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Abstract: Random jammed dipole scatterers are natural
composite and common byproducts of various chemical
synthesis techniques. They often form complex aggregates
with nontrivial correlations that influence the effective
dielectric description of the medium. In this work, we
investigate the packing dynamic of rectangular nano-
structure under a close packing protocol and study its
influence on the optical response of the medium. We show
that the maximum packing densities, maximum scattering
densities, and percolation threshold densities are all
interconnected concepts that can be understood through
the lens of Onsager’s exclusion area principle. The
emerging positional and orientational correlations be-
tween the rectangular dipoles are studied, and various
geometrical connections are drawn. The effective dielectric
constants of the generated ensembles are then computed
through the strong contrast expansion method, leading to
several unintuitive results such as scattering suppression
at maximum packing densities, as well as densities below
the percolation threshold, and maximum scattering in
between.

Keywords: disorder; metamaterials; metasurfaces;
nanostructures.

1 Introduction

Randompacking persists to be an alluring topic, pertinent to
fundamental questions in physics, chemistry, and biology
[1–3]. Within the field of optics and photonics, in particular,
understanding light–matter interactions in random packed
media is crucial and urged by the growing usage of optical
sensors and imaging systems in probing complex living
cells, liquids, and granular media. In addition, the thriving
genre of disordered photonics domesticates randomness
toward various applications in light trapping [4], radiative
cooling [5], and random lasing [6].

In this work, we investigate the optical response of
packed rectangular nanostructures on a surface, as they
are commonly employed as dipole scatterers in optical
devices [7–9] for various applications including light
harvesting [10] and biosensing [11]. However, a detailed
electromagnetic simulation of such an ensemble is a
computationally expensive task to perform and one rather
seeks the effective medium description as an approxima-
tion. Many homogenization theories with varying degrees
of applicability and complexity have been developed to-
ward this aim [12, 13]. Bruggeman’s theory models aggre-
gate structure with constituents that are treated on an
equal footing and therefore cannot be applied in this case
[14]. Maxwell–Garnett approximation, on the other hand,
models inclusions dispersed in a continuous host medium.
Its analytic simplicity arises from the consideration of
only the one-point probability function (density) where
convergence is assured under the dilute and long wave-
length limit. However, at large packing density, the posi-
tional and orientational correlations between the dipoles
are not negligible anymore and can drastically alter the
effective dielectric constant of the ensemble. The strong
contrast expansion method presented in the study by
Rechtsmanand and Torquato [13] is rather a generic and
exact approach that includes the contribution of high-
order point probability functions and thus captures the
correction due to the emerged correlations.

In this article, we investigate the influence of the packing
dynamic on the optical response of jammed rectangular
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nanostructures. A comprehensive workflow chart can be
found in the supplementarymaterial (sectionS1). In section 2,
we define the packing protocol used in the study and
compute themaximumachieved packing densities at various
aspect ratios. We proceed in section 3 with point process
statistical analysis to unravel the short-range ordering and
spontaneous alignment between the packed rectangles. In
section 4, we model the ensemble as a two-phase isotropic
medium and estimate the effective dielectric constant (εeff)
using the strong contrast expansionmethod. The last section
concludes and summarizes the work.

2 Random close packing

We consider the packing of hard rectangles of length l and
width w on a square substrate, where the interaction po-
tential ϕ(x) is infinite inside the rectangle region and zero
otherwise. Therefore, a stable state is a state with no
overlapping elements. The maximum packing density and
the state characteristics are protocol dependent. In this
work, we implement a collective rearrangement packing
protocol whichmodels an abrupt surge or sedimentation of
the rectangle concentration near an adsorbing edge which
is common in many chemical synthesis techniques [15, 16].
The algorithm starts by placing N identical rectangles of
aspect ratio α � l/w at random positions and orientations
on a flat substrate of areaAswith an initial packing fraction
ϕi � Nlw/As, as shown in Figure 1A. In an iterative pro-
cedure, each overlapping rectangle is individually dis-
placed from its initial position with a random radial
distance and orientation that are uniformly distributed on
the range of [0, 2l] and [0,π], respectively. The procedure
persists until the rectangle avoids overlapping or n at-
tempts has been reached after which the process is termi-
nated, and the rectangle is removed from the packing
process. To calculate the maximum packing density
(ϕmax), we configured the initial density to ϕi � 0.6,
number of attempts to n = 100,000, and particle number to
N = 10,000. Periodic boundaries were used to avoid finite
size effects, and the results were averaged over multiple
realizations to ensure convergence. Themaximumpacking
density achieved for different aspect ratios is shown in
Figure 1B.We note thatϕmax is aspect ratio dependent with
a unique cusp around α � 1.5. The decrease of ϕmax to the
right of the cusp can be explained through the lens of
Onsager’s exclusion area principle [17]. The principle states
that each rectangle has an excluding area A(l,w, θ) within
which other similar rectangles with a relative angel θ are
forbidden to occupy if overlapping is to be avoided, as
illustrated by the inset in Figure 1B. The ratio of the

