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Abstract: With growing interest in the spatial dimension
of light, multimode fibers, which support eigenmodes
with unique spatial and polarization attributes, have
experienced resurgent attention. Exploiting this spatial
diversity often requires robust modes during propagation,
which, in realistic fibers, experience perturbations such
as bends and path redirections. By isolating the effects of
different perturbations an optical fiber experiences, we
study the fundamental characteristics that distinguish
the propagation stability of different spatial modes. Fiber
perturbations can be cast in terms of the angular
momentum they impart on light. Hence, the angular
momentum content of eigenmodes (including their
polarization states) plays a crucial role in how different
modes are affected by fiber perturbations. We show
that, accounting for common fiber-deployment condi-
tions, including the more subtle effect of light’s path
memory arising from geometric Pancharatnam-Berry
phases, circularly polarized orbital angular momentum
modes are the most stable eigenbasis for light propaga-
tion in suitably designed fibers. Aided by this stability, we
show a controllable, wavelength-agnostic means of
tailoring light’s phase due to its geometric phase arising
from path memory effects. We expect that these findings
will help inform the optimal modal basis to use in the
variety of applications that envisage using higher-order
modes of optical fibers.
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1 Introduction

Multimode fibers (MMFs) and their spatially diverse
higher-order modes (HOMs) have experienced alternating
levels of interest ever since the invention of optical fibers.
Although one of the first applications of light propagation,
for image transport with flexible optical fiber waveguides,
utilized MMFs [1], the development of single-mode fibers
(SMFs) quickly diverted attention away from MMFs. One
important reason was that any realistic deployment of
optical fibers includes perturbations, such as bends, twists,
3D paths as well as thermal, mechanical, and environ-
mental fluctuations. While modes in a perfectly straight,
circular fiber are theoretically orthogonal, perturbations
typically cause coupling between them, leading to poten-
tial loss of signal purity or information content.
Subsequent advances in light guidance, including micro-
structuring [2], photonic bandgaps [3], or antiresonant
structures [4], primarily focused on means to strip out [5-7]
HOMs to effectively realize single-mode guidance. In fact,
even an SMF is two-moded, accounting for the two
orthogonal polarization eigenmodes. As such, bend- or
geometry-induced fiber birefringence [8] can cause
polarization-mode dispersion in classical communications
links [9] and loss of entanglement preservation in quantum
links [10].

The advent of improved signal conditioning and
reception technologies over the last decade has, however,
refocused investigations on MMFs in which modes mix.
Because this mixing predominantly represents unitary
transformations, multi-in multi-out digital signal process-
ing can disentangle mode mixing in the electronic domain
[11], resulting in scaling the capacity of telecommunica-
tions links [12]. Analysis of the speckle patterns out of
MMFs enables spectrometry [13]. On the other hand,
adaptively controlling the speckle pattern at the input or
output enables imaging with MMFs [14, 15]. Linear mixing,
when combined with nonlinear coupling, leads to effects
such as multimode solitons [16, 17], nondissipative beam
cleanup [18] and geometric parametric instabilities [19],
among a host of multimode nonlinear effects not seen in
SMFs.
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The aforementioned benefits of a mixed ensemble of
modes notwithstanding the ability to excite and propagate
specific HOMs remain especially desirable. As is evident
from any elementary solution of eigenmodes in wave-
guides, each HOM has a characteristic phase and group
velocity, group-velocity dispersion, modal area (A.s) [20,
21]. For instance, HOMs can be tailored to have large
normal [22] or anomalous dispersion [23], with applications
in dispersion control for telecom links [24, 25] and ultra-
short pulses [26]. One of the first demonstrations of
nonlinear wave mixing in optical fibers involved inter-
modal phase matching between HOMs [27], the diversity of
HOMs yielding enhanced degrees of freedom to achieve
momentum conservation [28, 29]. Raman [30] or Briliouin
[31] scattering have shown to be strongly dependent on,
and hence be tailorable by, the mode(s) in which light
propagates. These concepts have received increased
attention for applications such as third-harmonic genera-
tion [32], extending supercontinuum generation [33],
power-scalable source engineering [30, 34] or new forms of
quantum sources [35]. The inherently large Aes of HOMs
has led to ultralarge A.g, low-nonlinearity flexible fibers
[36], with applications in fiber lasers [37]. More recently,
fiber modes with orbital angular momentum (OAM) have
been shown to yield an additional degree of freedom with
which to control the nonlinear interactions of light in fibers
[38-40]. Fiber sources operating in HOMs are also inter-
esting for applications where a non-Gaussian-shaped
emission is desired, such as in nanoscale microscopy [41,
42] and laser machining [43]. Finally, perhaps most
significantly over the last few years, there has been an
emerging realization that individual modes, especially
those carrying OAM, can enable signal propagation with
low or limited mode mixing [44], as a means of increasing
the capacity of classical communications networks [45-48]
or for enhancing the security of quantum links [49]. All
these applications have two critical requirements: (1) the
ability to accurately control mode transformations with, for
instance, fiber gratings [50], diffractive optics [51], Pan-
charatnam-Berry optical elements (PBOE) [52], spatial
light modulators [53], or metasurfaces [54]; and (2)
crucially, the need for linearly, stably propagating desired
modes in fibers.

Here, we address the latter issue — the propagation
stability of optical fiber modes. Any realistic analysis of an
optical fiber must necessarily consider the perturbations it
encounters over the long lengths of signal transmission in
facilitates. The key question is, in the presence of pertur-
bations, how do otherwise theoretically orthogonal modes
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of a cylindrically symmetric fiber mix with each other? This
is a very complex problem for long-haul networks where
propagation over 100s-1000s of kilometers of fiber en-
counters a wide array of stochastically varying perturba-
tions. As a result, many realistic models for such mode
coupling are phenomenological in nature [55, 56]. For
shorter lengths, spanning a few meters to kilometers
(lengths representing scales of fiber usage in most appli-
cations, such as fiber lasers and amplifiers, data-center
links, nonlinear devices or sensors), this is a more tractable
problem that can yield some first-principles insight. We
show that certain classes of spatial modes are more stable
and propagation-tolerant than others. Somewhat counter-
intuitively, we also show that this stability depends even
on the bases of modes used - that is, one set of modes can
be more stable than modes represented in a mathemati-
cally equivalent but rotated basis. Fundamentally, we
show that, accounting for typical perturbations an optical
fiber encounters, the circularly polarized OAM eigenbasis
represents the most stable set of modes for light
transmission.

2 Mode classifications and fiber
perturbations

2.1 Mode classifications

We start with a brief description of the eigenmodes of a
cylindrically symmetric, step-index profile fiber. The 2D
cross-section allows modes to be classified by two
orthogonal polarization distributions, as well as a radial
order index m, and an azimuthal order index L. Equa-
tion (1) shows the field distributions for the class of L = 0
modes (HE, ,;,) in two polarization bases:

) HE! HE!
E m= IBO,mZ L 1,m 1,m 1
o= | o [ w
where
HE] [ % HE] , G
| = Fom 1, "Ul =Fonm pl
[ HE{m ] o.m (T) v HEl,m o.m (T) G

where G* = X + iy, representing left or right handed circular
polarization, respectively; Fo () represents the radial
profile of the field, which is typically a piecewise linear
combination of Bessel functions for most profiles; f is the
projection of the wave vector Kin the propagation direction
(usually referenced by the mode’s effective index,
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Nege = AB/2m, where A is the free-space wavelength of light).
Paying attention to its subscripts, we see that f§ is distinct
for each radial order m, but is identical for either polari-
zation eigenmodes, represented in either bases. Modes
designated as HE;,;,, (or EH; ;,, relevant for HOMs,
described later) signify that fields of fiber modes are not
strictly transverse to their propagation direction, but are,
instead, a hybrid of electric and magnetic fields. This hy-
bridization is typically negligible in weakly guiding fibers,
where a scalar approximation leads to the commonly
encountered linearly polarized (LP) modes, possessing a
uniform, linear spatial polarization distribution. Similarly,
we can have circularly polarized (CP) modes, denoting
spatially uniform circular polarization distributions. For
L =0 modes in most weakly guided fibers, the scalar modes
(LPo,, and CPy ,,,) are almost identical to the vector modes
HE, ,, (with higher index contrast, this approximation
breaks down, but, to first order, the field distributions
remain the same, with only a small modification to f3):

e [ [ B0]] o

LP{ ., CP;
where
LP§ X CP;, g
m| _F 1, = bl
[ LPg m ] O’m(r)[ Y] [ CPo. O’m(r)[ o

where the accent ~ denotes that the quantities have been
calculated under the scalar approximation.

