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Abstract: We outline and interpret a recently developed
theory of impedancematching or reflectionless excitation of
arbitrary finite photonic structures in any dimension. The
theory includes both the case of guidedwave and free-space
excitation. It describes the necessary and sufficient condi-
tions for perfectly reflectionless excitation to be possible
and specifies howmany physical parametersmust be tuned
to achieve this. In the absence of geometric symmetries,
such as parity and time-reversal, the product of parity and
time-reversal, or rotational symmetry, the tuning of at least
one structural parameter will be necessary to achieve
reflectionless excitation. The theory employs a recently
identified set of complex frequency solutions of theMaxwell
equations as a starting point, which are defined by having
zero reflection into a chosen set of input channels, and
which are referred to as R-zeros. Tuning is generically
necessary in order to move an R-zero to the real frequency
axis, where it becomes a physical steady-state impedance-
matched solution, which we refer to as a reflectionless
scattering mode (RSM). In addition, except in single-
channel systems, the RSM corresponds to a particular
input wavefront, and any otherwavefront will generally not
be reflectionless. It is useful to consider the theory as
representing a generalization of the concept of critical
coupling of a resonator, but it holds in arbitrary dimension,

for arbitrary number of channels, and even when reso-
nances are not spectrally isolated. In a structure with parity
and time-reversal symmetry (a real dielectric function) or
with parity–time symmetry, generically a subset of the
R-zeros has real frequencies, and reflectionless states exist
at discrete frequencies without tuning. However, they do
not exist within every spectral range, as they do in the
special case of the Fabry–Pérot or two-mirror resonator, due
to a spontaneous symmetry-breaking phenomenon when
two RSMs meet. Such symmetry-breaking transitions
correspond to a newkind of exceptional point, only recently
identified, at which the shape of the reflection and trans-
mission resonance lineshape is flattened. Numerical ex-
amples of RSMs are given for one-dimensional multimirror
cavities, a two-dimensionalmultiwaveguide junction, and a
multimode waveguide functioning as a perfect mode con-
verter. Two solution methods to find R-zeros and RSMs are
discussed. The first one is a straightforward generalization
of the complex scaling or perfectly matched layer method
and is applicable in a number of important cases; the sec-
ond one involves a mode-specific boundary matching
method that has only recently been demonstrated and can
be applied to all geometries for which the theory is valid,
including free space andmultimodewaveguide problems of
the type solved here.

Keywords: exceptional point; impedance matching; non-
hermitian optics; photonics; photonic design.

1 Introduction

1.1 Reflectionless excitation of resonant
structures

Reflectionless excitation or transmission of waves is a
central aspect of harnessing waves for distribution or
transduction of energy and information in many fields of
applied science and engineering. In the context of radio-
frequency andmicrowave electronics and in acoustics, this
is typically referred to as “impedance matching”, whereas
in optics and photonics, the terms “index matching” and
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“critical coupling” (CC) aremore frequently used, aswell as
“perfect absorption” when the goal is energy transfer or
transduction. In the first fields listed, it is typical to
represent the response of the media or circuits, which are
typically lossy, via a complex impedance, and the simple
principle of matching the input impedance to the output
impedance is often employed to achieve reflectionless
excitation. In optics and photonics, it is more typical to
represent the response of the medium by a complex
dielectric function or susceptibility, and nearly lossless
excitation of dielectric media, as well as free-space exci-
tation, is quite common, so the term impedance matching
is less often used. In this article, we will focus on optical
and photonic structures/devices and will use the term
reflectionless excitation. We will define below the concept
of reflectionless scatteringmodes (RSMs), referring to input
wavefronts at specific, discrete real frequencies that can be
shown to excite a given structure with zero reflection (in a
sense to be clearly defined below). Impedance matching or
index matching across boundaries between effectively
semi-infinite media is well known from textbooks and is
not the topic of interest here. Rather here we focus on finite
structures in any dimension, which are excited by a wave
with wavelength smaller than the relevant dimensions of
the structure. In this case, reflectionless excitation may be
possible but only at discrete frequencies due to the ne-
cessity of taking into account multiple internal reflections
within the structure. Thus, we are speaking of resonant
reflectionless excitation of the structure.

The concept of CC to a resonator, to be discussed in
more detail below, is reasonably well known in optics and
photonics: a high-Q resonator, when excited by a single
electromagnetic channel, either guided or radiative, will
generate no reflected waves when it is excited at the reso-
nance frequency, and the input coupling rate to the reso-
nator equals the sumof all other loss rates fromorwithin the
resonator. The total loss of the resonator is defined as the
imaginary part of the complex frequency of the specific
quasi-normal mode being excited, which includes the loss
through the input channel. The quasi-normal modes (or
simply resonances) are rigorously defined as the purely
outgoing solutions of the relevant electromagnetic wave
equation. These resonances generically have frequencies in
the lower half-plane,ω � ωr − iγ, where γ � 1/2τ > 0, τ is the
dwell time or intensity decay rate, andQ � ωrτ is the quality
factor of the resonance [1–4]. In general, the resonances are
not physically realizable steady-state solutions, due to their
exponential growth at infinity, but they determine the
scattering behavior under steady-state (real frequency)
harmonic excitation. However, in electromagnetic scat-
tering with gain, the resonances can be realized physically

and correspond to the onset of laser emission [5–7]. Thus, in
the terminology we use in this work, having a resonance on
the real axis does not correspond to the existence of a
reflectionless state (in some other contexts the term “reso-
nance” isused to refer to a reflectionless state). In the current
work, we will define a different set of complex frequency
solutions which do correspond to the existence of a reflec-
tionless state and which do not in general require the
addition of gain or loss to the system to make them acces-
sible via steady-state excitation.

The current theoretical/computational tools available
in optics and photonics for determining when and if
reflectionless excitation of a structure/resonator is possible
consists of analytic calculations in certain one-dimensional
structures and transfer matrix computations for more
complicated one-dimensional or quasi-one-dimensional
structures, along with the principle of CC, which rarely is
applied in higher dimensions.

1.2 Limitations of critical coupling concept

The terminology “critical coupling”appears to have been
used in microwave/radio-frequency electronics at least 60
years ago but does not appear to have beenused extensively
in optics until the nineties [8–11]. It always is applied to a
structure in which a relatively high-Q resonator with well-
separated resonances is effectively excited by a single
spatial input channel. The resonator will have some effec-
tive coupling-in rate at the surface where the input channel
comes in, determined, e.g., by a mirror or facet reflectivity,
and it will have some coupling-out/absorption rate within
the resonator, due either to other radiative channels or to
internal absorption loss or both [12, 13]. Examples in
photonics include the asymmetric Fabry–Pérot (FP) semi-
conductor devices developed in the eighties and nineties,
which used the electrooptic effect to switch on and off ab-
sorption in the cavity, so as to toggle between a critically
coupled condition andaweakly coupled condition [9–11]. In
this case, the loss is primarily absorption and represents
an irreversible transduction of the energy. Another com-
mon, more recent set of examples is the ring resonators
side-coupled to silicon waveguides which can be toggled by
free-carrier injection between a critically coupled and a
weakly coupled state, which turns off and on the trans-
mission through the waveguide [14]. In this case, the loss in
the critically coupled state is primarily radiative, and the
reflectionless “on” state can be thought of as perfect trans-
mission into the radiative channels, whereas the “off”
state corresponds to zero reflection from the ring (only)
and hence continued propagation/transmission along the
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guided waveguide channel. These examples indicate that
the source of the loss in the resonator is not important to be
able to achieve CC, although it does determine the effect of
CC on the excitingwave, i.e., either irreversible transduction
or radiative transmission (to a receiver or just to an effective
beam sink).

The power of the CC concept is that, if rigorously cor-
rect, it implies that it is possible to excite a resonator of
arbitrary complexity through a single input channel and
have zero reflection, if the total loss from either absorption
or radiation into other channels equals the input coupling.
To our knowledge, the CC concept is the only general
principle relating to reflectionless excitation of a resonator
which applies beyond parity-symmetric one-dimensional
examples, where it is possible to calculate analytically the
reflectionless input frequencies.

