
Research article

Fan Yang, Kun Ding and John Brian Pendry*

Shrinking the surface plasmon
https://doi.org/10.1515/nanoph-2020-0361
Received July 2, 2020; accepted July 16, 2020

Abstract: Surface plasmons at an interface between
dielectric and metal regions can in theory be made arbi-
trarily compact normal to the interface by introducing
extreme anisotropy in thematerial parameters.Wepropose
a metamaterial structure comprising a square array of gold
cylinders and tune the filling factor to achieve the material
parameters we seek. Theory is compared to a simulation
wherein the unit cell dimensions of the metamaterial are
shown to be the limiting factor in the degree of localisation
achieved.
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Surface plasmons exist at an interface between a metal,
εm < 0, and dielectric, εd > 0 [1–3]. If these surface states
have in-plane wave vectors kx, they are confined normal to
the surface by imaginary wave vectors,
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(1)

where we assume that the dielectric occupies the space
z > 0, ωsp is the surface plasmon frequency and c0 is the
velocity of light in free space. We have assumed isotropic
media: εd, εm are the permittivities of the dielectric and
metal, respectively. They are in general dependent on fre-
quency. At lower values of kx, the surface plasmon is rather
diffuse in extent, but at large values of k, the surface
plasmon becomes compact and increasingly electrostatic
in nature: kz → ±ikx and is confined to the surface region.
This compact nature results in a high density of states in
the immediate vicinity of the surface, which is exploited in
many applications. In this letter, we show how by

exploiting transformation optics theory, surface plasmons
can in principle be made arbitrarily compact, depending
only on the availability of suitable materials. We propose a
new metamaterial designed to address the latter issue.

Transformation optics [4–7] is a theory that relates
distortions of geometry to redefined values of permittivity
and permeability. For example, in our case, we seek to
compress the surface plasmon normal to the surface. In the
study by Kundtz et al. [7], we learn that if we compress the
wave fields by a factor β (β < 1) so that the new imaginary
wave vectors increase by a factor β−1, in order that the
compressed wave fields continue to obey Maxwell’s
equations, wemust introduce new values of permittivity as
follows,

εd‖ = β−1εd, εm‖ = β−1εm  ,
εdz = βεd, εmz = βεm  ,

(2)

with analogous formulas for the permeability. This formula
solves our problem at a stroke, always provided of course
that we can find suitably anisotropic materials. It is also
possible to expand the surfaceplasmonbychoosing β > 1 [8].

To solve the problem of finding permittivities tunable in
the fashion required, we turn to metamaterials [9–13]. These
are composite materials structured on a scalemuch less than
the relevant wavelengths in the problem, whose properties
owe more to their structure than to their chemical composi-
tion. Tuning the magnetic response is more of a problem
because even metamaterials struggle with magnetism at
optical frequencies. However, here, we appeal to the mainly
electrostatic nature of the surface plasmonat higher values of
kx and show that a high degree of compression can be ach-
ieved by tuning the electrical response alone.

Our target metamaterial structure is shown in Figure 1.
In the first instance, we use a simple approximation to find
the effective medium parameters of our structure, which
we then check against COMSOL simulations. The Maxwell
Garnett theory gives the following formula for the meta-
material parameters [14, 15],

ε∥ = εd
(1 + f m)εm + (1 − f m)εd(1 + f m)εd + (1 − f m)εm , εz = f mεm + (1 − f m)εd  ,

(3)

where fm is the metal volume filling fraction of the cylin-
ders. Wemodel themetal with a Drude permittivity and the
dielectric as vacuum,
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εm = 1 − ω2
p

ω(ω + iγ), ωp = 8.95 eV, γ = 0.329 eV, εd = 1 ,

(4)

with themetal parameters chosen tomodel gold. In the first
instance, we shall neglect losses, γ = 0, but later when
comparing to COMSOL simulations, loss is taken into
account.

Although (3) is an approximation, it can be shown to be
highly accurate [16]. Figure 2 compares aCOMSOL simulation
of transmission and reflection coefficients for the structure
shown in Figure 1, with an effective medium calculation
using the parameters given by the Maxwell Garnet formula.

The challenge is to design twometamaterials eachwith
huge anisotropies, but one pair taking negative values and

the other taking positive values. This will realize our re-
quirements for compression of a surface plasmon at the
interface between the two.