(a)
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Figure 1 shows the intensity profiles of two repre-
sentative modes, with L = 0, and m = 1 and 3, respec-
tively, with (m - 1) signifying the number of intensity
nulls in the radial direction. Only the LP and CP modes
are shown because the vector and scalar modes are
almost identical for L = 0. The field with L=0and m = 1is
the well-known fundamental mode of SMFs. Linear
combinations of the modes in any basis yield modes in
another basis, as illustrated by the lines along with the +i
and -i signs connecting modes of the different bases.
Such linear combinations represent coordinate rotation
among mutually unbiased bases (MUB), often used to
transmit quantum information. Generally, the funda-
mental mode of SMFs and the entire class of L = 0 modes
are twofold degenerate (in polarization) and any arbi-
trary polarization state of these modes propagates
similarly in a fiber.

The situation is more complex for L # 0 modes. We leave
aside the case of |L| = 1, which has its own peculiar behavior
but which has been well-studied in the past [57]. Equation (3)
shows the field distributions in two representations
(assuming L > 1) similar to those used in Eq. (1):

HEf'(", ePun® OAM', e¥un®
HEX | e OAM-, eP.n*
EL,m = even iﬁ” z or - iﬁ" z (3)

EHS"" ePim OAM;, e¥un
EHYY, e OAM', ei.n®

(b)

| - }7!

+i =i
&+

Figure 1: Field representations for L = 0 modes in a circular, step-index-guided fiber. Gray scale images show intensity distributions and red
arrows indicate polarization state, either linear (straight arrows in top row) or circular (circular arrows in bottom row). The relationship
between linear and circular polarizations are shown for the (@) m =1 and (b) m = 3 modes. The colored lines indicate that the circular

polarization modes can be represented as linear combinations of the two orthgonal linear polarization modes. The +i or —i terms represent a
/2 or —-1/2 phase shift in the linear combinations. Conversely, linear polarization modes can be decomposed into two orthogonal circular
polarization modes as well. The position where the arrowheads is shown within the circles representing circular polarizations are intentionally
distinct, indicating a phase shift. Circular polarization representations where the arrowhead is on the top portion of respective circles is m
phase-shifted from those in which they are on the bottom of the circle. This is a common feature of LP, ,, or CPy ,, modes — that each adjacent
intensity ring of the mode accumulates a m phase shift and hence their fields are flipped.
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where
[ HELS _ .
o xcos (Lg) — ysin (L)
HE o FLo () xsin (Lg) + ycos (Ly)
= r
EHS"S" BN %cos (Lg) + ysin (Lo)
. xsin (L) — ycos (Lg)
| EHYYY
r OAM!
fL G exp (iLyp)
OAM, _E ™) 0 exp(-iLyp)
0AM;, | ""| o exp(iLy)
. 5" exp(-iLg)
[ 0AMY,

where F; ,,(r) represents the radial profile of the fields, and
¢ is the azimuthal coordinate. In analogy with Eq. (1) (or
Eq. (2)), the field is either linearly or circularly polarized at
any specific transverse position in either representation.
However, in contrast with the L = 0 modes, in one of the
representations (HE/EH, also commonly called vector
modes), the polarization distributions are spatially
nonuniform. The uniformly circularly polarized mode ba-
sis is denoted as the OAM basis because the similarity of
these fiber modes with free-space beams carrying OAM on

even
L 2.1.%

B2
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account of the helical phase ¢ of the electric field [58].
These vector and OAM modes are illustrated in Figure 2,
where the lines along with the +i and -i signs show the
linear combinations that rotate modes from one basis to
another. There are notable differences compared with the
L = 0 modes. First, for each value of |L| and m, there are
four, instead of two, modes. Next, the propagation con-
stants for the exact modes are not all degenerate, but
instead depend on the internal symmetries of the modes. In
the OAM basis, the modes are pairwise degenerate, but
have different Ss depending on whether signs of ¢ and L are
the same (Spin—Orbit aligned — SOa — modes, with ﬁ'L,m
shown in Eq. (3)) or if they are opposite (Spin—Orbit anti-
aligned — SOaa - modes, with ﬁLm shown in Eq. (3)).
Correspondingly, in the vector basis, the § of the HE and EH
modes differ. As in the case of the L = 0 modes shown in
Figure 1, the SOa OAM modes and HE vector modes form an
MUB and are linear combinations of one another, whereas
the SOaa OAM modes and EH vector modes form a separate
MUB.

Another, in fact, better known representation for the
L >1modes is the LP designation, equivalent, as in the case
of the L = 0 modes shown in Eq. (2), to the CP designation.

Figure 2: Intensity and polarization patterns of linearly polarized (LP) (top row), vector (middle row), and orbital angular momentum (OAM)
modes (bottom row) with azimuthal index |L| = 2 and radial index m = 1. Colored lines show linear combinations between groups. The +i or —i
terms represent a /2 or —m/2 phase shift in the linear combinations. As described in the caption of Figure 1, azimuthal shifts of the
arrows on the OAM modes indicate an azimuthal phase shift. The propagation constant is ﬁ'z,l for Spin—Orbit aligned (SOa) modes (and the
corresponding HE modes), and B;,l for SOaa modes (and the corresponding EH modes). The propagation constant of the LP designation is

Bo,m» which is an average of ,B'L1 and /3;)1.
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Equation (4) shows the field distributions of this scalar desig-
nation in two representations similar to those used in Eq. (2):

3 I e
LPodd CPodd
E; _ eiﬁ\]::nz ) L,m,x or Lm,+ (4)
’ LPy CPys _
LPLmy CPL
where
LPL e -
[ podd x cos(Ly)
Lmx xsin(Le)
=Fpm (1)
odd " ysin(Le)
LPL oy y @
e, | yeos(ie)
CPLm -
cpod 0" cos(Lg)
P+ 0" sin(Ly)
=Fpm(1)
odd . 0 sin(L
cPYd (Lp)
o cos(Ly)
| CPLn- ]

These intensity and polarization pattern of these LP
designations (the CP designation is ignored here as their
relationship with LP counterparts is the same as that in the
L =0 cases) areillustrated in the first row of Figure 2. Again,
lines along with the + and - signs show how they can also
be represented as a linear combination of vector (or OAM)
modes. As evident from Figure 2, in contrast to the exact
solutions (vector/OAM modes), the LP basis for |[L| > 1
modes is actually a mixture of two OAM or vector modes of
different Bs. This has consequences for mode stability, as
elaborated in Section 3.

2.2 Fiber perturbations

Figure 3 schematically shows the neg for select modes with
indices L and m in select index-guided fiber designs. The
coupling efficiency n, between these modes is given by [59]:

n o I I [Fom @ - Poer (1,0, 2) Fr (- e (B-B)z . gi(L-L)p
-dA-dz
)
where the perturbation term Ppe is a matrix, accounting
for the fact that the fields here are vector instead of scalar

quantities. The most common perturbation Py, in a
fiber is a bend, which induces birefringence (i.e., it has an
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off-diagonal matrix element that mixes the orthogonal
components of F; ,, and F; ), and imparts OAM (i.e., it has
a matrix element of the form e¢ that spans all AL,
although |AL| = 1 is often the strongest component). Note
that, although this integral was written with fields
described in the OAM basis shown in Eq. (3), similar
behavior may be expected of the integral written in other
bases, because, after all, they are rotated MUBs of one
another. Much physical intuition can be gained from
inspecting the form of this integral.