However there are obvious questions raised about the
meaning and generality of the concept.
– In all cases of which we are aware, the CC condition is

derived within a simplified coupled mode theory and
not from a first-principles analysis, which would be
exact within Maxwell electrodynamics. What princi-
ple, if any, underlies its validity in the case of a com-
plex resonator with no symmetries?

– Is there a generalization of the CC concept to the situ-
ation in which one is exciting the resonator with more
than one input channel? A simple example of this
would be a multimode waveguide exciting a resonator
ormultiple waveguide junction. Similarly, when one is
exciting a structure larger than the excitation wave-
length in free space, the typical radiation will involve
higher multipoles and hence multiple input/output
channels. Are there reflectionless solutions in either of
these cases?

– CC assumes that the excitation is only of a single
resonance, but in any relatively open structure, e.g., a
waveguide junction, multiple resonances will often be
overlapping and relevant to the scattering process. In
this case, the CC concept becomes ill defined. There is
no obvious scalarmeaning to coupling in and coupling
out, so there is no obvious CC condition to apply. In
fact, the CC condition has never, to our knowledge,
been applied to such situations and would generally
be considered irrelevant because one does not have
isolated resonances.

This paper outlines and interprets recent results from our
groupwhich answers all of these questions and proves that
reflectionless states are an exact property of Maxwell
electrodynamics in any dimension and for arbitrarily
complex structures (larger than the exciting wavelength).

Moreover, these states exist evenwhenmultiple resonances
overlap, and there are no isolated resonances. In general, a
single continuous parameter of the resonator/structure
needs to be tuned appropriately, and then, the reflectionless
state exists only at a single frequency. The reflectionless
states can be computed by numerical methods which are
closely related to standard techniques in photonics and are
tractable for realistic structures. Hence, we believe that the
theory presented here provides a powerful tool for the
design of photonic structures with controlled excitation
which implement perfect coupling, as well as clarifying
what sorts of solutions exist generically and what sorts do
not. We will present here only the main results of our
analysis with illustrative examples; the detailed derivations
are given in the study by Sweeney et al. [15].

2 The generalized reflection
matrix, R-zeros, and RSMs

2.1 The scattering matrix

To define reflectionless states in electromagnetic scat-
tering, we must first define the scattering matrix (S-matrix)
of a finite photonic structure. We consider here the most
general system of interest, which consists of an inhomo-
geneous scattering region or structure, outside ofwhich are
asymptotic regions that extend to infinity. To support
resonance effects, the scattering region needs to be larger
than the wavelength of the excitations created by the input
waves within the scatterer. For dielectric systems, this is
typically of order but smaller than the input wavelength.
However, the theory will also apply to metallic/plasmonic
systems (within the Maxwellian framework), where the
plasmonic excitations can have orders of magnitude
smaller wavelengths. An example of an application of
coherent perfect absorption, a special case of the theory, to
nanoparticles is cited in the next section. The asymptotic
regions are assumed to be time-reversal invariant (so that
they support incoming and outgoing asymptotic channels
that are related by complex conjugation) and to have some
form of translational invariance, e.g., vacuum or uniform
dielectric, or a finite set of waveguides, or an infinite pe-
riodic photonic crystal. The theory will apply to both free
and guided waves. We also focus on media in which the
scattering forces are short range, i.e., net neutral media,
which is typical for most photonic structures.

A linear and static photonic structure is described by its
dielectric function ε(r,ω), which is generically complex
valued,with its imaginarypartdescribingabsorptionand/or
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gain. The assumed linearity allows the theory to concentrate
on scattering at a single real frequency, ω; time-dependent
scattering can be studied by superposing solutions. The
translational symmetry of the asymptotic regions allowsone
to define 2Npower orthogonal propagating “channel states”
at each ω. Based on the direction of their fluxes, the 2N
channels can be unambiguously grouped into N incoming
and N outgoing channels, which, as noted, are related by
time reversal. Familiar examples of channels include the
guided transversemodes of awaveguideandorbital angular
momentum waves in free space, with one channel per po-
larization. In thewaveguides, thefinite numberandwidthof
the waveguides lead to a finite N for a given ω, whereas for
the case of a finite scatterer/cavity in free space, the number
of propagating angular momentum channels is countably
infinite. However, a finite scatterer of linear scale R, with no
long-range potential outside, will interact with only a finite
number of angular momentum states, such that

lmax ∼
�
ε

√
Rω/c, where ε is the spatially averaged dielectric

function in the scattering region, and c is the speed of light.
In the general case of polarization mixing in scattering
including the polarization index will simply double the size
of the S-matrix. Hence, for each ω, we can reasonably
truncate the infinite dimensional channel space to a finite,
N-dimensional subspace of relevant channels.

A general scattering process then consists of incident
radiation, propagating along the N incoming channels,
interacting with the scatterer and then propagating out to
infinity along the N outgoing channels, as illustrated in
Figure 1(a). In a general geometry, which is not partitioned
into spatially distinct asymptotic channels, there is no nat-
ural definition of reflection and transmission coefficients
between different channels, only interchannel scattering vs.
backscattering into the same channel; for certain geometries,
suchas a scattering regionwithin a single ormultimodefiber,
it is natural to segment the S-matrix into reflection and
transmission matrices depending on whether the scattering
maintains the sign of propagation (i.e., transmits flux) or
reverses it (reflects flux). However, we will define the reflec-
tion matrices for a general geometry in a more general way,
which need not reduce to this standard definition even in a
waveguide geometry. In the channel basis, the wavefronts of
the incoming and outgoing fields are given by length-N col-

umn vectors α and β, normalized such that α†α and β†β are
proportional to the total incoming and total outgoing energy
flux, respectively. The N-by-N scattering matrix S(ω), which
relates α and β at frequency ω is defined as follows:

β � S(ω)α. (1)

In reciprocal systems, the S-matrix is symmetric, S = ST [16].
If the scatterer is lossless (i.e., ε is real everywhere), then
any incoming state leads to a nonzero flux-conserving
output, and the S-matrix is unitary. However, the theory
outlined below is developed for arbitrary linear S-matrices
and complex ε, which then includes the effects of linear
absorption or amplification inside the scattering region.
Engineering reflectionless states will generally be
possible for the case of both unitary and nonunitary
S-matrices.

2.2 Coherent perfect absorption

The S-matrix, being well defined at all real frequencies,
can be extended to complex frequencies via analytic
continuation. As noted in the Introduction section, the
resonances or quasi-normal modes of the system are so-
lutions of the wave equation for the structure which are
purely outgoing in the asymptotic regions and have
discrete complex frequencies in the lower half-plane;
those frequencies correspond to poles of the S-matrix.
Since purely incoming solutions can be obtained by
complex conjugation, this implies that the zeros (fre-
quencies of solutions at which zero flux is outgoing) are
simply the complex conjugate of the pole frequencies
when the structure is lossless, and these zeros occur in the

Figure 1: Schematic depicting a (a) general scattering process and
(b) reflectionless process. A finite scatterer/cavity interacts with a
finite set of asymptotic incoming and outgoing channels, indicated
by the red and blue arrows, respectively, related by time reversal.
These channels may be localized in space (e.g., waveguide
channels) or in momentum space (e.g., angular momentum
channels). (a) In the general case without symmetry, all incoming
channels will scatter into all outgoing channels. (b) There exist
reflectionless states for which there is no reflection back into a
chosen set of incoming channels (the inputs), which in general occur
at discrete complex frequencies and do not correspond to a steady-
state harmonic solution of the wave equation. However, with vari-
ation of the cavity parameters, a solution can be tuned to have a real
frequency, giving rise to a steady-state reflectionless scattering
process for a specific coherent input state, referred to as a reflec-
tionless scattering mode (RSM).
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upper half-plane. The zeros then correspond to a certain
type of reflectionless solution to the wave equation but at
an unphysical complex frequency. These states can be
tuned to a real frequency by adding loss, in just the same
manner as poles can be tuned to the real axis by adding
gain to initiate lasing [17–20]. A system so tuned is known
as a coherent perfect absorber (CPA) and functions as the
time reverse of a laser at threshold.