Recognizing that εd, εmhave opposite signs, inspection
of (3) shows that we can make the real part of εz very small
by choice of f m = εd/(εd + |εm|). The imaginary part of εm
will be a limiting factor in how close we can come to our
ideal. Having chosen fm, we can solve for,

ε∥ � −εd|εm|(εd + |εm|)
2|εd|2 + |εm|εd − |εm|2  , (5)

where we have recognized that εm < 0. We can arrange that
the denominator takes a very small value by adjusting
|εm|/εd = 2 and hence fm = 1/3. Thus, by exploiting the

Figure 1: A two-dimensional square array of
metallic cylinders much smaller than the
relevant wavelengths, embedded in a
dielectric. In the plane z = 0, there is an
interface between two sets of cylinders.
This is where the interface plasmon forms.
We tune the volume fraction to achieve the
desired properties of an effective medium
shown on the right.

Figure 2: (a) Reflection from and (c) transmission through one unit cell of a nanowiremetamaterial with period 10 nm and filling ratio fm = 1/3,
calculated with effective medium theory (EMT) theory and COMSOL. The incident angle is at 45° to the z-axis, and the electric field has both Ez
and Ex components. The magnetic field has only a Hy component. (b) 1/ε∥ for various −0.6 < α < 0.6, plotted against ω/ωp. (d) εz for
various −0.6 < α < 0.6.
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properties of a plasmonicmaterial, we can achieve our goal
of extreme anisotropy. Furthermore, if we vary fm about the
singular point,

f m = (1 + α)/3 , (6)

we find that for α > 0, we have an extremely anisotropic
metal, and for α < 0, we have an extremely anisotropic
dielectric.

In Figure 2b and d, we plot the Maxwell Garnett
formula for the metallic and dielectric metamaterial
anisotropic permittivities for several values of α. When
α = 0, the curves intersect at zero and a frequency of

ω/ωp = 1/
�
3

√
= 0.5774. Somewhere in the range where the

α > 0 parameters are both negative and the α < 0 parameters
are both positive, we expect to find a surface plasmon.

Next, we present some calculations to demonstrate the
feasibility of our theory.

We also need to recognize that the metamaterial
concept only holds good on length scales greater than the
metamaterial structure, which we take to be 10 nm.

Figure 3 shows dispersion of the surface plasmon
trapped between the metametal and the metadielectric
calculated for an effective medium corresponding to two
media with filling factors defined by ±α. Shown on the
same plot is the light line for the metadielectric. Dispersion
curves to the right of this line represent surface plasmons
trapped at the surface; to the left of this line, dispersion
curves represent waves that are perfectly transmitted
across the interface in the manner of a Brewster condition.
This is a typical behaviour when a surface plasmon
dispersion curve appears to cross the light line. For
example, the α = ±0.1 surface plasmon exists between
0.56268 < ω/ωp < 0.57765. The pure metal-vacuum surface
plasmon is shown for comparison. It disperses much more
rapidly with frequency than the compressed surface plas-
mon and therefore has a much lower density of states. All
dispersion curves are degenerate at ω = ωp/

�
3

√
; increasing

α lowers the frequency at kx = 0 while increasing the
limiting frequency at kx →∞.

Figure 4a shows an interface surface state plotted as a
function of distance from the interface calculated in the
effective medium approximation. Compared to the surface

Figure 3: Dispersion of the surface plasmons for α = 0.1 and α = 0.6
together with dispersion of the pure metal-vacuum surface plasmon
plotted against kx in units of m−1. The dotted lines show the associ-
ated light lines in the dielectric.

Figure 4: (a) Modulus of the magnetic field for the interface plasmon calculated in the effective medium approximation at kx = 2.26 × 107 m−1

compared to a surface plasmon that exists between a pure metal and pure vacuum at the same frequency. (b) The same calculation but now
deploying COMSOL on the metamaterial structure, lattice spacing a = 10 nm. (c) An effective medium calculation of the magnetic field
distribution plotted in the vicinity of the interface. (d) The same calculation but now deploying COMSOL on the metamaterial structure and
plotted in a plane taken through the centre of the cylinders. The surface mode is excited by a surface current along the x-direction at the
interface, which makes the magnetic field discontinuous.
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plasmon existing between a pure metal and pure vacuum,
we can see very large compression by a factor of about 20
when α = ±0.1. Furthermore, as noted in Figure 3, the
density of states is greatly enhanced by the flattened
dispersion of the interface surface plasmon.