Coupling is expected to be highest for degenerate
modes, that is, when f = B’. Referring back to Eq. (2) and
Figure 1, this clarifies why any bend causes polarization
mixing between the two degenerate L = 0 modes, including
SMF. Coupling between symmetric and antisymmetric
modes, with |[AL| = 1, also appears to be easy with bends,
and circumventing this has involved several instances of
fiber designs or the use of modes where the effective-index
separation (8—f’) between desired and relevant undesired
modes is exacerbated. The amount these modes should be
separated depends on specific experimental conditions

and modes of interest, but as a general rule, ﬁ, for a bent,
flexible fiber comprises a z-dependent matrix element
e??/Le where L. is a correlation length representing char-
acteristic beat lengths for the perturbations. Typically,
L. ~1 mm to 1 cm, and hence it is easy to see that Aneg
between modes of ~10™* to 10~ typically reduces the inte-
gralin Eq. (5), hence minimizing coupling. Early dispersion
compensation efforts [60, 61] involved “W” fiber designs
that separated the neg of the desired LP,, mode from the
LP,; and LP,, modes (Angs denoted as red arrows in
Figure 3) by Aneg; > 1072, Simple step index fibers have a
naturally mode-separating feature, where Angg between a
desired LP, ,, and the undesired LP,,, or LP;,_; modes
monotonically increases with radial order m [36] (green
arrows in Figure 3). This feature has been used for scaling
the A.s of fiber modes [62], and stable modes with
Aecge ~ 6000 pm? and yet Aneg >5 x 107 have now been
demonstrated [63] for fiber laser applications. Ring-core
designs [64] perform two functions that enable stable OAM
mode propagation [65, 66]. Their high index steps [57, 67,
68] help exacerbate the mode separations between SOa
and SOaa modes (or, equivalently, HE and EH modes) to
the order of Angg > 5 x 107° (blue arrow in Figure 3), and the
thin ring helps minimize the number of other radial order
modes [69] that might be accidentally degenerate (and
hence inadvertently mix) with the desired OAM modes.
This design methodology has analogies with spin—orbit
coupling for electrons in confined potentials [70], and has
enabled device length (>10 m) fiber propagation of 24
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Angps>1073

Angpr> 5% 1075
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Figure 3: ne distributions for select modes with indices L and m. For visual clarity, not illustrated are polarization degeneracies of any of the
modes or the nes degeneracies of any except for the |L| = 5 mode. Orange arrows leading to representative mode images for corresponding
fiber designs (gray shaded features) describe mode separations (quantified by Ane) for a select class of modes in their respective fibers. The
neg of the LPg , mode can be separated from LP,; and LP; , modes (red arrows) by using the class of “W” shape fiber designs, enabling its
stable propagation for dispersion control designs. The neg splitting of |L| =5 OAM modes (blue arrow) can be at least 5 x 107° in ring-core fiber
designs, such that both |L| =5 SOa and SOaa modes can propagate stably, yielding OAM mode stability in fibers. The nes splitting between
LPo,s and its nearest neighboring LP, ,, modes can be larger than 5 x 10~*in simple step-index fibers (green arrows), enabling stable guidance

of modes with large Aess.

modes [69], to date. Equation (5) and the form of Pper point
to an interesting mode stability criterion for OAM modes

with high L indices. Pye: from a bent fiber causes bire-
fringence, and this is especially efficient in mixing two
degenerate states of orthogonal polarizations — this was
discussed in the context of L = 0 modes, which described
why LP, ,,, modes seldom maintain polarization in a bent
fiber. Because the cylindrical symmetry of an optical fiber
implies that all modes have, at least, twofold (polarization)
degeneracy (see Egs. (1)-(4)), one expects this mixing to be
commonly encountered, as in SMF or LP, ,, modes. For low
|L| modes, this has indeed been observed [71]. But as |L| of
OAM modes increases, note that coupling between their
degenerate counterparts additionally involves changing

OAM from +L to —L, that is, by |AL| = |2L|. Because Ppert
primarily induces |AL|=1 coupling, mixing between
degenerate OAM modes reduces with |L|. Hence, even
degenerate states of high |[L| OAM modes in suitably
designed fibers do not mix [72]. That is, select modes can be
polarization maintaining even in strictly circular fibers.

The (bend) perturbations considered thus far assumed
in-plane redirection of light. Although it is possible to
generalize Eq. (5) to consider more complex perturbations,
considerable insight is obtained by independently
considering the perturbation associated with a slow,
adiabatic redirection of light in 3D space (out of plane).
After all, this is a rather common perturbation encountered
with a flexible fiber. Equation (5) suggests that, in the
absence of other perturbations (bend-induced birefrin-
gence or angular momentum exchange, considered previ-
ously), such a slow, adiabatic change would have no effect.
However, in fact, it does. The phase added by geometrical
transformations is distinct from the more common propa-
gating phase associated with Bz of a beam of light. The
discovery and exposition of this geometric phase, radically
different from the propagating dynamic phase, dates back
to the seminal report by S. Pancharatnam in 1956 [73]. It
took ~30 years for its significance to be appreciated,
awaiting the generalization of this concept in quantum
mechanics by M. Berry [74]. One important manifestation
of this concept is the spin-redirection phase demonstrated
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by Tomita et al. [75]. A carefully constructed experiment
with SMF showed that a fiber, configured to traverse a 3D
route in space, acquired phase that was dependent only on
the solid angle subtended by the fiber path in momentum
(wavevector) space. The sign of this phase depends on the
handedness of the circular polarization of a photon. Each
degenerate mode in the CP, ; basis (see Eg. (2)) acquires a
geometric phase @, of sign opposite to that of its polari-
zation (¢). This concept is intimately related to the idea
that light carrying circular polarization denotes photons
carrying spin angular momentum (SAM) [76], and that a 3D
path of light imparts extrinsic angular momentum to it.
Thus, an LP,; mode, which is the linear combination of
two orthogonal CP, ; modes, rotates under such geometric
perturbations. Fundamentally distinct from the conven-
tional dynamic phase (which includes, birefringence,
angular momentum exchange, etc., discussed earlier) with
dependence on propagation length, the geometric phase
stores “memory” of the evolution (like geometry of the
pathway) of a lightwave [77, 78]. The ray trajectory can be
continuously deformed into any shape without changing
the geometric phase as long as the solid angle remains
unchanged, pointing to the topological nature of the effect.
The composite effect of (bend-induced) birefringence as
well as geometric perturbations on SMFs is illustrated in
Figure 4. The first section of the fiber illustrates only a 3D
path (geometric transformation — the fact that the fiber is
lifted out of plane is schematically illustrated by a shadow
it subtends, in-plane). This adds phase in the CP, ; basis,
hence a single CP,; mode merely acquires a phase. By
contrast, the LP, ; mode rotates in polarization orientation.
After that, the second section of the fiber illustrates a
conventional bend that induces birefringence, which
serves to convert both the CPg ; as well as LP, ; modes into
modes with arbitrary elliptical polarization states.

The preceding analysis was restricted to the funda-
mental mode of SMF, that is, the L = 0, m = 1 mode
(though similar behavior is expected for higher m LPy ,,/
CPy,» modes). In these modes, the only contribution to
angular momentum arises from the polarization (7).
This concept is extendable to beams carrying OAM in
addition to SAM, and the resultant geometric phase is
given by [79]:

Dg(C) =—(0+L)Q(0) (6)

where C represents the path contour, Q(C) represents the
solid angle subtended by this path in momentum space,
and o represents the handedness of circular polarization or
amount of SAM, taking values of +1 for light with ¢*, and all
other quantities have been previously defined. As is
evident, geometric phase is enhanced for OAM modes, and
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Section Il

Section | [0) g

Figure 4: The effect of nonplanar and birefringent perturbations on
the polarization of light launched into single-mode fibers (SMFs),
illustrated as a flexed gray cylinder. Solid red arrows represent
linear polarization states of light in the fiber at different positions
along the propagation direction, with the dashed arrows denoting
the state it possessed just before propagating to that position.
Similarly, arrows on red circles represent circular polarization states
and ellipses denote arbitrary elliptically polarized states. Mode
transformations described below assume that light enters the fiber
at the upper left end. The first section (I) represents an out-of-plane
path (schematically illustrated by a shadow it subtends in plane)
thatis of large bending radii and hence free from fiber birefringence.
The second section (Il) represents an in-plane path that has strong
birefringence. For a fundamental CP, ; mode with right-hand circular
polarization, the nonplanar path imparts an extra phase @4 due to
geometric effects arising from Pancharatnam-Berry phases, but
otherwise does not perturb the polarization state. This extra phase
isillustrated by an azimuthal shift of the arrowhead. A mode with left
circular polarization would behave similarly but accumulate an
opposite phase @,. By contrast, a fundamental LP, ; mode with
horizontal polarization, being a linear combination the two
orthogonal circular polarizations, is rotated by an angle @4 along
the nonplanar path. The subsequent bend of section Il induces
birefringence, and hence transforms any LP, ; or CP, ; mode into
arbitrary elliptically polarized states, with ellipticity and handed-
ness controlled by the strength of the bend-induced birefringence.

depends on the total angular momentum (TAM) of a
photon. Observing this effect has historically been
obscured by the fact that fiber modes experience all
aforementioned dynamic and geometric perturbations
simultaneously. One report [80], describing the strength of
a so-called optical Magnus effect, showed that the speckle
pattern out of a multimode fiber rotates when changing the
sign of circular polarization, with the effect being propor-
tional to the solid angle subtended by the fiber coil in the
momentum space. A fiber in which low |L| OAM or vector
modes were excited showed [81] the rotation of polariza-
tions pattern to be explicitly dependent on mode order L.
Unfortunately, concurrent birefringent and angular mo-
mentum coupling implied that the experimentally
observed rotation did not match the theory well because
the SOa and SOaa modes also coupled due to bends and
birefringence. In fact, the first experiment [75] with SMFs,



216 —— Z.Maand S. Ramachandran: Propagation stability in fibers and the role of path memory

described earlier, emphasized the need for short fibers and
large bending radii to observe the effect with reasonable
fidelity.