This type of reflectionless state was first pointed out
by one of the authors (and coworkers) a decade ago. It is a
special case of the reflectionless states we define below,
with the additional property that impedance matching is
achieved by perfect absorption within the scattering re-
gion, and hence irreversible transduction of the incident
energy into degrees of freedom within the resonator/
scatterer.With the introduction of the CPA concept, it was
appreciated that this kind of reflectionless state always
exists within a family of arbitrarily complex resonators
with tunable loss, for just the same reason that any
complex resonator can be made to lase with sufficient
gain added. And just as the laser is “perfectly emitting”
only for a specific spatial mode of the electromagnetic
field, the CPA is perfectly absorbing only for a specific
mode, which is the time reverse of the lasing mode, and
may have a very complicated spatial structure that is
challenging to synthesize. For example, just as there
exists random lasers that emit a pseudo-random lasing
field when sufficient gain is added, a geometrically
similar random structure with an absorbing medium
added of similarly strong loss, can, in steady state,
perfectly absorb the complex conjugate of this lasing
field (an example is shown in Figure 2). As this example
shows, in order to be perfectly absorbed, the input
“beam” must be focused to roughly the size of the scat-
tering structure so that CPA cannot be achieved in free
space for an input beam (plane wave or structured) that is
spread out over an area much larger than the transverse
size of the structure. Similar constraints apply to themore
general reflectionless modes defined below, which will
also need to be focused so as to strongly interact with the
structure in free space (this constraint is typically auto-
matically imposed by the geometry in the case of guided
wave systems).

However, as already noted, it can be quite difficult to
synthesize the wavefront needed to achieve a CPA, and this
limits the application of the CPA concept to complex
structures in experiments or devices. In the more common
situation in which one seeks to excite a structure in a
reflectionless manner, one is not aiming for perfect ab-
sorption but is simply seeking to avoid energy flow back
into the chosen input channels; in many cases, one does

not wish to have any absorption at all. Our theory below
includes the CPA as a limiting case but is focused instead
on thismore common situation of prime importance for the
design of photonic devices.

2.3 Generalized reflection matrix and
R-zeros

Returning to the S-matrix for an arbitrary finite scattering
structure/resonator, we now define reflectionless states in
the most general manner possible. The full S-matrix en-
codes the information about all possible linear excitations
of the resonator. Assuming one has access to all N of the

Figure 2: Reflectionless state of a coherent perfect absorber (CPA),
consisting of a random aggregate of lossless glass scattering rods
(gray) of index n = 1.5 and radius equal to the incident wavelength
(r � λ), surrounding a highly lossy subwavelength central rod
(black) of radius r � 0.15λ and dielectric constant ε � 1.28 + 1.75i.
The color scale indicates the field amplitude for the specific input
mode which is perfectly absorbed. This is a steady-state solution in
which all of the incident power is dissipated in the central rod, which
acts as a perfect sink and is assumed to be a linear absorber. The
incident field pattern is found by calculating the complex conjugate
of the threshold lasing mode of the analogous random laser and
consists of the appropriate coherent superposition of converging
cylindrical waves (Hankel functions). The field penetrating into the
glass rods is not shown, for clarity. In this very open structure, the
resonances strongly overlap, and the concept of critical coupling to
a single resonance does not apply; nonetheless, reflectionless
states exist.
Figure adapted from animation at http://www1.spms.ntu.edu.sg/
∼ydchong/research.html, courtesy of Y-D. Chong.
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possible input channels in the asymptotic region, one can
define a particular impedance-matching problem as shown
in Figure 1(b) by specifying Nin (with 0 < Nin ≤ N) of the
incoming channels as the controlled input channels,
which, for the appropriate input state, will carry incident
flux but no outgoing flux. Conversely, the complementary
set of Nout = N − Nin outgoing channels will carry any out-
going flux. This flux can be less than, equal to, or greater
than the incident flux, depending onwhether the resonator
is attenuating, lossless, or amplifying.

Let us for convenience redefine the S-matrix so that for
each choice of input channels, the first Nin columns of the
S-matrix represent the scattering of the chosen Nin input
channels. This implies that wewill only consider scattering
input vectors, α, which are nonzero for their first Nin com-
ponents (henceforth we will refer to this as the input
wavefront). Conversely, for the input wavefront to be
reflectionless, the output vector, β, must have its first Nin

components be equal to zero. Thus, we can define the up-
per left Nin × Nin block of this S-matrix to be a generalized
reflection matrix, Rin(ω). The condition then for the exis-
tence of a reflectionless input state at some frequency ω �
ωRZ is that this matrix has an eigenvector with eigenvalue
zero; this eigenvector is the Nin-component vector con-
sisting of the nonzero components of α. The frequencies at
which a reflectionless state exists are thus determined by
the complex scalar equation.

det Rin(ωRZ) � 0, (2)

and in principle the frequencies and input wavefronts for
reflectionless states could be found by searching for the
zeros of this determinant in the complex frequency plane.

However, another approach is more fruitful. That is to
regard the reflectionless boundary conditions as defining a
nonlinear eigenvalue problem on the Maxwell wave oper-
ator for which {ωRZ} are the eigenvalues, and use standard
methods for solving general nonlinear eigenproblems
[21–25]. To impose the appropriate boundary conditions, a
familiar method in photonics is the use of perfectly
matched layers (PMLs), normally used for finding purely
outgoing solutions (resonances) but also applicable here in
some cases. For the most general cases, the PML approach
is not applicable, but a modification of previous boundary
matchingmethods can be used, as will be discussed briefly
below.

Anticipating results which will be demonstrated
below, similar to the resonances, we find that the reflec-
tionless input wavefronts will only exist at discrete com-
plex values of the frequency, ωRZ; however, these
frequencies will differ from the resonance frequencies, and
they represent the complex-valued spectrum of a wave

operator with a different physical meaning.We will refer to
these frequencies and the associated wave solutions as
R-zeros (reflection zeros). Since complex frequency solu-
tions do not represent physically realizable steady-state
solutions, a critical step in solving the impedance-
matching problem in generic cases will be to tune param-
eters of the dielectric function in thewave operator in order
to move an R-zero to the real frequency axis. When an
R-zero is tuned to the real axis, we will refer to the reflec-
tionless physical state which results as an RSM, in analogy
to the term “lasing modes” or “CPA mode” which is used
for these related but distinct electromagnetic eigenvalue
problems. We note that, like a resonance, an R-zero can be
transiently realized with a time-dependent input, even
when it occurs at a complex frequency [26].

A previous work, [27], has introduced the notion of the
R-zero spectrum in themore limited context ofwaveguides,
focusing on single-mode cases, and pointed out its rele-
vance to impedance matching. These authors did not
discuss the possibility of tuning thewave operator to create
a physical steady state but studied a one-dimensional
parity-symmetric case for which the R-zeros can have real
frequency due to symmetry.

2.4 The RSM concept

As noted, an RSM is a steady-state wave solution at a real
frequency that excites a structure/resonator through spe-
cific input channels such that there is zero reflection back
into the chosen channels. It can be specified asymptotically
by its frequency andwavefront α (where here we refer to the
Nin nonzero components of α). The absence of reflection for
the RSM incident wavefront is due to interference: the
reflection amplitude of each input channel i destructively
interferes with the interchannel scattering from all the other
input channels, (Rin)iiαi +∑j≠i(Rin)ijαj � 0 (which is just a

restatement of the fact that α is an eigenvector of Rin with
eigenvalue zero). However, the scattering (“transmission”)
into the chosen output channels is not obtained from solv-
ing this equation alone and must be determined by solving
the full scattering problem atωRZ, i.e., by calculating the full
S-matrix at ωRZ.

The case ofNin =N corresponds to the CPA [17], (Rin = S),
which, as noted, has been identified and studied for some
time. In this case, the R-zeros are the zeros of the full
S-matrix, which are relatively familiar objects. CPA, as an
example of an RSM, is rather special because it requires that
all the asymptotic channels be controlled in order to have
the possibility of achieving a CPA, which is often not prac-
tical in complex geometries. Also, only in the caseof theCPA
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is it necessary to violate flux conservation to create an RSM
(i.e., by adding an absorbing term to the dielectric function).
Thus, the CPA ismainly of interest in cases where the goal is
not impedance matching but rather transduction or sinking
of energy.