rectangle area lw to what it excludes on average 〈A〉 across
all probable angels [0,π] has been shown to give an ac-
curate estimation of the percolation threshold [18] and is
given by the following equation:

ϕmax(α) �
lw
〈A〉

� α
c1(1 + α2) + c2α

(1)

where c1 � 2/π and c2 � (2 + 8/π) in the case of penetrable
rectangles. However, our protocol induces a nontrivial
positional and orientational correlation that makes the
excluded area principle difficult to be derived for ϕmax

estimation. In fact, this is the parking problem in 2D which
is still an open question to be answered. Nonetheless, we
found that the behavior can still bewell captured by Eq. (1),
using a fitted value of the c1 and c2 coefficients, as shown in
Figure 1B. However, the model fails to fit the cusp andϕmax

at low aspect ratios. Similar behavior has been observed for

Figure 1: Random close packing of hard rectangles:
(A) illustration of the collective rearrangement packing protocol with
ϕ(x) as the interaction potential and I(i)(ω) is the indicator function
of phase i in realizationω and (B) is the computedmaximumpacking
density (ϕmax) as a function of the aspect ratios (α). The blue dots
represent the simulateddata, and the red curve is a fitting line based
on the excluded area principle given by Eq. (1) with c1 = 0.047 and
c2 = 1.725. The inset illustrates the excluded area of a rectangle of
length l and width w with another identical rectangle with a relative
tilt θ.

706 M. Odeh et al.: Optical response of jammed rectangular nanostructures



packing hard ellipsoids, explained through the isostatic
conjecture, and verified through the famous M&M’s
experiment [19, 20]. The conjecture states that the mean
contact number between packed elements is on average
twice the number of degrees of freedom in a jammed
configuration. Consequently, deviating from squares to
rectangles introduces an additional degree of freedom
(orientation) to the packing process, which increases the
average contact numbers and consequently ϕmax. Strictly
speaking, our packing protocol does not lead to a jammed
state rather than a saturated state with an average contact
number of zero. Nonetheless, the state can still be treated
as a jammed one since the element cannot move once they
settled on a nonoverlapping position [20]. Therefore, there
are two competing effects occurring in the close packing
protocol. On the one hand, adding an extra degree of
freedom to squares gives extra flexibility to pack at higher
densities (isostatic conjecture), yet on the other hand,
increasing the degree of anisotropy prevents short-range
ordering and limits the maximum packing density instead
(exclusion area principle). These behaviors have a direct
influence on the effective dielectric constant of the random
jammed media. For example, engineering a random me-
dium with high dielectric constant requires, in general, a
high density of packed rectangles. Unintuitively, this can
be optimally approached by choosing rectangles of 1.5
aspect ratio, as can be deduced from Figure 1B.

3 Point process statistical analysis

The collective rearrangement packing protocol produces a
statistically homogeneous medium that we assume
ergodic (any single realization of the ensemble is repre-
sentative of the ensemble in the infinite area-limit). We
start our investigation by performing a stochastic point
process analysis. Each rectangle is represented by its two
midpoint coordinates (x, y) and the angle (θ) that the
longer axis makes with respect to a fixed global reference.
We calculate two important statistical descriptors. The
first is the radial pair correlation function, which is defined
as follows:

g2(r) � ρ2(r)
ρ2

, (2)