3 Propagation stability
experiments

The advent of ring-core fibers greatly aids the study of
propagation effects in perturbed fibers because of the
ability to isolate the effects of the disparate perturbations
described in section 2. As described earlier, the ring-core
fiber minimizes coupling within the mode group - that is,
coupling between the SOa and SOaa pairs of modes (see
Figure 3), and the angular momentum conservation effect
forbids coupling between degenerate states for high
enough |L|.

In this section, we describe experiments probing the
propagation stability of different fiber modes. We do not
consider the L = 0 LP or CP modes because the funda-
mental SMF mode has been well-studied and higher LP, ,,,/
CPo,m modes essentially behave similarly in fibers where
they are sufficiently isolated. We also limit ourselves to the
study of |L| > 1 modes but with m = 1 because higher radial
orders (higher m) modes also essentially behave similarly.
We first consider modes in the LP basis, shown in the top
row of Figure 2(a). Note that each LP mode is a linear
combination of two vector or OAM modes of distinct
propagation constants 8’ and f”, respectively — indeed,

this is the origin of the average B defined under this scalar
approximation (Z% ~ %) Hence, these modes are

fundamentally unstable, in that their spatial patterns and
polarizations rotate upon propagation, even in a strictly
straight, perturbation-free fiber. This is evident from
inspecting the two distinct LP mode images in Figure 2(a)
arising from the addition or subtraction of nondegenerate
vector or OAM modes — the nondegeneracy necessarily
means that the phase difference between them oscillates

with propagation. As such, LP modes of L # O are never
stable in a fiber, and their use necessarily requires pre- or
post-processing, optically or electronically, for informa-
tion recovery.

Figure 5(a) shows the experimental setup [82] used for
studying the mixing of two degenerate OAM or vector
modes, in a 4-m long ring-core fiber [72] supporting stable
propagation (i.e., without SOa—-SOaa mixing) of high-|L|
modes (|L| = 5, 6, 7). The incoming Gaussian beam at
1550 nm from an external cavity laser (ECL) is converted
into the desired OAM or vector mode using a PBOE called
g-plate [52, 83]. A g-plate with topological charge g can
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project circular polarization onto OAM modes of order
|L| = |2g|, with the spin—orbit alignment dependent on the
sign of q (Eq. (7).

AG* +Bo~ 2 A6 e + Bg*e 29 @

where the arrow denotes the transformation induced by
the g-plate and A and B are mode amplitudes.

In the following representative experiments, we used
g = 7/2, which causes Gaussian beams of two circular po-
larizations 6" and 6~ to be converted into two degenerate
SOaa OAM modes of L = +76~ and L = -70", respectively.
The purity of OAM modes excited in the fiber is confirmed
to be greater than 15 dB via spatial interferometry [71]. The
output of the ring-core fiber is then converted back to a
fundamental Gaussian-shaped free-space modes using an
identical g-plate. Thereafter, with appropriate polarization
optics, the two orthogonal polarization components of the
output beam can be spatially separated and projected onto
a camera. Therefore, the power ratio between polarization
bins on the camera represents the mixing ratio of two
degenerate OAM modes in the fiber. By launching a pure
mode into the fiber, its stability within the fiber can be
deduced by measuring the relative power scattered into its
degenerate counterpart. The combination of g-plate and
wave plates can not only generate two degenerate OAM
modes but also any of their linear combinations. Because
linear polarizations are linear combinations of circular
polarizations and vector modes are linear combinations of
OAM modes, Gaussian beams with two orthogonal linear
polarizations can be mapped onto two degenerate vector
modes (A = +B in Eq. (7). Reciprocally, measuring the
power ratio in the two linearly polarized bins yields the
mode-mixing ratio between the two degenerate vector
modes. By switching the polarization between circular and
linear using quarter-wave plates (or their lack, thereof), we
are able to switch between the OAM and vector modal
bases with ease while maintaining all other experimental
(perturbative) conditions. Representative experimental
results on propagation stability in the presence of in-plane
and out-of-plane bends are shown for the |L| =7 SOaa OAM
modes and the corresponding mathematically rotated ba-
sis of EHg ; odd and even modes.

The plots in Figure 5(c) and (d) show the measured
power fluctuations between two degenerate OAM and
vector modes, respectively, as the fiber is bent, in plane, as
illustrated in Figure 5(b). When the input is an OAM mode
(L = -76"), a negligible amount of power (~-12 dB) is
scattered to its degenerate counterpart. This is consistent
with earlier observations that high |L| OAM modes are
stable, even between degenerate modes, in ring-core fibers

[72]. For a vector mode input (EHgy"), the power of para-

sitic degenerate mode (EHJ!) remains mostly low, at
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Figure 5: (a) Experimental setup used for studying the mixing ratio of two degenerate orbital angular momentum (OAM) or vector modes. For
the OAM basis, the quarter-wave plate (A/4) is rotated to an angle such that the fast axis is 45° with respect to the axis of polarizer to generate
circularly polarized light, which is converted to OAM modes by the g-plate. In contrast, for the vector basis, the fast axis of the quarter-wave
plateis aligned with the axis of the polarizer, such that linearly polarized light can be projected on to corresponding vector modes; Areciprocal
setup at the fiber output converts the modes back to Gaussian beams, with the power in each polarization bin being proportional to the power
of the individual degenerate (OAM or vector) modes at the fiber output. For the vector mode measurement, the output quarter-wave plate is
removed. When measuring OAM mode stability, the input was a ~15-dB pure L = -76" mode, whereas, during the vector mode stability
measurements, the input was a ~10-dB pure EHg'7" mode. (b) Schematic of fiber loops being bent in-plane to varying degrees, during the
measurement. Part of the fiber loops (radius ~12 cm) are gradually bent into radius ~4 cm, and then return back to the original; (c) Plot of
relative power in the two degenerate OAM modes (L = ¥76") under the application of perturbations as shown in (b); (d) Corresponding plot of
relative power in the two degenerate EH¢ ; modes for in-plane perturbations; (e) Schematic of fiber partly (2 out of 4 fiber loops) being lifted out
of plane to different heights during measurements. The plane of lifted fiber is moved to the plane perpendicular to the originaland then moved
back; (f) Plot of relative power in the two degenerate OAM modes (L = ¥76%) as the fiber is moved out of plane, as shown in (e); (g)
Corresponding plot of relative power in the two degenerate EHg; modes for out-of-plane perturbations. OAM modes remain stable to bend as
well as 3D perturbations, while the vector modes are completely mixed by 3D path redirections of the fiber.

the —10 dB level. Some power jumps to around -7 dB are
evident. This is due the experimental inability of a strictly
in-plane perturbation. Later, we will describe the origin of
this discrepancy, but a higher level summary of these two
experiments is that OAM and vector modes remain robust
to degenerate mode coupling in the presence of in-plane
bend perturbations. Given that OAM mode stability was
already known [72], this was to be reasonably expected,
given that its mathematically equivalent counterpart, the
vector modes, would also possess similar stability. The
plots in Figure 5(f) and (g) show the mode mixing between
two degenerate OAM modes and vector modes as the fiber

is moved out of plane, as illustrated in Figure 5(e). Again,
for the OAM mode input (L = -76"), the power of parasitic
degenerate mode remains at a very low level (~14 dB). By
contrast, when the input is the EHg*" mode, the two
degenerate modes completely mix with each other with 3D
fiber perturbations.

This curious result, of two mathematically identical
sets of modes behaving differently under 3D perturbations
is a manifestation of the geometric phase discussed in
section 2. An OAM mode traversing a nonplanar path
(modified mode represented as OAM) obtains an extra
phase factor compared with the input (Eq. (8)). As two
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degenerate OAM modes have opposite sign of L and o, the
geometric phases they accumulate, as per Eq. (6), have
opposite signs. The vector modes under such a perturba-

tion (ETIZeH) remain a linear combination of perturbed
OAM modes, but they are now projected onto two degen-
erate vector modes EHE?" and EHZY%, as shown in Eq. (9).
Hence, out-of-plane geometric perturbations fundamen-
tally lead to mode mixing in the vector basis but not in the
OAM basis. Note that this result follows previous experi-
ments on geometric phases [78, 79], but here, realistic
lengths of fibers could be used, by contrast, because the
ring-core fiber design and use of high |L| modes helped
avoid the competing effects of mode coupling due to bends
and birefringence. Although the length of fiber used in this
experiment was only 4 m, OAM stability in ring core fibers
has been observed up to 13.4 km propagation lengths [84].