2.5 Wave operator theory of zeros of the
S-matrix and generalized reflection
matrix

It is both mathematically convenient and helpful for
physical insight to consider the R-zero/RSM problem from
the point of view of the underlying wave operator with
boundary conditions. While Eq. (2) defines the frequencies
and wavefronts for which reflectionless states exist for a
fixed structure/resonator, solving it will not simulta-
neously yield the field everywhere within the structure. For
the latter, one will need to solve the full Maxwell wave
equations subject to the boundary conditions at infinity
which follow from the frequency and incident wavefront.

The R-zero/RSM boundary conditions lead to a more
constrained scattering problem than the standard scat-
tering boundary conditions in which only the input
wavefront is specified, but no constraint is placed on the
output wavefront. For the standard problem, a solution
exists at every real ω, but it generically involves all of the
outgoing channels in the asymptotic region. In the RSM/
R-zero problem only, N − Nin of the asymptotic outgoing
channels are allowed to appear, and Nin of the input
channels generically appear. Thus, solutions are con-
structed from only N of the 2N possible asymptotic free
solutions and are not guaranteed to exist at all frequencies.
As the previous analysis leading to Eq. (2) has shown,
having an R-zero requires a certain scattering operator to
be noninvertible, which we do not expect to happen
generically.

A more familiar situation, in which we impose similar
boundary conditions, is in calculating the resonances,
using only the N outgoing channel functions at infinity. As
already noted, this calculation can be posed as an elec-
tromagnetic eigenvalue problem for which the eigenvalues
are the frequencies at which solutions exist. For the reso-
nance problem, it is well known that for finite structures of
the type considered here, there are an infinite number of
solutions at discrete frequencies and that these frequencies
correspond to the poles of various response functions
including the S-matrix that we have introduced above. In
the absence of gain, by causality these poles are restricted
to the lower half-plane. We will now discuss a wave

operator representation of the S-matrix and the implica-
tions for its zeros in preparation for the general theory of
R-zeros in the next section. The results we present in the
next two sections are based on derivations from the study
by Sweeney et al. [15], and here, we simply present the
main results without proof, introducing the minimum
number of mathematical details necessary to make these
results comprehensible. Readers interested only in the
basic results and examples may skip to the summary in
Section 3.1.

To introduce our notation, consider a wave operator

Â(ω) acting on state |ω〉, which satisfies Â(ω)|ω〉 � 0. For
electromagnetic scattering, we may choose the quantity
〈r|ω〉 as themagnetic field,H(r), under harmonic excitation
at ω. The Maxwell operator at frequency ω is given as
follows:

〈r′
∣∣∣Â(ω)∣∣∣∣r〉 � δ(r − r′){(ω

c
)2

− ∇ × ( 1
ε(r,ω) ∇ ×)}. (3)

Here, we have given the full vector Maxwell operator for
which all of our results are valid, but in the more detailed
analysis below, we only apply the theory to effectively one-
and two-dimensional cases in which a scalar Helmholtz-
type equation describes the solutions for the appropriate
polarization.

In order to express the scattering matrix in terms of its
resonances, we divide the system into two regions: the
finite, inhomogeneous scattering region Ω in the interior,

and the exterior asymptotic region Ω that extends to in-
finity, which possesses a translational invariance broken

only by the boundary, ∂Ω, between Ω and Ω. We separate

operator Â(ω) into three pieces,

Â(ω) � [Â0(ω) ⊕ Âc(ω)] + V̂(ω), (4)

with Â0(ω) identical to Â(ω) on its domain Ω and Âc(ω) is
identical to Â(ω) on Ω. V̂(ω) represents the residual
coupling between the two regions.

The closed-cavity wave operator Â0(ω) onΩ, whichwe
do not assume to be hermitian, has a discrete spectrum of

the form Â0(ωμ)
∣∣∣∣μ〉 � 0 with eigenvalues {ωμ}. The

boundary conditions on Â0(ω) can be chosen to be Neu-
mann, but the effect of coupling termswill introduce a self-
energy which will account for the actual continuity con-
ditions at the boundary ofΩ. The matrix A0(ω) is naturally
defined by its matrix elements as follows:

A0(ω)μν � 〈μ
∣∣∣∣Â0(ω)

∣∣∣∣ν 〉 . (5)

The asymptotic wave operator Âc(ω) on Ω has a countable
number of eigenfunctions at every real value ofω; these are
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the propagating channel functions which satisfy
Âc(ω)|ω, n〉 � 0. The operator V̂ connects these closed and
continuum states, and its off-diagonal block is represented
by the matrix W(ω) as follows:

W(ω)μn � 〈μ
∣∣∣∣V̂(ω)∣∣∣∣n,ω 〉 . (6)

While W(ω) in general also has a contribution from
evanescent channels inΩ, wewill neglect the effect of such
channels henceforth in the current discussion, as they do
not change the central results qualitatively [15].

With these definitions, one can derive a general rela-
tion [28–31] between the matrices S, A0, and W, originally
developed in nuclear physics, which allows us to find the
poles and zeros of S through its determinant:

det S(ω) � det(A0(ω) − Δ(ω) − iΓ(ω))
det(A0(ω) − Δ(ω) + iΓ(ω)) . (7)

The two hermitian operators which appear here are Δ and

Γ ≡ πWW†, the latter being positive, semidefinite, arise
from the coupling operator and, roughly speaking, induce
a real and imaginary shift of the eigenvalues of the “closed”
system to account for the openness of the system. The
operator Δ can be expressed in terms of an integral over the
WW† matrix [15] and is of less interest in the current
context; both operators are infinite dimensional matrices
in the space of resonances of the system. The S-matrix
however is a finite dimensional matrix in the truncated
channel space (as noted above), and hence, Eq. (7) is not a
simple identity of linear algebra: the left-hand side is the
standard determinant of an N-by-N square matrix, while
the right-hand side is a ratio of functional determinants of
differential operators on an infinite dimensional Hilbert
space (see the study by Sweeney et al. [15] for more details
and relevant references). Since the right-hand side is a ratio
of determinants of infinite dimensional differential opera-
tors upon a finite domain (which will have a countably
infinite set of complex eigenvalues which depend on ω),
this implies that det S indeed has a countably infinite set of
zeros and poles (corresponding to the vanishing of the
numerator and denominator). When A0 is hermitian (the
scatterer is lossless), then the operators in the numerator
and denominator are hermitian conjugates and the poles
and zeros come in complex conjugate pairs.

Since the operators in each determinant of the ratio do
not commute, one cannot simply say that the eigenvalues
of the full operators are the sum of the eigenvalues of each
individual operator. However, the more isolated the res-
onances of the systems are, the more useful is this heu-
ristic interpretation of Eq. (7). Thus, crudely speaking, the
scattering resonances will occur at complex frequencies

where the real part is given by the real part of the eigen-
value of the closed system containing the scatterer, shif-
ted by the contribution from Δ, while its imaginary part
must be negative, with a value i( −γμ, rad − γμ, int), where
γμ, rad > 0 is an eigenvalue of Γ and represents radiative

loss, and γμ, int comes from gain or loss in the resonator

and can have either sign. With the standard convention
we have chosen here, γμ, int > 0 corresponds to absorption

loss so that adding absorption pushes the resonance away
from the real axis and hence broadens it, as is familiar.
Conversely, the zeros of S have imaginary part
i(γμ, rad − γμ, int), fromwhich we see that there will be a real

zero at some frequency when γμ, rad � γμ, int. When the

radiative loss equals the absorption loss, the S-matrix has
an eigenvalue equal to zero at a real frequency: one can
send in a specific wavefront and it will be indefinitely
trapped and hence absorbed. The multichannel case of
this is the CPA, and the single-channel case, for which a
specific wavefront is not required, is the usual CC to a
resonator. However, as noted, this only corresponds to CC
when all of the loss is due to absorption, whereas we will
present the full generalization of reflectionless coupling
in the next section.