where ρ is the number density (number of points per unit
area in the infinite area limit) and ρ2(r) is the number of
points within a distance of r and r + dr from a reference
rectangle. Thus, a deviation of g2(r) from the unity provides
a measure of positional correlation or anticorrelation
between the rectangles. The second statistical descriptor is

the orientational correlation function gθ(r) defined in the
study by Ma and Torquato [21] as follows:

gθ(r) � <cos(2[θ(0) − θ(r)])> , (3)

which is an average measure of the degree of alignment
between two rectangles within a distance of r and r + dr.
Thus, gθ > 0 suggests statistically parallel rectangles, gθ < 0
suggests statistically perpendicular rectangles, and gθ � 0
suggests the lack of any preferential orientation. The two
statistical descriptorswere applied to the states ofmaximum
packed density that were presented in Figure 1B. The width
is normalized (w = 1) without loss of generality, and the
descriptors are plotted as shown in Figure 2A and B. We
observe the emergence of three distinct features on both
surfaces that can be fitted by three lines (p1, p2, p3) that
intersect at (α � 1, r � 1). Transitioning from squares to
rectangles causes an interesting trifurcation of the first
appearing peak at α � 1, as clarified by the top view insets of
Figure 2A and B. The trifurcation is a clear sign of the
isostatic conjecture. The conjecture states that in a jammed
configuration, the mean contact number between packed
elements is on average twice the number of degrees of
freedom (DOFs) [19, 20]. For simplicity, we can approximate
squares as circles and rectangles as ellipsoids by ignoring
the sharp edges that have a negligible influence on the
packing dynamic. Building on this approximation, there are
two DOFs for squares (x, y) and three DOFs for rectangles
(x, y, θ). According to the isostatic conjecture, we can
conclude that the average contact number increases from 4
to 6 when deforming squares to rectangles. Consequently,
the ensemble contains two extra possible configurations,
that is, in addition to the original configuration, and forms
the trifurcation observed in Figure 2A and B. The low g2
correlation in the triangular region between p1 and p2 is a
direct consequence of the excluding area principle. In other
words, as the aspect ratio increases, it becomes statistically
difficult to pack rectangles within close proximity. Figure 2C
shows a cross-sectional plot of both g2 and gθ for two
different aspect ratios. For the square case (α � 1), we note a
sharp increase in g2 at r > 1 indicating a high probability of
occupancy. On contrary to the case of circles packing where
the increase is abrupt, rectangle packing has a finite slope
that is attributed to their radial asymmetry. In addition, the
high probability of occupancy of the first neighbor square
induces a negative correlation on the next adjacent regions,
a repeated process that explains the oscillatory behavior of
g2(r) that is damped with distance. We also note that gθ is
approximately zero, suggesting the lack of any preferential
alignment between the packed squares. On the other hand,
for α � 3, gθ is positively correlated in the region between p2
and p3, whereas gr is negatively correlated. The statistical
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interpretation indicates that it is highly constrained to place
two rectangles in proximity, yet if it is deemed necessary,
theymust bewell aligned. However, such constraint is lifted
at p2 and further relaxed at p3. The three constraints can be
traced geometrically, as illustrated in Figure 2D. The p2 line
equals to the minimum distance when two perpendicular
rectangles are not overlapping, that is, when rp2 � (α + 1)/2.
The p3 line equals to the minimum distance of two stacked
rectangleson their longer axes, that is,when rp3 � α.Wealso
note that at each relaxation point (p1, p2, p3), a transition in
the sign of gθ occurs.

We conclude from this analysis the lack of long-range
translational or nematic order in the ensemble. The effec-
tive permittivity in the 2D plane is thus macroscopically
isotropic and polarization independent at all aspect ratios.
In addition, high aspect ratios have a destructive behavior
on short-range positional order, and therefore, their scat-
tering features will be weaker. Furthermore, the average

rectangle orientation after lifting the p2 constrain is
approximately θ ≈ π/4. In the simple dipole picture, this
suggests a spectral redshift for the resonance mode sup-
ported along the longer axis (h), as illustrated in themiddle
configuration of Figure 2D.