OAM_, = OAM_, /%
{ +L +L (8)

OAM , = OAM', s

Sy even

R = %(o’m{; + o’mﬂL) = cos@, - EHS™ — sin®), - EHYY,

— 1/ —- —

B, =5 (0AM+L - OAMﬁL) = sin@, - EHE™ + cos@) - EHO,
)

4 Geometric phase control

To quantitatively study the effect of geometric phase on
high |L| modes, we configure the fiber into a uniform helix
shown in Figure 6(a). Input and output OAM and vector
modes are shown schematically, for visual Cclarity.
Although both feature a donut-shaped intensity profile, the
illustrations here show spiral patterns for OAM modes,
obtained when an OAM mode is interfered with an
expanded Gaussian (with the number and orientation of
parastiches denoting L and its sign, respectively). Likewise
vector modes are schematically illustrated by their pro-
jection patterns, obtained when they are imaged through a
polarizer (with the number of “beads” denoting |2L|).
Figure 6(b) shows that the k-vector of light in a helical path
encloses a solid angle, Q. As the fiber helix is compressed,
the solid angle increases accordingly, resulting in an extra
geometric phase of the beam traveling in the fiber, without
changing the path length of the light (and hence its
dynamic phase). This solid angle is related to the period of
the helix A, by Q =2r(1 - A/l), where [ represents the
length of fiber in one loop [75]. This helical arrangement is
realized by loosely inserting the fiber into a Teflon tube
with 1-mm inner diameter to minimize any torsion, stress,
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or stretching during winding. This Teflon tube is then
adhered to a metal spring, with which solid angle Q can be
controllably varied. This level of care is not needed for the
OAM mode, which is stable, but is required for the vector
mode, which, as shown in Figure 5(g) is sensitive to 3D fiber
movement. Part of a 3.4-m-long segment of a ring-core fiber
of length is wound into a uniform helix of 6.5 loops (light
propagating in and out of fibers are in opposite directions).
Thelength of each loop lis 16.3 cm. Note that the k-vector of
the mode in the fiber, with magnitude S (its propagation
constant), is well approximated to be parallel to the axis of
the fiber under the weakly guiding approximation. There-
fore, the solid angle subtended by the k-vector is approxi-
mately equal to the solid angle spanned by the fiber’s path,
which follows that of the metal spring. As the spring is
compressed, the pitch period A decreases from 2.3 to
0.2 cm, and the solid angle correspondingly increases from
1.72r to 1.9671. The total geometric phase acquired for a
mode in this setup is equal to the geometric phase acquired
in one loop multiplied by the number of loops N, as shown
in Eq. (10):

@q(C)=-N(o+L)Q(C) (10)

For an OAM mode with L = —-76%, the extra geometric
phase results in a counterclockwise rotation of the beam.
This rotation angle is equal to the additional phase divided
by OAM order L, or © = @, (C)/L. Similarly, an OAM mode
with L = +76° would obtain an extra geometric phase of the
same amount but with opposite sign. As the signs of both
OAM order and geometric phase are flipped, the beam
rotation would have the same magnitude and direction.
Therefore, the vector modes (EHg; odd/even), which are the
combinations of the two degenerate OAM modes, rotate
counterclockwise with the same angle (shown schemati-
cally on the output patterns of Figure 6(a)). However, this
rotation would lead to power oscillation between the odd
and even degenerate vector modes because they are not
rotationally invariant.

Figure 6(c) shows the measured power fluctuations
between even and odd modes as the spring is gradually
compressed, for an input comprising a pure EHgy" mode.
As with the previous experiment of Figure 5(g), the two
degenerate vector modes mix completely. The main dif-
ference is that the oscillation is now periodic and system-
atic because the geometric phase is accumulated
monotonically, in a controlled fashion, with the helical
arrangement. Based on the rotation angle of the vector
modes, the accumulated geometric phase of the OAM
modes can be calculated. As shown in Figure 6(d), the
geometric phase shows a linear relationship with the solid
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Figure 6: Systematic control of Pancharatnam—Berry phases in optical fibers.

(@) An orbital angular momentum (OAM) mode supporting ring-core fiber, inserted in a loose Teflon tube, is attached to a flexible spring to
configure a helical with variable period A. A combination of two degenerate OAM modes (L = —76"* and L = +76") is launched into the fiber. For
visual clarity, the OAM modes are illustrated with spiral patterns that arise from their interference with an expanded Gaussian beam. The
corresponding projection of this superposition state into X and y polarization-bins yields petal patterns, illustrated at the bottom left hand
side of (a). The mode illustrations on the right side of the helical arrangement show the corresponding modes at the output of the fiber, all of
which are rotated counterclockwise due to the geometrical transformation; (b) Geometric illustration of the solid angle Q enclosed by the
k-vector of the light path in this helical arrangement. The illustration in orange depicts the higher Q obtained from compressing a spring from
its original state, depicted in the black illustration; (c) Measured power fluctuations between even and odd modes for EHg;4, using the
reciprocal mode transmission setup of Figure 5(a), when the spring was compressed (pitch period A decreases from 2.3 to 0.2 cm). The uneven
periodicity results from the uneven speed with which the spring was compressed; (d) Geometric phase, measured from vector mode power
ratios, versus solid angle, for two degenerate OAM modes L = —-76" and L = +76" as the helical spring is compressed. The red line is a linear fit
of the experimental data (solid circles). Near-linear relationship shows exclusive influence of fiber path on geometric phase, and hence

relative mode amplitudes.

angle, which matches the theoretical prediction (Eq. (10))
of alinear relationship between these parameters. It clearly
shows that image rotation, and hence mixing, of vector
modes is linearly proportional to the solid angle enclosed
by the k-vector of light.

We repeat this experiment on five other pairs of modes
that are stable in this ring-core fiber. As shown in
Figure 7(a), the geometric phase shows a linear relation-
ship with the solid angle in all cases. As evident, image
rotation, and hence vector mode instability, increases as
the TAM (equal to L + o) of participating modes increases.
Figure 7(b) shows that the slopes for each pair of OAM
modes is linearly proportional to the TAM of the corre-
sponding OAM modes. The magnitude of this slope
(i.e., slope of the slopes vs. TAM), which is, effectively the
number of loops N (per Eq. (10)), is 6.2, which is close to the
expected value of N = 6.5. The lack of a better match may be
due to the fact that input mode purity was only 10 dB, but
even so, this confirms that the perturbations experienced

by these modes predominantly arise from the experimen-
tally induced geometric, and not inadvertent bend or
birefringence, perturbations

While the controlled experiments helped rigorously
verify the influence of different kinds of perturbations on
an optical fiber and, especially, their influence on different
modes, the results of Figure 7(a) also point to applications
toward a novel type of shape sensor, with sensitivity
controlled by the OAM content of light in a fiber. One key
distinction from other types of interferometric sensors that
depend on the conventional dynamic phase of light is that
this depends only on geometry. As mentioned earlier, dy-
namic phase arises from e/#, which is strongly wavelength
dependent. By contrast, there is no wavelength depen-
dence in geometric phase, meaning that its sensitivity does
not depend on the bandwidth of the source, facilitating the
use of low-cost sources even in high-sensitivity applica-
tions. Likewise, the lack of dynamic phase dependence
also makes such sensors robust to ambient perturbations,
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Figure 7: (a) Geometric phase versus fiber path solid angle for six distinct pairs of orbital angular momentum (OAM) modes. The colored lines
are linear fits of the experimental data (black solid circles). All modes show a clear linear relationship; (b) The slope of each trace (for each
mode) shown in (a) versus the TAM = L + o of the respective modes. The high degree of linearity as well as the slope of this line match well with
theory that accounts only for geometric effects; (c) Geometric phase versus solid angle for two degenerate OAM modes L = +76" (as shown
earlier in (), using multiple light sources. External cavity laser (ECL) is a narrow linewidth (100 kHz) source at 1550 nm; ps laser is a
picosecond laser at 1550 nm with ~0.5 nm bandwidth; the LED has a bandwidth ~35 nm around 1525 nm; superK represents a supercontinuum
source with 3 dB bandwidth up to ~250 nm at around 1475 nm. Similar slopes for all these sources demonstrates weak dependence of

wavelength on geometric phase.

such as temperature or pressure induced changes of the
refractive index of the fiber.