Up to this point, we have just reviewed the known
properties of the S-matrix in this operator representation.
Henceforth, we are focusing on the zeros of the matrix Rin,
when it differs from the full S-matrix, and seeking the
condition for it to have zeros.

We now present results from adapting this formalism
to treat R-zeros/RSMs; unlike the results presented in the
previous section, these results were not known previous to
the derivations in the study by Sweeney et al. [15]. The basic
approach is to represent thematrixRin through appropriate
projection operators applied to the S-matrix and then to
performa similar butmore involved set ofmanipulations to
obtain a relationship between the det Rin and a ratio of
determinants of wave operators to similar to but distinct
from those that determine det S.

The result is as follows [15]:

det Rin(ω) � det(A0(ω)−Δ(ω)− i[Γin(ω)−Γout(ω)])
det(A0(ω)−Δ(ω)+ iΓ(ω)) , (8)

where the only (but crucial) difference from Eq. (7) is the
replacement of the operator Γ by the difference of two op-
erators associated with the input and output channels,
respectively: Γin −Γout ≡WinW†

in −WoutW†
out. Here, the sub-

scripts refer to the sectors of the operator W introduced
previously that connect the discrete states of the scatterer/
resonator to the asymptotic incoming channels and
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outgoing channels (respectively), which were specified in
the definition of Rin. Eq. (8) is the central mathematical
result of our theory of reflectionless states. Similar to Eq.
(7), Eq. (8) relates the determinant of the Nin-by-Nin matrix
Rin to a ratio of wave operator (functional) determinants
which describe the discrete but infinite space of eigen-
values of the scatterer/resonator.

3 Properties of R-zeros and RSMs

3.1 General properties

FromEq. (8), we can draw a number of critical conclusions:
– For reasons analogous to those arising from Eq. (7), we

can conclude that the matrix Rin also has a countably
infinite set of zeros and poles at discrete complex
frequencies.

– Because the denominator is the same as in Eq. (7), the
poles of Rin are identical to those of S (excluding
certain nongeneric cases).

– However, the zeros of Rin (R-zeros) are generically at
distinct frequencies in the complex plane from those of
S. As noted above, the R-zero spectrum is a new com-
plex spectrum with a distinct physical meaning from
S-matrix zeros or poles [15, 27].

– Because the operator in the numerator of Eq. (8) is not
the hermitian conjugate of that in the denominator,
evenwhen the scatterer is passive (no loss or gain), the
R-zeros are not the complex conjugate of the poles and
can appear in either the upper or lower half-plane
without the addition of loss or gain. In particular, a
lossless scatterer can have a real R-zero (RSM),
although generically this requires parameter tuning.

– The fact that the positive semidefinite coupling oper-
ator WinW†

in gives a contribution to the numerator of
Eq. (8) of opposite sign to that of the outgoing channels
(which has the usual sign for the S-matrix) implies that
qualitatively the incoming channels function as a kind
of “radiative gain” for the R-zeros, whereas the out-
going channels function qualitatively in the usual
manner as radiative loss. Heuristically, we can expect
that an R-zero can become an RSM when the total
coupling in from the input channels balances the total
coupling out from the radiative channels, or, if there is
loss or gain in the resonator itself, when all of these
terms are balanced to cancel. If we are in the regime of
isolated resonances, there will be only one set of
relevant couplings to balance, and this can be

regarded as a multichannel generalization of CC.
However, to excite this RSM, one will still need to send
in the correct coherent wavefront obtained from the
eigenvalue equation for Rin.

– Our result shows that the full operator in the numer-
ator of Eq. (8) will have an infinite number of zeros in
general, even if we are not in the regime of isolated
resonances. In this case, there is no single scalar
condition for achieving RSMs and no meaningful
generalization of the CC concept. Nonetheless, R-zeros
can be calculated, and by varying parameters of the
scatterer/resonator, these can be tuned to RSMs. So,
the existence of reflectionless states, with tuning, is a
robust property of electromagnetic scattering and does
not require a high-Q resonator. An example of tuning
to RSMs in a low-Qmultiwaveguide junction is given in
Figure 5 below.

– Tuning R-zeros to RSMs: Although there can be
complications from interference between resonances,
qualitatively speaking, adding loss to the scatterer will
cause the R-zeros to flow downward in the complex
plane and gain will cause them to flow upward. Simi-
larly, altering the geometry of the scatterer/resonator
so as to enhance the coupling of the output channels
will cause the R-zeros to move downwards and
decreasing the coupling will cause them to move up-
wards (and vice versa for the input channels). In
certain cases, geometric tuning may affect both input
and output channels at once and these couplings may
not be separately controlled, making it difficult to tune
to RSMs. However, in most cases, tuning a single
structural parameter will be sufficient to allow
perfectly reflectionless excitation of the structure,
although the correct relative amplitudes and phases of
the input channels will be required to access it.

– When the scatterer/resonator has discrete symmetries, in
some cases, no tuning will be required to find RSMs (real
R-zeros). Textbook examples are different types of
balanced two-mirror resonators, which we will refer to
collectively as “Fabry–Pérot” resonators. Such resona-
tors have both parity (P) and time-reversal (T ) sym-
metry. Other more recent examples are one-dimensional
photonic structures with balanced gain and loss such
that the product of parity and time (PT ) is preserved.
Here, unlike the FP resonators, the real RSMs are unidi-
rectional and can only be accessed from one side or the
other. We will see in the next section that, in both cases,
the RSMs can be lost due to spontaneous symmetry
breaking at an RSM exceptional point (EP).
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3.2 Symmetry properties of R-zeros and
RSMs

The general formulas analyzed above only prove the exis-
tence of R-zeros in the complex plane, and therefore, since
the real axis has zero measure in the plane, without
parameter tuning or symmetry constraints, a generic sys-
tem will have no RSMs. However, well-known examples,
such as the FP resonator, have an infinite number of RSMs,
apparently due to symmetry. In the study by Sweeney et al.
[15], a detailed analysis is given of the implications of
various discrete symmetries on the R-zero spectrum. Here,
we will only present the main conclusions and illustrate
them with simple one-dimensional examples.

We will focus on discrete symmetries and their effect
on the R-zero spectrum. The specific symmetries we will
analyze here are time reversal, parity, and the product of
the two, as well as the very important case of systems with
both symmetries (P + T ), exemplified by the FP resonator.
In the context of one-dimensional electromagnetic scat-
tering, T symmetry requires that the resonator has a real
dielectric function, ε(x);P symmetry requires ε(x) � ε(−x)
but need not be real, and PT symmetry requires ε(x) �
ε*(−x) but again it need not be real.

3.2.1 Time-reversal symmetry ( T ) and parity
symmetry (P )

The time-reversal operator (T ) complex conjugates the
wave equation in the frequency domain. If the system has
T symmetry, then it maps a left-incident R-zero to a right-
incident R-zero of the same cavity but at frequency ω*.
Hence the following conclusions are made:
– If a cavity with T symmetry (real ε) has a left R-zero at

ω, then it will have a right R-zero at ω*. If it is tuned to
RSMs without breaking T symmetry, then it will be
bidirectional, i.e., it will have a left RSM and right RSM
at the same frequency.

The parity operatorP maps x→ −x in the wave equation; if
the dielectric function has parity symmetry, then it maps a
left R-zero at ω to a right R-zero of the same cavity at the
same frequency. Hence the following conclusions are
made:
– All R-zeros of parity-symmetric one-dimensional sys-

tems are bidirectional, whether or not they are real.