4 Strong contrast expansion of the
effective dielectric constant

The statistical properties of phase i in two-phase hetero-
geneousmedia can be specified by an infinite set of n-point

probability functions Sin [22]. In a homogeneous and
isotropic medium, the first term reduces simply to the

density of phase i (S(i)1 � ϕi), whereas the second term

S(i)2 (r) is interpreted as the probability of finding both
endpoints of a line segment of length r in phase i. In the

Figure 2: Point process analysis of maximally random packed rectangles:
(A) radial pair correlation functions g2(r, α) given by Eq. (2) and (B) orientational correlation function gθ(r, α) given by Eq. (3). Three different
aspect ratios are highlighted on both surfaces with different colors; the blue line corresponds to α � 1, green to α � 1.3, and red to α � 3. The
insets on both surfaces correspond to a top view perspective with three important features highlighted by p1, p2, p3 lines. (C) A cross sectional
plot of g2 andgθ surfaces at α � 1 andα � 3 and (D) geometrical illustration of the origin of p1, p2, p3 lines, respectively. For each configuration,
the dashed circle with radius rpi represents the shortest distance between rectangles’ center for overlap to be avoided.
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following discussion, we will drop the superscript (i) and
implicitly refer to the rectangle phase. The scattering
behavior of the ensemble is captured by the spectral den-
sity function χv(k) which is the Fourier transform of the

autocovariance function χv(r) � S2(r) − S21. Figure 3A
shows the spectral density for three different aspect ratios
(α � 1, 1.3, 3) at their maximum packing density limit.
Structureswith lowaspect ratios exhibit a clear attenuation
in their scattering behavior at small k wave vectors. This is

attributed to the suppression of long-range density fluc-
tuations due to the positional ordering of the packed ele-
ments. The attenuation becomes weaker as α increases due
to the destructive role of the addition of an extra DOF to the
packing process, as discussed previously. The scattering
behavior is reminiscent of hyperuniformity where χv(k)→
0 as k → 0 [23]. Hyperuniform structures have been shown
to exhibit unique optical properties including the forma-
tion of isotropic photonic bandgap that can be used for
light guiding and confinement [24, 25]. In addition, the
suppressed scattering can lead to transparency in a
dielectric medium [26] and enhanced optical absorption in
a lossy medium [27]. Although, strictly speaking, our
packing dynamic does not lead to hyperuniform structure
(χv(k) ≠ 0 as k → 0), shared properties are expected. Given
that the scattering is weak below the percolation threshold
due to the low number of scatterers and similarly weak at
maximum packing densities due to the suppression of
long-range fluctuations, we expect that there should be an
intermediate regime where the scattering events are
maximum. We evaluated the zeroth wavevector spectrum
density function χv(k � 0) for different aspect ratios (α)
and located the densities at which the function is
maximum, as shown in Figure 3B. Indeed, such an inter-
mediate regime exists between the percolation and
maximum packing density limits. In addition, its aspect
ratio dependence can also be fitted by the exclusion area
principle using Eq. (1).

From the calculated autocovariance function, we can
proceed in calculating the effective-dielectric constant by
the strong contrast expansion method. The expressions
presented in the study by Rechtsman and Torquato [13]
were formulated for 3D random structures. We rederive the
method for two-phase medium in 2D and truncate the ex-
pansions up to the second order to include the 2-point

probability function S(i)2 (r). In addition, we focus on the
effective dielectric constant experienced by a transverse
magnetic plane wave propagating parallel to the 2D
medium plane (kz � 0,Ez � 0). The effective permittivity
can be obtained from the following expression (see section
S2 for full discussion):

β2pqϕ
2
pβ

−1
eq � ϕpβpq − A(p)

2 β2pq︸���︷︷���︸
2nd order

, (4)

whereϕp is the area density of the packed rectangles, βpq �
(εp − εq)/(εp + εq) is the rectangles polarizability (phase p)
with respect to the environment (phase q), and βeq �
(εeff − εq)/(εeff + εq) is the effective polarizability with
respect to the environment. Ap