To demonstrate this independence to wavelength, we
conduct the same helix experiment with |L| = 7 SOa
modes (L = +76") using light sources of different band-
widths. Figure 7(c) shows the measured geometric phase
as a function of solid angle, just as in Figures 6(d) and
7(a), when using sources of varying bandwidths. ECL
denotes a narrow-linewidth (100 kHz) source at 1550 nm;
“ps laser” is a picosecond laser at 1550 nm with ~0.5 nm
bandwidth; the LED has a bandwidth ~35 nm around
1525 nm; and “superK” represents a supercontinuum
source with 3-dB bandwidth of ~250 nm centered at
~1475 nm. The spatial interferometry method used to
previously guarantee mode purity does not work with
broadband sources (because it utilizes dynamic phase!).
Hence, the purity of OAM modes is adjusted to be higher
than 15 dB using the ECL, as before, and then the light
source is carefully switch to other broadband sources
without disturbing alignment, expecting minimal
changes in mode purity. The geometric phase shows a
linear dependence on solid angle regardless of the
bandwidth of light source, as shown in Figure 7(c).
However, the slopes obtained with the broadband sources
differ from that obtained with the ECL by up to 12%. The
mismatch probably arises from the lack of our ability to
maintain high-purity excitation with the broadband
sources, a problem easily solved in the future with the
plethora of emerging mode-conversion technologies for
OAM fiber modes [85]. Nevertheless, the results point to a
novel means of developing low-cost shape sensors that

are insensitive to environmental perturbations such as
temperature, pressure, mechanical vibrations and bends,
while maintaining high sensitivity.

5 Discussion, summary, and
conclusions

In summary, the ability to excite and propagate specific
individual or a subset of HOMs in an optical fiber enables a
variety of applications ranging from scaling information
capacity and enabling new nonlinear interactions, to new
forms of sensors and photonic devices. The key in several of
these applications is the ability to exploit specific, distinct
characteristics of HOMs, such as enabling unique
nonlinear coupling pathways, yielding large A or tailor-
able dispersion, and realizing large unmixed states of in-
formation carriers. In these applications, finding the subset
of modes that propagate with high linear stability is of
paramount importance. This linear stability is intimately
connected to properties of the modes themselves (their
angular momentum content, and even the mathematical
basis used to describe them) as well as the form of per-
turbations a fiber encounters. Considering the two most
common fiber perturbations — bends, which induce bire-
fringence as well as OAM transfer, and light’s path mem-
ory, manifested in the 3D trace that light follows — we arrive
at the following conclusions related to modal stability for
HOMs (illustrated in Figure 8). The commonly used LP
modes are actually linear combinations of eigenmodes of
dissimilar phase velocities, and thus they are not
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Figure 8: Summary of the propagation stability of optical fiber
modes of different classes when the fiber is deployed with
commonly encountered perturbations. The illustration depicts
modes launched at the left end of a perfectly circular fiber, and all
modes are schematically illustrated at four positions (black dashed
lines) along the fiber propagation axis. From left to right: The input
comprises pure modes in all the classes; the second position
represents propagation through a straight fiber without any
perturbations; this is followed by a position after propagation
through a fiber that is bent only in plane; and, the final position
represents propagation through a fiber that experiences an
out-of-plane (3D) redirection as well. The modes from bottom to top
represent LP modes (LP,,y), low order vector modes (EHST"),
low-order OAM modes (L = 26"), high-order vector modes (EHg'"),
and high-order OAM modes (L = 567). After propagating through the
straight fiber section, LP modes mix between orthogonal modes of
the same class, whereas all the other modes remain stable. As such,
LP modes, designated at this point with an orange cross, are not
illustrated across subsequent perturbations, having failed to
propagate through the most elementary arrangement. In-plane fiber
bends easily couple a low-order vector (EHSY™) or orbital angular
momentum (OAM) (L = 26") mode with its degenerate counterpart,
while it does not impart enough angular momentum to couple a
higher-order OAM mode L = 56" or the corresponding vector mode
EHg;°" to their respective degenerate counterparts. Again, therefore,
no further depiction of low L vector or OAM modes is illustrated (as
indicated by the orange cross). After propagating through the 3D
trace, a higher-order vector mode EHg'T" mixes completely with its
degenerate counterpart, whereas the corresponding OAM

mode L = 56" merely acquire a common geometric phase and
remains remarkably stable. Hence, across all perturbations, only the
high |L| OAM mode survives without coupling, to its degenerate or
nondegenerate counterparts.

translationally invariant even in a perfect, straight fiber. On
the other hand, the vector and OAM modes, as two math-
ematically equivalent bases for mode representations,
remain stable in an unperturbed fiber. However, when their
modal index |L| is low, they mix completely with their
degenerate counterpart in a fiber that is bent (in-plane)
because of birefringent coupling that couples polarizations
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in SMFs too. High-|L| vector and OAM modes are, by
contrast, stable even across (in-plane) bent fibers because
of inherent OAM conservation rules. Finally, when a fiber is
not only bent, but also lifted out of plane, even high-|L|
vector modes become unstable, in that their polarization
distributions rotate, because of the Pancharatnam—-Berry
phase that light accumulates in 3D paths. By contrast, a
high-|L| OAM mode remains remarkably stable, except for
accumulating a common phase. Hence, as mode propa-
gation is studied across a range of perturbations, starting
from none (straight fiber) to bends, to, finally, 3D paths,
modes of the same L and m indices, but represented in
different mathematical bases are not, somewhat counter-
intuitively, identical. Considering all these perturbations,
OAM modes of sufficiently high |L| are the most stable ei-
genmodes of a circularly symmetric optical fiber. A few
important clarifications are in order: this stability is
observable only once a fiber is designed such that neg
splittings between pertinent nondegenerate modes is
maximized, and this analysis ignores very long (>> km)
length propagation, where higher order effects of bends
and twists may play a role. In such cases, one would expect
modes of any class to mix, although the fundamental na-
ture of the effects described here suggest that even in
conditions where all modes mix, the circularly polarized
OAM modes will likely be more robust compared with
others. In addition, the OAM eigenbasis yields a stable
platform in which to exploit path-memory effects arising
from geometric transformations (Pancharatnam-Berry
phases), which while studied extensively in free space,
may now lead to new opportunities for wavelength-
agnostic or wavelength-insensitive phase control with fi-
bers. We expect that these findings will help inform the
optimal modal basis to use in the variety of applications
that envisage using HOMs of optical fibers.

Acknowledgments: The authors would like to thank Dr. P.
Kristensen for manufacturing the ring-core fibers used in
these experiments, and Drs. P.G. Kwiat, P. Gregg and G.
Prabhakar for insightful discussions.

Author contribution: All the authors have accepted
responsibility for the entire content of this submitted
manuscript and approved submission.

Research funding: This work is supported, in part, by the
Vannevar Bush Faculty Fellowship (N00014-19-1-2632),
Brookhaven National Labs (Contract: 354281), Office of
Naval Research MURI program (NO0014-20-1-2450) and the
National Science Foundation (ECCS-1610190).

Conflict of interest statement: The authors declare no
conflicts of interest regarding this article.



222 —— Z.Maand S. Ramachandran: Propagation stability in fibers and the role of path memory

References

(1]

(2]

(3]

[4

[5

[6

7]

[8

91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

H. H. Hopkins and N. S. Kapany, “A flexible fibre scope, using
static scanning,” Nature, vol. 173, pp. 39-41, 1954.

T. A. Birks, J. C. Knight, and P. J. St. Russell, “Endlessly single-
mode photonic crystal fiber,” Opt. Lett., vol. 22, p. 961, 1997.
R. F. Cregan, B. J. Mangan, ). C. Knight, et al., “Singlemode
photonic band gap guidance of light in air,” Science, vol. 285,
pp. 1537-1539, 1999.

F. Benabid, ). C. Knight, G. Antonopoulos, and P. J. St. Russell,
“Stimulated Raman scattering in hydrogen-filled hollow-core
photonic crystal fiber,” Science, vol. 298, pp. 399-402, 2002.
P. Koplow, L. Goldberg, R. Moeller, and D. Klinder, “Singlemode
operation of a coiled multimode fibre amplifier,” Opt. Lett., vol.
25, p. 442, 2000.

W. Wong, X. Peng, J. McLaughlin, and L. Dong, “Breaking the limit
of maximum effective area for robust single-mode propagation in
optical fibers,” Opt. Lett., vol. 30, pp. 2855-2857, 2005.

J. M. Fini, J. W. Nicholson, B. Mangan, et al., “Polarization
maintaining single-mode low-loss hollow-core fibres,” Nat.
Commun., vol. 5, p. 5085, 2014.