BothP symmetry and T symmetry map from left R-zeros to
right R-zeros and imply relationships between these
spectra but neither alone implies R-zeros are real. Hence, in
systems with only one of these symmetries, parameter

Figure 3: Illustration of reflectionless scattering modes (RSMs) and
R-zero spectrum for simple two- and three-mirror resonators of
length L in 1D, consisting of δ-function mirrors of strengths γ−11 , γ−12 ,
and κ−1, as indicated in the schematic in (a). Throughout, we fix
γ2 ≡ c/L. Blue and red lines 1 → 2 indicate the effect of breaking
symmetry by varying γ1 from γ2 → 2γ2. A bidirectional RSM [as in (b)]
splits into two complex conjugate R-zeros off the real axis and a
reflectionless steady-state (RSM) no longer exists, as in (c). Adding
gain to the cavity, indicated by blue and red lines 2→ 3, brings the
lower R-zero to the real axis (but not the upper one), creating a right-
incident amplifying RSM, as in (d). Alternatively, adding a middle
mirror and reducing its κ from∞→ 2γ2/3 is sufficient to bring both
R-zeros back to the real axis (2→ 4 in (a)), creating simultaneous left
and right RSMs at a different frequency from the symmetric Fabry–
Pérot (FP) resonator (see (e)), without restoring parity symmetry.
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tuning will be required to create RSMs. A simple example
illustrating this with an asymmetric FP resonator is shown
in Figure 3(a–e). Here, we illustrate tuning to RSMs with
both T -preserving (geometric) tuning and T -breaking
(gain/loss) tuning.

Starting with a symmetric FP cavity, with P + T sym-
metry, we first break parity symmetry but maintain T sym-
metry by simply making the mirror reflectivities unequal
(Figure 3(a) solid lines). The left-incident and right-incident
R-zeros leave the real axis as complex conjugate pairs, as
required by T symmetry, and there are no remaining RSMs
(there are resonances but without zero reflection). To create
a right-incident RSM,we add gain to the system, breaking T
symmetry, with the correct value to bring the right R-zero in
the lower half-plane back to the real axis; at the same time,
the left R-zero is pushed further away, and the RSM created
is unidirectional. The left R-zero couldalso be tuned toRSMs
by adding an equivalent amount of loss. To create a bidi-
rectional RSM, we instead add a third lossless mirror to the
resonator, andwe find that tuning the reflectivity of the new
(middle) mirror can bring the system back to real axis. Since
T symmetry has been maintained, the RSM must be bidi-
rectional. Note that in both cases, the tuning has not
restored parity symmetry. All such RSMs are in this sense
“accidental”, achieved by parameter tuning and without an
underlying symmetry. Geometric tuning is of particular in-
terest for reflectionless states of complex structures where
adding loss or gainmaynot be practical or desirable (see the
examples in Figures 4–6 below).

3.2.2 P and T symmetry and symmetry-breaking
transition

The most prominent example of a system with an infinite
number of RSMs was already mentioned above, two-mirror
resonators (where “mirror” includes the many types of
reflecting structuresused inphotonics)whichwill be referred
to collectively as FP resonators. In fact one can easily check
that all R-zeros of an FP resonator are real and in one–one
correspondence with the resonances of the structure. This
examplemight suggest that any structure with bothP and T
symmetry should have only real R-zeros (RSMs). Previous
work on multimirror resonators [32, 33] however has found
cases which violate this expectation, but to our knowledge,
nogeneral reason for this fact or qualitative understandingof
it has been given. The symmetry analysis we present here
provides such a framework, with additional implications
which are new. A more detailed study of this case is in

Figure 4: Reflectionless scattering modes (RSMs) in a P + T
symmetric structure.
(a) Symmetric three-slab heterostructure in air, with refractive index
n1 in the outer sections, which are of length L1, and variable index n2
in the middle, of length L2; here n1 = 1.5 and L2 = 0.15L1/n2. (b) Real
part of the R-zero frequencies as the central index n2 is increased.
For small n2, the R-zeros are real-valued RSMs and in the unbroken
phase (solid blue lines), while for large n2, some R-zeros have
entered the broken phase (red dashed). After two RSMs meet at an
RSM exceptional point (EP), they split into two R-zeros at complex
conjugate frequencies as n2 is further increased. (c) Spectra of the
R-zeros/RSMs and resonances in the complex frequency plane at
n2 = 3.23 where two (bidirectional) RSMs meet at two degenerate
EPs (one for left RSMs and one for right RSMs). (d) Reflection and
transmission spectra for the same n2 as in (c); blue filled dots mark
the RSM frequencies, open blue dot is real part of complex R-zero,
which has already entered the broken phase. Yellow highlight in (b–
d) indicates the same RSM EP, which exhibits quartically flat
reflection and transmission.
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preparation [34]; here, we present a brief outline of the
problem, illustrated with a simple example.

First, we must draw your attention to an important
point. Even if the structure/resonator has both P and T
symmetry, the wave operator for the R-zero spectrum does
not. As already noted, both theP and T operationsmap left
R-zeros back to right R-zeros; hence, the boundary condi-
tions are not invariant under these operations.However, it is
easy to confirm that if a structure has both P and T sym-
metry (including the asymptotic regions), then the product
PT maps the R-zero spectrum for a single directionality
back to itself as follows:
– If a cavity has both P and T symmetry, its R-zeros

occur in complex conjugate pairs or are nondegenerate
and real (i.e. RSMs). The frequency spectrum of the left
R-zeros and the right R-zeros is the same so that all
RSMs and R-zeros are bidirectional.

Since both the cases of real RSMs without tuning and
complex conjugate pairs of R-zeros are allowed by sym-
metry, we expect both cases to occur in some structures.
We are already familiar with FP resonators for which all of
the R-zeros are RSMs; in Figure 4, we examine the simplest
example beyond the FP case for which not all R-zeros are
RSMs. Similarly to the example of Figure 3,we add amiddle
mirror to the FP resonator, but now the initial FP resonator
has balancedmirrors andP + T symmetry. It is well known
that such a couplingmirror will create two coupled cavities
for which the original resonances will be paired up as
quasi-degenerate symmetric and antisymmetric doublets
with twice the original free spectral range. However, the
doublets cannot become fully degenerate until the internal
mirror becomes totally opaque, and we simply have two
separate identical one-sided cavities. In contrast, there are
continuity arguments which we omit here that imply that
the RSMs must disappear at a finite coupling. In other
words, as the couplingmirror becomesmore opaque, there
is a finite coupling at which a pair of RSMs associated with
a resonant doublet meet and then leave the real axis as
complex conjugate R-zeros. This is an example of a spon-
taneous PT symmetry-breaking transition [35–38] driven
by the increase of the coupling mirror opacity. Thus we
have shown the existence of a PT transition in a lossless
system. This is the first such example to our knowledge,
and it is possible because the R-zero boundary conditions
themselves are nonhermitian, even if the differential
operator in the wave equation does not have a complex
dielectric function. This behavior of the three-mirror loss-
less resonator is illustrated in Figure 4.

Finally, when the two RSMs meet on the real axis, we
have a degeneracy of the nonhermitian R-zero eigenvalue

problem, so this must correspond to an EP of the under-
lyingwave operator, which in this case happens on the real
axis, and not in the complex plane as happens for many
other studied cases for which two resonances become
degenerate. More precisely, there are two degenerate EPs
when bidirectional RSMsmeet; one for the left RSM spectra
and one for the right RSM spectra. For a second order EP
such as this, on the real axis, previous work has shown [39]
that the associated lineshape is altered to a quartic flat-top
shape; this behavior is visible in Figure 4. The existence of
this specific tuned behavior of the three-mirror resonators
was predicted long ago [32, 33] and is used in designing
“ripple-free” filters. Such filters are the analogs of Butter-
worth filters in electronics [40]. However, the previous
work does not seem to have identified this as an EP,
associated with a PT transition. A much more in-depth
analysis of the physics of this transition will be given
elsewhere [34].

3.2.3 Parity–time symmetry (PT ) and symmetry-
breaking transition

Reflectionless states have been previously studied exten-
sively [41, 42] for one-dimensional resonators which have
onlyPT symmetry but not P and T separately; in this case,
the condition ε(x) � ε*(−x) holds, but ε is not real (balanced
gain and loss). This case is discussed indetail in the study by
Sweeney et al. [15]; it is straightforward to show that, in this
case, R-zeros are either real or come in complex conjugate
pairs, but there is no connection between the left and right
R-zero spectra. Hence, all R-zeros and RSMs in this case are
unidirectional. If one starts with a system with P and T
symmetry such as the standard FP resonator and now adds
balanced gain and loss tomaintainPT symmetry, again one
will see pairs of RSMs move toward each other on the real
axis, pass through an EP, before emerging as complex con-
jugate pairs of R-zeros. This example, given in the study by
Sweeney et al. [15], then differs from the example shown in
Figure 4 only in that the left R-zeros and right R-zeros no
longer move together.