2 is the coefficient of the
second-order correction for a 2D isotropic medium
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Figure 3: Two-phase heterogeneous analysis:
(A) spectral density images for α � 1, 1.3, 3 at ϕmax followed by a
radial average plot and (B) density plot as a function of the aspect
ratio, showing three curves fitted using the excluded are principle
given by Eq. (1): (i) percolation threshold curve (yellow) fitted with
c1 � 2/π and c2 � (2 + 8/π) where ensembles below exhibit weak
correlation; (ii) maximum scattering density curve (blue) fitted with
c1 � 0.3780 and c2 � 1.5255 represents the ensembles at which the
zeroth wavevector spectral density function χv(k � 0) exhibits a
maximum; and (iii) the maximum packing density curve (red) fitted
with c1 � 0.047 and c2 � 1.725.
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A(p)
2 � iπk2q

2
∫

rmax

0

dr rH(1)
0 (kqr) χV(r), (5)

where H(1)
0 is the Hankel function of the first kind which

acts as propagator function for χV(r). It is important to
emphasize that Eq. (5) is approximately valid when
λq ≫ rmax, where λq is the wavelength in the background
medium and rmax is the radius at which the positional
correlation is negligible (χV(r > rmax) ≈ 0). In other words,
all positionally correlated dipoles are assumed to be
excited in phase by an external plane wave of wavelength
λq. However, the condition is not stringent, and an

extension of the applicable wavelength range has been
recently shown possible [28]. It can be noted that when
Ap
2β

2
pq approaches zero, the expression reduces simply to

the well-known Maxwell–Garnett approximation. This is
approximately valid for large wavelength (kq → 0) and
short-range autocovariance function χV(r). In this limit,
pure dielectric constituents (εp, εq) result in a pure effective
permittivity (Im[εeff] � 0). The conditions are approxi-
mately met for subwavelength rectangles below the
percolation threshold, as illustrated in Figure 3B. This is
because, above the percolation threshold, the formation of
an infinite sized cluster of overlapping rectangles requires
many adjustments of the rectangles’ positions and orien-
tations to reach a nonoverlapping state, resulting in a
long-range autocovariance function χV(r). The real and
imaginary parts of εeff were evaluated as a function of
wavelength for three different aspect ratios (α � 1, 1.3, 3) at
their maximum packing densities (ϕmax), as shown in
Figure 4. In the studied configurations, χV(r) becomes in
the order of 10−6 for r > 5. Therefore, εeff calculated by Eq. (4)
is approximately accurate for λq ≫ 5. It can also be noted
that the complex permittivity approaches the one calcu-
lated by the Maxwell–Garnett approximation as λq →∞.
Furthermore, large aspect ratios damp the resonance
and spread the scattering for larger wavelengths. This is
consistent with power spectrum density shown in
Figure 3A since there exists a proportionality between
Im[εeff] and χV(k) as k → 0 [13].

5 Conclusion

Random packed media are a ubiquitous and natural
outcome of various chemical synthesis techniques. In the
subwavelength limit, the complex inhomogeneous me-
dium can be described by an effective homogeneous one
with great accuracy. In this work, we statistically analyze
jammed rectangular dipoles under the random close
packing protocol for various densities and aspect ratios.
The arising microscopic correlations were traced and
shown to have direct and indirect consequences on the
effective dielectric constant of themedium. Statistical tools
and concepts such as Onsager’s excluded area principle,
the positional correlation function, and the orientational
correlation function, are of great utilities in describing
the state of the ensemble and deduce some of the
optical characteristics such as polarization dependence
and spectral shifts. To study the influence of structural
correlations on the macroscopic optical response, we
accommodate the strong contrast expansionmethod to two-
dimensional structure and use it to estimate the effective

Figure 4: The complex effective dielectric constant (εeff) for jammed
rectangular nanostructures calculated by the strong contrast
expansionmethod and plotted as a function of wavelength (λq). The
2D rectangles havewidthw= 1, heighth � α, permittivity εp � 9, and
are maximally packed (ϕmax) in a background medium with
permittivity ϵq � 1. (A) The real part of εeff showing an explicit
redshift as α increases, and (B) the imaginary part of εeff showing
larger scattering as α increases for λq ≫ rmax. In the longwavelength
limit, both the real and imaginary parts of εeff approach the
Maxwell–Garnett approximation.
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dielectric constant for the generated ensembles. This allows
us to capture various effects beyond what Maxwell–Garnett
approximation can, such as scattering enhancement and
suppression as well as correlation-induced spectral shift.
This work paves a systematic path toward engineering
random medium with tailored optical properties.
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