R. Ulrich, R. C. Rashleigh, and W. Eickhoff, “Bending-induced
birefringence in single-mode fibers,” Opt. Lett., vol. 5,

pp. 273-275, 1980.

P. K. A. Wai and C. R. Menyuk, “Polarization mode dispersion,
decorrelation, and diffusion in optical fibers with randomly varying
birefringence,” J. Lightwave Technol., vol. 14, pp. 148-157, 1996.
M. Brodsky, K. E. George, C. Antonelli, and M. Shtaif, “Loss of
polarization entanglement in a fiber-optic system with
polarization mode dispersion in one optical path,” Opt. Lett., vol.
36, pp. 43-45, 2011.

H. R. Stuart, “Dispersive multiplexing in multimode optical
fiber,” Science, vol. 289, pp. 281-283, 2000.

R. Ryf, N. K. Fontaine, S. Wittek, et al., “High-spectral-efficiency
mode-multiplexed transmission over graded-index multimode
fiber,” in ECOC’18, 2018, Th3B.1.

B. Redding, S. M. Popoff, and H. Cao, “All-fiber spectrometer
based on speckle pattern reconstruction,” Opt. Express, vol. 21,
pp. 6584-6600, 2013.

T. Cizmar and K. Dholakia, “Exploiting multimode waveguides for
pure fibre-based imaging,” Nat. Commun. vol. 3, p. 1027, 2012.
N. Borhani, E. Kakkava, C. Moser, and D. Psaltis, “Learning to see
through multimode fibers,” Optica, vol. 5, pp. 960-966, 2018.
A. Hasegawa, “Self-confinement of multimode optical pulse in a
glass fiber,” Opt. Lett., vol. 5, pp. 416-417, 1980.

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable
spatiotemporal nonlinear effects in multimode fibres,” Nat.
Photonics, vol. 9, pp. 306-310, 2015.

K. Krupa, A. Tonello, B. M. Shalaby, et al., “Spatial beam self-
cleaning in multimode fibres,” Nat. Photonics, vol. 11,

pp. 237-241, 2017.

K. Krupa, A. Tonello, A. Barthélémy, et al., “Observation of
geometric parametric instability induced by the periodic spatial
self-imaging of multimode waves,” Phys. Rev. Lett., vol. 116,

p. 183901, 2016.

A. W. Snyder and ). D. Love, Optical Waveguide Theory, London,
U.K., Chapman and Hall, 1983.

A. Ghatak and W. J. Thyagarajan, Introduction to Fiber Optics,
Cambridge, U.K., Cambridge University Press, 1998.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

31

[32]

[33]

[34]

[35]

[36]

(37]

[38]

[39]

DE GRUYTER

C. D. Poole, J. M. Weisenfeld, D. J. DiGiovanni, and

A. M. Vengsarkar, “Optical fiber-based dispersion compensation
using higher order modes near cutoff,” J. Lightwave Technol., vol.
12, pp. 1746-1758, 1994,

S.Ramachandran, S. Ghalmi, J. W. Nicholson, et al., “Anomalous
dispersion in a solid, silica-based fiber,” Opt. Lett., vol. 31,

pp. 2532-2534, 2006.

S. Ramachandran, B. Mikkelsen, L. C. Cowsar, et al., “All-fiber
grating-based higher order mode dispersion compensator for
broad-band compensation and 1000-km transmission at 40 Gb/s,”
IEEE Photonics Technol. Lett., vol. 13, pp. 632-634, 2001.

A. H. Gnauck, L. D. Garrett, Y. Danziger, U. Levy, and M. Tur,
“Dispersion and dispersion-slope compensation of NZDSF over
the entire C band using higher-order-mode fibre,” Electron. Lett.,
vol. 36, pp. 1946-1947, 2000.

S. Ramachandran, M. F. Yan, J. Jasapara, et al., “High-energy
(nanojoule) femtosecond pulse delivery with record dispersion
higher-order mode fiber,” Opt. Lett., vol. 30, pp. 3225-3227, 2005.
R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched
three-wave mixing in silica fiber optical waveguides,” Appl.
Phys. Lett., vol. 24, no. 7, pp. 308-310, 1974.

J. Demas, P. Steinvurzel, B. Tai, L. Rishgj, Y. Chen, and

S. Ramachandran, “Intermodal nonlinear mixing with Bessel
beams in optical fiber,” Optica, vol. 2, pp. 14-17, 2015.

J. Demas, L. Rishgj, X. Liu, G. Prabhakar, and S. Ramachandran,
“Intermodal group-velocity engineering for broadband nonlinear
optics,” Photonics Res., vol. 7, pp. 1-7, 2019.

L. Rishgj, B. Tai, P. Kristensen, and S. Ramachandran, “Soliton
self-mode conversion: revisiting Raman scattering of ultrashort
pulses,” Optica. vol. 6, pp. 304-308, 2019.

P.J. St. Russell, R. Culverhouse, and F. Farahi, “Experimental
observation of forward stimulated Brillouin scattering in dual-
mode single core fiber,” Electron. Lett., vol. 26, pp. 1195-1196,
1990.

F. G. Omenetto, A. J. Taylor, M. D. Moores, et al., “Simultaneous
generation of spectrally distinct third harmonics in a photonic
crystal fiber,” Opt. Lett., vol. 26, pp. 1158-1160, 2001.

A. Efimov, A. J. Taylor, F. G. Omenetto, J. C. Knight,

W. ). Wadsworth, and P. J. St. Russell, “Nonlinear generation of
very high-order UV modes in microstructured fibers,” Opt.
Express, vol. 11, pp. 910-918, 2003.

). Demas, G. Prabhakar, T. He, and S. Ramachandran, “Wavelength-
agile high-power sources via four-wave mixing in higher-order fiber
modes,” Opt. Express, vol. 25, pp. 7455-7464, 2017.

D. Cruz-Delgado, R. Ramirez-Alarcon, E. Ortiz-Ricardo, et al.,
“Fiber-based photon-pair source capable of hybrid
entanglement in frequency and transverse mode, controllably
scalable to higher dimensions,” Sci. Rep., vol. 6, p. 27377, 2016.
S. Ramachandran, J. W. Nicholson, S. Ghalmi, et al., “Light
propagation with ultra-large modal areas in optical fibers,” Opt.
Lett., vol. 31, pp. 1797-9, 2006.

K. S. Abedin, R. Ahmad, A. M. DeSantolo, and D. J. DiGiovanni,
“Reconversion of higher-order-mode (HOM) output from
cladding-pumped hybrid Yb:HOM fiber amplifier,” Opt. Express,
vol. 27, pp. 8585-8595, 2019.

K. Rottwitt, J. G. Koefoed, K. Ingerslev, and P. Kristensen, “Inter-
modal Raman amplification of OAM fiber modes,” APL Photonics,
vol. 4, p. 030802, 2019.

X. Liu, E. N. Christensen, K. Rottwitt, and S. Ramachandran,
“Nonlinear four-wave mixing with enhanced diversity and



DE GRUYTER

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

(51]

(52]

[53]

[54]

[55]

[56]

selectivity via spin and orbital angular momentum
conservation,” APL Photonics, vol. 5, p. 010802, 2020.

S. Zhu, S. Pachava, S. Pidishety, Y. Feng, B. Srinivasan, and

J. Nilsson, “Raman amplification of charge-15 orbital angular
momentum mode in a large core step index fiber,” in CLEO, 2020,
SM1P.2.

L. Yan, P. Kristensen, and S. Ramachandran, “Vortex fibers for
STED microscopy,” APL Photonics, vol. 4, p. 022903, 2019.

B. M. Heffernan, S. A. Meyer, D. Restrepo, M. E. Siemens,

E. A. Gibson, and ). T. Gopinath, “A fiber-coupled stimulated
emission depletion microscope for bend-insensitive through-
fiber imaging,” Sci. Rep., vol. 9, p. 11137, 2019.

M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem,
“Fiber lasers generating radially and azimuthally polarized
light,” Appl. Phys. Lett., vol. 93, p. 191104, 2008.

N. Bozinovic, Y. Yue, Y. Ren, et al., “Terabit-scale orbital angular
momentum mode division multiplexing in fibers,” Science, vol.
340, pp. 1545-1548, 2013.

J. Liu, L. Zhu, A. Wang, et al., “All-fiber pre- and post-data
exchange in km-scale fiber-based twisted lights multiplexing,”
Opt. Lett., vol. 41, pp. 3896-3899, 2016.

R. M. Nejad, K. Allahverdyan, P. Vaity, et al., “Mode division
multiplexing using orbital angular momentum modes over 1.4
km ring core fiber,” J. Lightwave Technol., vol. 34,

pp. 4252-4258, 2016.