4 Applications of R-zero/RSM
theory

4.1 Relationship to coupled mode theory

The preceding results were derived directly fromMaxwell’s
equations and involve no approximation. In many cir-
cumstances, an approximate analytic model will be

354 A.D. Stone et al.: Reflectionless excitation of arbitrary photonic structures



adequate and desirable for simplicity. In photonics, a
standard tool is the temporal coupled-mode theory (TCMT)
[43–48], which is a phenomenological model widely used
in the design and analysis of optical devices [49–52]. The
TCMT formalism is derived from symmetry constraints [43–
47] rather than from first principles, yet it leads to an an-
alytic relation between the determinant of the scattering
matrix and the underlying Hamiltonian that is similar to
Eq. (7) and is reasonably accurate in many cases. The
appropriate comparison between the TCMT and the exact
RSM theory presented here is given in the study by Swee-
ney et al. [15]. Here, we will only quote one relevant result
of that analysis. Not surprisingly, it is possible to adapt the
TCMT analysis which leads to an expression for the
S-matrix in terms of an “effective Hamiltonian”, so as to
find an expression for the Rin matrix, and a condition for it
to have an R-zero. In this expression, as in our Eq. (8), the
coupling coefficients for the input channels to the reso-
nator appear as an effective gain term and coefficients for
the output channels appear as an effective loss term. Very
often, in the TCMT formalism, the single-resonance
approximation is used, in which the effective Hamilto-
nian is replaced by a number equal to the complex energy
of the resonance.When a similar approximation is used for
Rin to determine the R-zeros, one finds the following [15]:

ωRZ � (ω0 − iγnr) + i(γin − γout),
γin ≡ ∑

n∈F
|dn|2/2, γout ≡ ∑

n∉F
|dn|2/2, (9)

here, ωRZ is the R-zero frequency, ω0 is the real part of the
resonance frequency, dn is the coupling coefficient (partial
width) of themode to the nth radiative channel, γin, γout are
then the total radiative rates in and out, respectively, for
the resonance, and γnr is the nonradiative rate associated
with loss or gain in the resonator. An RSM arises when the
various imaginary terms for ωRZ cancel, and the structure
is illuminated with the corresponding wavefront, deter-
mined by the eigenvector of Rin. This then corresponds to
the CC condition, generalized to multichannel inputs and
outputs. Here, we have used the standard notation in the
TCMT for the partial coupling rates into or out of a given
channel. In our theory, evaluating the matrices
WinW†

in,WoutW†
out in the limit of a single resonance yields a

similar CC relationship.
Hence, the TCMT within the single (high-Q)-resonance

approximation gives an analytic basis for the concept of
generalized CC introduced above and also shows its limi-
tations. One implication of this result is that R-zeros with

different numbers of input and output channels will have
the same Re{ω} as the underlying resonance and will be
simply shifted vertically in the complex plane along a line
between the S-matrix pole (resonance) and its zero. The
appropriate input wavefront for the RSMwill just be that of
the outgoing resonance, phase conjugated for the chosen
input channels. This behavior is found in the example

Figure 5: Asymmetric lossless waveguide junction/resonator (mean
radius R̄) coupled to five single-mode waveguides, with constric-
tions at the ports to the junction. (a) Numerically calculated R-zero
spectrum for a weakly coupled, high-Q junction with well-isolated
resonances. Black x and dot are purely outgoing (resonance) and
incoming (S-matrix zero) frequencies, which are complex conju-
gates. Colored stars are R-zeros for various choices of input chan-
nels; the legend indicates which channels are inputs, with the
channel labels given in (c). The R-zeros cluster vertically above the
resonance frequency and below the S-matrix zero frequency, as
predicted by single-resonance temporal coupled-mode theory
(TCMT) approximation in Eq. (9) below. The common width of the
constrictions for waveguides {4, 5, 6} is slightly tuned to make a
2-in/3-out R-zero real, creating a reflectionless scattering mode
(RSM). (b) R-zero spectrum for the same junction but with the con-
strictions opened, which lowers the Q of the resonances (note
change in vertical scale). The linewidths of the resonances are now
comparable to their spacing. Due to multiresonance effects, the
R-zeros are spread out along the real and complex frequency axis
and are no longer associated with a single resonance. Nonetheless,
by slightly tuning the constriction width as before, a 2-in/3-out
R-zero is again made real (RSM), as in the high-Q case. (c, d) The
mode profiles of the RSMs for the high-Q (c) and low-Q (d) cases.
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shown in Figure 5a for the case of a high-Q resonator.
Conversely, the TCMT single resonance result fails for a
more open resonator (Figure 5b), where multiple reso-
nances mediate the scattering within the resonator.
Nonetheless, the exact R-zero/RSM approach can be used
to tune to RSMs numerically.

The single-resonance scenario is the simplest example
of an R-zero, yet it already is sufficient to explain the
impedance-matching conditions previously found using
the TCMT in waveguide branches [53], antireflection sur-
faces [54], and polarization-converting surfaces [55].

4.2 Reflectionless states in complex
structures: examples

Here, we show two examples of RSMs engineered in com-
plex photonic structures; these are the kinds of impedance-
matching problems, and it would be very difficult to solve
without our theory and associated computational ap-
proaches. As noted above, R-zero spectra can be calculated
by a modified PML method in many cases and by a
boundary matching method in all cases. The first of the
examples below was done by the PML method, which is
somewhat simpler. The second was done by the matching
method and could not be done with PMLs because the
input and output channels are not separated in the
asymptotic regions. We will discuss the solution methods
very briefly in the next section.

In Figure 5(a), we show results for an asymmetric
cavity much larger than the wavelength of the exciting
radiation, with a smooth boundary connected to five
single-modewaveguides, without any internal gain or loss.
Here and in the next example, we are only going to use
geometric/index parameter tuning to achieve a flux-
conserving RSM. The structure has no discrete symme-
tries, so there is no reason that there should exist any RSMs
for such structures without parameter tuning. In addition,
such cavities are well known to have many pseudorandom
wave-chaotic states so that the resonances do not have any
simple spatial structure or ray orbit interpretation, making
intuitive design approaches to generating the appropriate
interference behavior impossible. We consider this struc-
ture in two limits: (a) the limit inwhich thewaveguide ports
are pinched off by constrictions to create a high-Q cavity
and large nonresonant reflection at the ports and (b) the
limit of essentially open ports with slight width tuning for
which the cavity has much lower Q, and multiple reso-
nances participate in scattering.

In the case (a), the behavior is aspredicted by the single-
resonance approximation, discussed just above. R-zeros are

lined up vertically in the complex plane between the pole
and the zero, and one of them (a two-in, three-out case) has
been tuned to the real axis. The internal field (real part
shown in (c)) is chaotic looking and coincides well with the
single resonance associated with these R-zeros.

In the case (b), where we impose the same R-zero
boundary conditions, we see very different behavior of the

Figure 6: Illustration of a reflectionless scattering mode (RSM) in a
four-modewaveguideactingasamode converter fromasuperposition
of input waveguide modes 1 and 2 into output modes 3 and 4, as the
wedgeangle of theboundarybetween the index 1 and index2 region is
varied.
(a) Trajectory of R-zero in the complex frequency plane as wedge-
angle θ is tuned. The R-zero crosses the real axis at θ � 34.96° (red
star), becoming an RSM. Insets show a schematic of the structure
and the real part of the RSM field profile. (b) Reflectivity intomodes 1
and 2 with different incident wavefronts for θ � 34.96°. Red curve
has input α0(ω), defined to be the eigenvector of R†

in(ω)Rin(ω) with
the smallest eigenvalue. Rin(ω) is the 2 × 2 upper left block of the
scatteringmatrix. The incidentwaveα0(ωRSM) � [0.7982, −0.5642 +
0.2158i,0,0] generates the reflectionless output
β(ωRSM) � [0,0,0.1767 − 0.3689i,0.7682 + 0.4925i]. Meanwhile,
the inputs from only mode 1 or only mode 2 (green and blue curves)
have nonzero reflectivity for all frequencies. The inset shows the
output amplitude

∣∣∣∣β(ωRSM)
∣∣∣∣ for the eigenvector input α0(ωRSM).
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R-zero spectrum, characteristic of transmission through
multiple resonances. The R-zeros are spread out in the
complex plane and do not lie on a line coincident with any
one resonance, nor is the input wavefront or internal field
associated with a single resonance. Tuning to RSMs is
achieved by a very slight variation in thewidth of one of the
outgoing waveguides at the port. Further details are given
in the figure caption.