So far, we have worked in the effective medium
approximation, but now, we make a more realistic test by
including the microstructure of the metamaterial and the
loss parameter γ = 0.329 eV, which so far, we have taken to
be zero. Loss is also included in the effective medium
calculation in Figure 4. Figure 4b presents a COMSOL
simulation of a metamaterial structure in which the metal
permittivity includes loss as described in (4), and the lattice
period is 10 nm. At the interface, the two sets of cylinders
on either side are coaxial with one other and touch at the
interface. The pure metal/dielectric SPP is unchanged of
course, but we see spreading of the metamaterial interface
plasmon. This is mainly due to the finite dimensions of the
metamaterial unit cell: on length scales <10 nm, the
effective medium approximation breaks down. Neverthe-
less, our model metamaterial still shows substantial
compression of the surface plasmon by about a factor of 7.

In conclusion, we have shown that in theory, interface
surface plasmons can be arbitrarily compressed provided
that the specified anisotropic material parameters can be
realized. We proposed a metamaterial structure based on a
square array of gold cylinders and showed how the design
parameters can be tuned to approach the ideal anisotropic
parameters for the metamaterials on each side of the
interface. In practice, although substantial compression of
the interface surface plasmon can be achieved, the extreme
values predicted by an ideal theory are limited first by the
finite unit cell of the metamaterial, which limits compres-
sion to no less than the unit cell dimensions, and secondly
by metallic losses, which limit the compression of the
density of states and hence also of the local density of
states.

Acknowledgements: F.Y. acknowledges the Gordon and
Betty Moore Foundation. J.B.P. and K.D. acknowledge
funding from the Gordon and Betty Moore Foundation.
Author contribution: All the authors have accepted
responsibility for the entire content of this submitted
manuscript and approved submission.

Research funding: Funding from the Gordon and Betty
Moore Foundation.
Conflict of interest statement: The authors declare no
conflicts of interest regarding this article.

References

[1] R. H. Ritchie, “Plasma losses by fast electrons in thin films,”
Phys. Rev., vol. 106, pp. 874–881, 1957.

[2] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon
subwavelength optics,” Nature, vol. 424, pp. 824–830, 2003.

[3] S. A. Maier, Plasmonics: Fundamentals and Applications, New
York, Springer Science & Business Media, 2007.

[4] A. Ward and J. B. Pendry, “Refraction and geometry in Maxwell’s
equations,” J. Mod. Opt., vol. 43, pp. 773–793, 1996.

[5] J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling
electromagnetic fields,” Science, vol. 312, pp. 1780–1782, 2006.

[6] U. Leonhardt, “Optical conformal mapping,” Science, vol. 312,
pp. 1777–1780, 2006.

[7] N. B. Kundtz, D. R. Smith, and J. B. Pendry, “Electromagnetic
design with transformation optics,” Proc. IEEE, vol. 99,
pp. 1622–1633, 2011.

[8] F. Yang, S. Ma, K. Ding, S. Zhang, and J. B. Pendry, “Continuous
topological transition from metal to dielectric,” Proc. Natl. Acad.
Sci., 2020, to appear. https://doi.org/10.1073/pnas.
2003171117.

[9] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart,
“Magnetism from conductors and enhanced non-linear
phenomena,” IEEE Trans. Microw. Theor. Tech., vol. 47,
pp. 2075–2084, 1999.

[10] D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials
and negative refractive index,” Science, vol. 305, pp. 788–792,
2004.

[11] J. B. Pendry, “Metamaterials and the control of electromagnetic
fields”, in Coherence and Quantum Optics IX, N. P. Bigelow, J. H.
Eberly and C. R. Stroud, Jr., Eds., Washington, DC, OSA
Publications, 2009, 2008, pp. 42–52.

[12] W. Cai and V. M. Shalaev, Optical Metamaterials, New York,
Springer, 2010.

[13] A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic
metamaterials,” Nat. Photonics, vol. 7, pp. 948–957, 2013.

[14] S. I. Bozhevolnyi, L. Martin-Moreno, and F. Garcia-Vidal,
Quantum Plasmonics, New York, NY, Springer, 2017.

[15] J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov,
“Nanowire metamaterials with extreme optical anisotropy,”
Appl. Phys. Lett., vol. 89, p. 261102, 2006.

[16] D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis,
“Determination of effective permittivity and permeability of
metamaterials from reflection and transmission coefficients,”
Phys. Rev. B, vol. 65, p. 195104, 2002.

548 F. Yang et al.: Shrinking the surface plasmon

https://doi.org/10.1073/pnas.2003171117
https://doi.org/10.1073/pnas.2003171117

	Shrinking the surface plasmon
	Acknowledgements
	References