G. Zhu, Z. Hu, X. Wu, et al., “Scalable mode division multiplexed
transmission over a 10-km ring-core fiber using high-order
orbital angular momentum modes,” Opt. Express, vol. 26,

pp. 594-604, 2018.

K. Ingerslev, P. Gregg, M. Galili, et al., “12 mode, WDM,
MIMO-free orbital angular momentum transmission,” Opt.
Express, vol. 26, pp. 20225-20232, 2018.

D. Cozzolino, D. Bacco, B. Da Lio, et al., “Orbital angular
momentum states enabling fiber-based high-dimensional
quantum communication,” Phys. Rev. Appl., vol. 11, p. 064058,
2019.

S.Ramachandran, Z. Wang, and M. F. Yan, “Bandwidth control of
long-period grating-based mode-converters in few-mode
fibers,” Opt. Lett., vol. 27, pp. 698-700, 2002.

M. Tur, D. Menashe, Y. Japha, and Y. Danziger, “High-order mode
based dispersion compensating modules using spatial mode
conversion,” J. Opt. Fiber Commun. Rep., vol. 5, pp. 249-311,
2007.

L. Marrucci, E. Karimi, S. Slussarenko, et al., “Spin-to-orbital
conversion of the angular momentum of light and its classical
and quantum applications,” J. Opt., vol. 13, p. 064001,

2011.

A. Astorino, J. Gliickstad, and K. Rottwitt, “Fiber mode excitation
using phase-only spatial light modulation: guideline on free-
space path design and lossless optimization,” AIP Adv., vol. 8,
p. 095111, 2018.

Y. Zhao, ). Zhang, J. Du, and ). Wang, “Meta-facet fiber for
twisting ultra-broadband light with high phase purity,” Appl.
Phys. Lett., vol. 113, p. 061103, 2018.

R. Olshansky, “Mode coupling effects in graded-index optical
fibers,” Appl. Opt., vol. 14, pp. 935-945, 1975.

S. Savovi¢ and A. Djordjevich, “Solution of mode couplingin step
index optical fibers by Fokker—Planck equation and Langevin
equation,” Appl. Opt., vol. 41, pp. 2826-2830, 2002.

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

Z. Ma and S. Ramachandran: Propagation stability in fibers and the role of path memory —— 223

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,”
Nanophotonics Berlin, vol. 2, pp. 455-74, 2013.

A. M.Yao and M. ). Padgett, “Orbital angular momentum: origins,
behaviour and applications,” Adv. Opt. Photonics, vol. 3,

pp. 161-204, 2011.

A. Bjarklev, “Microdeformation losses of single-mode fibers with
step-index profiles,” J. Lightwave Technol., vol. 4, pp. 341-346,
1986.

S. Ramachandran and M. F. Yan, “Static and tunable dispersion
management with higher order mode fibers,” in Fiber Based
Dispersion Compensation, S. Ramachandran, Ed., New York,
Springer, 2007.

M. Tur, D. Menashe, Y. Japha, and Y. Danziger, “High-order mode
based dispersion compensating modules using spatial mode
conversion,” J. Opt. Fiber Commun. Rep., vol. 5, pp. 249-311,
2007.

S. Ramachandran, J. M. Fini, M. Mermelstein, ). W. Nicholson,
S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-
order mode fibers: a new strategy for high-power lasers. Invited
Paper,” Laser Photonics Rev., vol. 2, pp. 429-48, 2008.

J. W. Nicholson, J. M. Fini, A. M. DeSantolo, et al., “Scaling the
effective area of higher-order-mode erbium-doped fiber
amplifiers,” Opt. Express, vol. 20, pp. 24575-24584, 2012.

S. Ramachandran, S. Golowich, M. F. Yan, et al., “Lifting
polarization degeneracy of modes by fiber design: a platform for
polarization-insensitive microbend fiber gratings,” Opt. Lett.,
vol. 30, pp. 2864-2866, 2005.

S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and
propagation of radially polarized beams in optical fibers,” Opt.
Lett., vol. 34, pp. 2525-2527, 2009.

B. Ung, P. Vaity, L. Wang, Y. Messaddeq, L. A. Rusch, and

S. LaRochelle, “Few-mode fiber with inverse parabolic graded-
index profile for transmission of OAM-carrying modes,” Opt.
Express, vol. 22, pp. 18044-18055, 2014.

C. Brunet, B. Ung, P. A. Belanger, Y. Messaddeq, S. LaRochelle,
and L. A. Rusch, “Vector mode analysis of ring-core fibers:
design tools for spatial division multiplexing,” J. Lightwave
Technol., vol. 32, pp. 4046-4057, 2014.

S. Ramachandran, P. Gregg, P. Kristensen, and S. E. Golowich,
“On the scalability of ring fiber designs for OAM multiplexing,”
Opt. Express, vol. 23, pp. 3721-3730, 2015.

P. Gregg, P. Kristensen, A. Rubano, S. Golowich, L. Marrucci, and
S. Ramachandran, “Enhanced spin orbit interaction of light in
highly confining optical fibers for mode division multiplexing,”
Nat. Commun., vol. 10, p. 4707, 2019.

D. L. P. Vitullo, C. C. Leary, P. Gregg, et al., “Observation of
interaction of spin and intrinsic orbital angular momentum of
light,” Phys. Rev. Lett., vol. 118, p. 083601, 2017.

N Bozinovic, S Golowich, P Kristensen, and S Ramachandran,
“Control of orbital angular momentum of light with optical
fibers,” Opt. Lett., vol. 37, p. 2451, 2012.

P. Gregg, P. Kristensen, and S. Ramachandran, “Conservation of
orbitalangular momentum in air-core optical fibers,” Optica, vol.
2, p. 267, 2015.

S. Pancharatnam, “Generalized theory of interference and its
applications. Part I. Coherent pencils,” Proc. Indiana Acad. Sci.,
vol. A44, p. 247, 1956.

M. V. Berry, “Quantal phase factors accompanying adiabatic
changes,” Proc. R. Soc. Lond. A. vol. 392, pp. 45-57, 1984.



224 —— 7Z.Maand S. Ramachandran: Propagation stability in fibers and the role of path memory

[75]

[76]

[77]

[78]

[79]

[80]

A. Tomita and R. Y. Chiao, “Observation of Berry’s topological
phase by use of an optical fiber,” Phys. Rev. Lett., vol. 57,

pp. 937-940, 1986.

R. A. Beth, “Mechanical detection and measurement of the
angular momentum of light,” Phys. Rev., vol. 50, pp. 115-25,
1936.

M. Berry, “Anticipations of the geometric phase,” Phys. Today,
vol. 43, pp. 34-40, 1990.

J. Anandan, “The geometric phase,” Nature, vol. 360,

pp. 307-313, 1992.

K. Y. Bliokh, “Geometrical optics of beams with vortices: berry
phase and orbital angular momentum Hall effect,” Phys. Rev.
Lett., vol. 97, p. 043901, 2006.

S. Abdulkareem and N. Kundikova, “Joint effect of polarization
and the propagation path of a light beam on its intrinsic
structure,” Opt. Express, vol. 24, p. 19157, 2016.

(81]

(82]

(83]

(84]

[85]

DE GRUYTER

X. Huang, S. Gao, B. Huang, and W. Liu, “Demonstration of
spin and extrinsic orbital-angular-momentum interaction
using a few-mode optical fiber,” Phys. Rev. A, vol. 97,

p. 033845, 2018.

Z. Ma, G. Prabhakar, P. Gregg, and S. Ramachandran,
“Robustness of OAM fiber modes to geometric perturbations,” in
Conference on Lasers and Electro-Optics, 2018.

P. Gregg, M. Mirhosseini, A. Rubano, et al., “Q-plates as higher
order polarization controllers for orbital angular momentum
modes of fiber,” Opt. Lett., vol. 40, p. 1729, 2015.

P. Gregg, P. Kristensen, and S. Ramachandran, “13.4 km OAM
state propagation by recirculating fiber loop,” Opt. Express, vol.
24, pp. 18938-18947, 2016.

X. Wang, Z. Nie, Y. Liang, J. Wang, T. Li, and B. Jia, “Recent
advances on optical vortex generation,” Nanophotonics, vol. 7,
pp. 1533-1556, 2018.



	Propagation stability in optical fibers: role of path memory and angular momentum
	1 Introduction
	2 Mode classifications and fiber perturbations
	2.1 Mode classifications
	2.2 Fiber perturbations

	3 Propagation stability experiments
	4 Geometric phase control
	5 Discussion, summary, and conclusions
	Acknowledgments
	References

