epsilon_{xx}(z) \rangle - \epsilon^{\rm cl}(z) \right], \tag{S21a}$$

where

$$\epsilon^{\rm cl}(z) \equiv \epsilon^{\rm PCA}(z) = \epsilon_{\rm m}\Theta(-z) + \epsilon_{\rm d}\Theta(z).$$
(S21b)

**Summary.** Finally, assuming a isotropic metal and adopting the local-response approximation<sup>2</sup>, the d-parameters given by Eqs. (S17a) and (S21a) can now be (re)written as

$$d_{\perp} = \frac{1}{\epsilon_{\rm m}^{-1} - \epsilon_{\rm d}^{-1}} \int_{-\infty}^{\infty} dz \left[ \epsilon^{-1}(z) - \epsilon_{\rm m}^{-1} \Theta(-z) - \epsilon_{\rm d}^{-1} \Theta(z) \right], \tag{S22a}$$

and

$$d_{\parallel} = \frac{1}{\epsilon_{\rm m} - \epsilon_{\rm d}} \int_{-\infty}^{\infty} dz \left[ \epsilon(z) - \epsilon_{\rm m} \Theta(-z) - \epsilon_{\rm d} \Theta(z) \right]. \tag{S22b}$$

- [1] J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1998).
- [2] P. Apell, Phys. Scr. 24, 795 (1981).
- [3] D. C. Langreth, Phys. Rev. B 39, 10020 (1989).
- [4] P. A. D. Gonçalves, T. Christensen, N. Rivera, A.-P. Jauho, N. A. Mortensen, and M. Soljačić, Nat. Commun. 11, 366 (2020).
- [5] Y. Yang, D. Zhu, W. Yan, A. Agarwal, M. Zheng, J. D. Joannopoulos, P. Lalanne, T. Christensen, K. K. Berggren, and M. Soljačić, Nature 576, 248 (2019).
- [6] P. A. D. Gonçalves, Plasmonics and Light–Matter Interactions in Two-Dimensional Materials and in Metal Nanostructures: Classical and Quantum Considerations (Springer Nature, 2020).
- [7] P. J. Feibelman, Prog. Surf. Sci. 12, 287 (1982).
- [8] A. Bagchi, R. G. Barrera, and A. K. Rajagopal, Phys. Rev. B 20, 4824 (1979).
- [9] P. J. Feibelman, Phys. Rev. B 23, 2629 (1981).
- [10] P. Apell, Phys. Scr. 25, 57 (1982).
- [11] A. Liebsch, Electronic excitations at metal surfaces (Springer, New York, 1997).
- [12] F. Forstmann and R. R. Gerhardts, Metal Optics Near the Plasma Frequency (Springer-Verlag Berlin Heidelberg, 1986).

<sup>&</sup>lt;sup>2</sup> That is,  $\epsilon_{xx}(z,z') \to \epsilon(z)\delta(z-z')$  and  $\epsilon_{zz}^{-1}(z,z') \to \epsilon^{-1}(z)\delta(z-z')$  so that  $\langle \epsilon_{xx}(z) \rangle \to \epsilon(z)$  and  $\langle \epsilon_{zz}^{-1}(z) \rangle \to \epsilon^{-1}(z)$ , respectively.