The second example, shown in Figure 6, is a structure
which functions as a lossless mode converter in reflection.
It is a multimode empty waveguide terminated by an
angled wedge of purely real index n = 2 material and then
by a perfectly reflecting wall. In the case where the wave-
guide has only two modes, it is relatively simple to find a
wedge angle which converts, e.g., mode one intomode two
perfectly after reflection, and a simple Fresnel scattering
analysis could be used to find the necessary angle to a good
approximation. Here, however the waveguide has four
propagating modes, and the R-zero problem is to use
modes one and two as inputs and modes three and four as
outputs. Our general theory implies that such a solution
should exist at some ω as one tunes a single parameter
such as the wedge angle. Indeed, Figure 6(a) shows that as
thewedge angle is tuned, one of the R-zeros crosses the real
axis and becomes an RSM.

As there are multiple input channels, zero reflection is
achieved onlywhen the correct superposition ofmodes one

and two is used. The smallest eigenvalue of R†
in(ω)Rin(ω)

gives the smallest possible reflectivity, and Figure 6(b)
shows that this vanishes at ωRSM, while the reflected in-
tensities for single-channel inputs do not anywhere in the
vicinity of ωRSM.

Finally, in the study by Sweeney et al. [15], an example
was presented of an RSM solution to a different and chal-
lenging problem in free-space scattering: designing a dielec-
tric antennamuch larger than the inputwavelength such that
it perfectly reflects a monopole input signal (assuming 2D
scalar waves) into higher multipoles in the scattered field.
Although here we considered scalar waves, the method can
be straightforwardly generalized to vector electromagnetic
waves. This additional example, not involvingwaveguides or
mirror resonators, illustrates the versatility of the R-zero/RSM
theory for electromagnetic design.

Finding these types of impedance-matched solutions
for open multichannel structures would be difficult
without our theory, nor were there, to our knowledge,
previous formulations which guarantee a solution exists,
for the appropriate input wavefront with single parameter
tuning. As already noted, the usual CC concept does not
extend to these types of low-Q structures.

4.3 Solution method for R-zero/RSM
problems

We make a few brief remarks on solving the R-zero/RSM
problem numerically, which will be necessary for essen-
tially all cases of interest. In principle, one could find
R-zeros by constructing the full S-matrix of the problem
and then the relevant Rin(ω) and search for the zeros of its
determinant in the complex plane. Doing so, however, has
a numerical disadvantage because Rin(ω) changes rapidly
with frequency near resonances, which generally makes it
harder for such root finding and for other nonlinear eigen-
problem solvers. Our theory demonstrates that the R-zeros
can be found directly from imposing boundary conditions
of the wave operator on the boundary of a computational
cell, without constructing the scattering matrix in the
complex plane. This typically more efficient procedure
then yields the R-zero spectrum in a given frequency range
for an initial structure, which typically contains no RSMs.
However, the fact that the R-zeros are eigenvalues of awell-
behaved wave operator means that its eigenvalues will
move continuously with small changes in the real or
imaginary part of the dielectric function. Moreover, the
general form of Eq. (8) has given us the intuition to know
what kinds of geometric or loss/gain perturbations will
move the R-zeros up or down in the complex plane (e.g.,
increasing the coupling of an outgoing channel will tend to
move all R-zeros down and vice versa for an incoming
channel). While the simple CC picture is not always
valid, the tuning of an R-zero to the real axis is by no
means a random search in a parameter space. In addition,
obviously, many different tunings will work if any real fre-
quency in a given range is acceptable. The upshot is that,
numerically, engineering a single RSM can be achieved by a
small number of iterations of the initial calculation. Hence,
finding the RSMs inmany cases is computationally nomore
difficult than iterating a resonance calculation of the type
available in packages such as COMSOL Multiphysics over a
number of weakly perturbed structures.

However, there is one important difference between
resonance calculations and RSM calculations; all reso-
nance calculations can be done using the PML method
since all the asymptotic channels satisfy the same outgoing
boundary conditions. When the system has negligible
dispersion, the PML method turns a nonlinear eigenvalue
problem into a linear one, for which the boundary condi-
tion is independent ofω, and thismakes the solution easier
[56]. There also exist conjugated PMLs [27], though they are
less well known, which can implement purely incoming
boundary conditions. However, there is (as yet) no PML
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method to solve problems, such as the mode converter
example above, for which the incoming and outgoing
channels overlap in space. Here, we need to impose
matching conditions outside the surface of last scattering
based on exactly the set of incoming and outgoing chan-
nels chosen for the R-zero problem (this is what we mean
by R-zero boundary conditions). Those conditions do
depend on the frequency, leading to the more complicated
nonlinear eigenvalue problem one avoids with PMLs.
However, such matching has been done successfully for
complex structures in the wave-chaotic regime [57] and in
ab initio laser theory [58], and we have used similar
methods here and in the study by Sweeney et al. [15] to
solve the mode converter and multipole converting an-
tenna examples. Even for these more challenging cases,
the computations remained quite tractable. More details
about the two methods and a derivation of the matching
method are given in the study by Sweeney et al. [15].

5 Summary and outlook

This paper outlines a general theory of reflectionless
excitation or impedance matching of linear waves to finite
structures of arbitrary geometry in any dimension,
focusing on the case of classical electromagnetic waves
and building on the full theoretical framework presented in
the study by Sweeney et al. [15]. The basic framework ap-
plies as well to acoustic and other linear classical waves
and to some quantum scattering problems aswell. Because
every impedance-matching problem can be posed as the
solution of an electromagnetic eigenvalue problem with
certain overdetermined boundary conditions at infinity,
similar to the problem of finding resonances, it is possible
to completely specify necessary and sufficient conditions
for solutions to exist. It is shown that an infinite number of
unphysical solutions always exist at discrete complex fre-
quencies, and any single solution can be tuned to the real
axis, typically by varying a single parameter of the struc-
ture, so as to become a physically realizable steady-state
harmonic solution. These solutions are accessible if it is
possible to generate the appropriate input wavefront,
which can be determined from the solutions. We refer to
wave solutions of this type as RSMs because they are
steady-state solutions adapted to the particular structure
and which specify the behavior of each scattering channel
at infinity, similar to lasing modes.

While we have an analytic framework for determining
the RSMs, the resulting equations will usually need to be
solved numerically, and we present two methods for doing
so which are computationally tractable by adapting

standard tools of computational photonics. Since reflec-
tionless excitation of fairly complex structures is often a
goal in photonics, we believe our theory and approach
shows promise for microphotonic and nanophotonic
design. The theory may clarify which design goals are
guaranteed an exact solution and which ones are not. For
example, if one has a three-waveguide junction of some
geometry, one is guaranteed to be able to find a design for
which excitation fromwaveguide one into waveguides two
and three is reflectionless, typically by tuning a single
geometric parameter. However, there is no guarantee that
further tuning parameters will find a solution which scat-
ters only into waveguide two in some frequency ranges.
However, since there will be many ways to tune to the
reflectionless state of waveguide one, it is interesting to
propose a search in this parameter space for the way which
minimizes the output intowaveguide three,which could be
amuchmore efficient search than an ab initio combinatoric
or machine learning–based search of a huge space of
structures, most of which are not close to reflectionless.
There are indications in our current results that such an
RSM calculation followed by an optimization can succeed.
In this manner, we hope that our theory of RSMs can be
combined with modern optimization methods to achieve
efficiently important design goals in photonic structures.
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