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A Tutorial on the Classical Theories of Electromagnetic Scattering and Diffraction

Masud Mansuripur
College of Optical Sciences, The University of Arizona, Tucson

Abstract. Starting with Maxwell’s equations, we derive the fundamental results of the Huygens-Fresnel-
Kirchhoff and Rayleigh-Sommerfeld theories of scalar diffraction and scattering. These results are then
extended to cover the case of vector electromagnetic fields. The famous Sommerfeld solution to the
problem of diffraction from a perfectly conducting half-plane is elaborated. Far-field scattering of plane
waves from obstacles is treated in some detail, and the well-known optical cross-section theorem, which
relates the scattering cross-section of an obstacle to its forward scattering amplitude, is derived. Also
examined is the case of scattering from mild inhomogeneities within an otherwise homogeneous medium,
where, in the first Born approximation, a fairly simple formula is found to relate the far-field scattering
amplitude to the host medium’s optical properties. The related problem of neutron scattering from
ferromagnetic materials is treated in the final section of the paper.

1. Introduction. The classical theories of electromagnetic (EM) scattering and diffraction were
developed throughout the nineteenth century by the likes of Augustine Jean Fresnel (1788-1827),
Gustav Kirchhoff (1824-1887), John William Strutt (Lord Rayleigh, 1842-1919), and Arnold
Sommerfeld (1868-1951).' A thorough appreciation of these theories requires an understanding
of the Maxwell-Lorentz electrodynamics™'' and a working knowledge of vector calculus,
differential equations, Fourier transformation, and complex-plane integration techniques.12 The
relevant physical and mathematical arguments have been covered (to varying degrees of clarity
and completeness) in numerous textbooks, monographs, and research papers.'>** The goal of this
tutorial is to present the core concepts of the classical theories of scattering and diffraction by
starting with Maxwell’s equations and deriving the fundamental results using mathematical
arguments that should be accessible to students of optical sciences as well as practitioners of
modern optical engineering and photonics technologies. A consistent notation and uniform
terminology is used throughout the paper. To maintain the focus on the main results and reduce
the potential for distraction, some of the longer derivations and secondary arguments have been
relegated to the appendices.

The organization of the paper is as follows. After a brief review of Maxwell’s equations in
Sec.2, we provide a detailed analysis of an all-important Green function in Sec.3. The Huygens-
Fresnel-Kirchhoff scalar theory of diffraction is the subject of Sec.4, followed by the Rayleigh-
Sommerfeld modification and enhancement of that theory in Sec.5. These scalar theories are
subsequently generalized in Sec.6 to arrive at a number of formulas for vector scattering and
vector diffraction of EM waves under various settings and circumstances. Section 6 also contains
a few examples that demonstrate the application of vector diffraction formulas in situations of
practical interest. The famous Sommerfeld solution to the problem of diffraction from a perfectly
electrically conducting half-plane is presented in some detail in Sec.7.

Applying the vector formulas of Sec.6 to far-field scattering, we show in Sec.8 how the
forward scattering amplitude for a plane-wave that illuminates an arbitrary object relates to the
scattering cross-section of that object. This important result in the classical theory of scattering is
formally known as the optical cross-section theorem (or the optical theorem).'”*

An alternative approach to the problem of EM scattering when the host medium contains a
region of weak inhomogeneities is described in Sec.9. Here, we use Maxwell’s macroscopic
equations in conjunction with the Green function of Sec.3 to derive a fairly simple formula for
the far-field scattering amplitude in the first Born approximation. The related problem of slow
neutron scattering from ferromagnetic media is treated in Sec.10. The paper closes with a few
conclusions and final remarks in Sec.11.
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2. Maxwell’s equations. The standard equations of the classical Maxwell-Lorenz theory of
electrodynamics relate four material sources to four EM fields in the Minkowski spacetime
(r,t).*"! The sources are the free charge density p.., free current density J¢..., polarization P,
and magnetization M, while the fields are the electric field E, magnetic field H, displacement D,
and magnetic induction B. In the SI system of units, where the free space (or vacuum) has
permittivity &, and permeability u,, the displacement is defined as D = ¢,E + P, and the
magnetic induction as B = u,H + M. Let the total charge-density p(r,t) and total current-
density J(r,t) be defined as

p(r,t) = Paec(r,t) =V - P(r,1). (1)
](T, t) =]free(rr t) + atP(r' t) + :u()_lv X M('r, t) (2)

The charge-current continuity equation, V - J + d,p = 0, is generally satisfied by the above
densities, irrespective of whether their corresponding sources are free (i.e., Pgee aNd Jiree), OF
bound electric charges within electric dipoles (i.e., =V - P and 9;P), or bound electric currents
within magnetic dipoles (i.e., u; 1V X M). Invoking Eqs.(1) and (2), Maxwell’s macroscopic
equations are written as follows:

&V -E(rt) = p(r,t). 3)
VXxB(rt)=u,J(rt)+ u,e,0.E(r,t). 4)
VXE(rt)=—0.B(rt). (5)
V-B(rt) =0. (6)

Taking the curl of both sides of the third equation, using the vector identity VXV XV =
V(V-V) — P2V, and substituting from the first and second equations, we find

VXVXE=—pu,0.J — .uogoatzE - (v - C_Zatz)E = Ue0¢ J + &5 Vp. (7

Here, ¢ = (u,&,)~ " is the speed of light in vacuum. Similarly, taking the curl of both sides
of Eq.(4) and substituting from Egs.(5) and (6), we find

VXVXB=uVx]J—u,c,0:B - (V? —c7202)B = —pu,V X J. (8)

The scalar and vector potentials, Y (r,t) and A(r,t), are defined such that B = V X A and
E = —Vy — 0. A. With these definitions, Maxwell’s third and fourth equations are automatically
satisfied. In the Lorenz gauge, where V- A + ¢ 20,3 = 0, Maxwell’s second equation yields

VXV XA= .uo] - Hogov(atlp) - .uogoatzA - (VZ - C_Zatz)A = —Ho J (9)

Similarly, substitution into Maxwell’s first equation for the E-field in terms of the potentials
yields

&V (T +9,A)=p -  (F2—c 20D =—p/e,. (10)

Since monochromatic fields oscillate at a single frequency w, their time-dependence factor
is generally written as exp(—iwt). Consequently, the spatiotemporal dependence of all the fields
and all the sources can be separated into a space part and a time part. For example, the E-field
may now be written as E(r)e™'%t, the total electric charge-density as p(r)e™ ¢, and so on.
Defining the free-space wavenumber k, = w/c, the Helmholtz equations (7)-(10) now become
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(V2 + kDE[) = —iwp, J(r) + & Vp(1). (11)
(P2 + kHB(T) = —p,V x J(1). (12)

(V2 + kDAT) = —p, J(1). (13)

(V2 + kDY) = —p(r)/s,. (14)

In regions of free space, where p(r) = 0 and J(r) = 0, the right-hand sides of Eqgs.(11)-
(14) vanish, thus allowing one to replace kZE(r) with —V2E(r), and similarly for B(r), A(1),
and Y (r), whenever the need arises. These substitutions will be used in the following sections.

3. The Green function. In the spherical coordinate system (7,0, ¢), the Laplacian of the
spherically symmetric function G(r) = e'*o" /r equals 9?(rG)/ror? = —k2G(r) everywhere
except at the origin 7 = 0, where the function has a singularity. Thus, (V2 + k2)G(r) = 0 at all
points r except at the origin. A good way to handle the singularity at r = 0 is to treat G (1) as the
limiting form of another function that has no such singularity, namely,

G(r) = lim_ (e /VrZ +¢). (15)
The Laplacian of our well-behaved, non-singular function is readily found to be
—2 2 ik 5 _ 3¢ 2ikge k% ik
r ar[r ar(el Or/ e )] - [(Tz_,_s)s/z - r(r2+£)3/2 + (r2+s)1/2] e'or, (16)
The first two functions appearing inside the square brackets on the right-hand side of
Eq.(16) are confined to the vicinity of the origin at r = 0; they are tall, narrow, symmetric, and

have the following volume integrals (see Appendix A for details):

f0°° Anr?(r? 4+ £)™52dr = 41/ 3e. (17)

f0°° Anr(r? 4 €)732dr = 4 /\e- (18)

Thus, in the limit of sufficiently small €, the first two functions appearing on the right-hand
side of Eq.(16) can be represented by §-functions, and the entire equation may be written as

(V2 + k2)(e*o /\r2 + ¢) = —4n(1 — i2k,Ve)S(r). (19)

This is the sense in which we can now state that (V2 + k2)G(r) = —4nS§(r) in the limit
when € — 0. Shifting the center of the function to an arbitrary point r,, we will have

(V2 + k2G(r,1ry) = —4ns(r —1,). (20)

The gradient of the Green function G(r,r,), which plays an important role in our
discussions of the following sections, is now found to be

) = Gkey — I =0 ( @1

Appendix B provides an analysis of Eq.(20), an inhomogeneous Helmholtz equation, via
Fourier transformation.

eikoh‘—rol

eikolr—rol) r— 7'0
|r =70l

vG(rr,) = V(

|r — 7o |r =10l

"When multiplied by &, as required by Eq.(16), the integrand in Eq.(17) peaks at ~e~% at r = \/Z4e, then drops
steadily to ~%/€ at 7 = V/e. Similarly, the integrand in Eq.(18), again multiplied by &, peaks at ~1 at r = v/%4¢, then
drops steadily to ~v/e at r = /.
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4. The Huygens-Fresnel-Kirchhoff theory of diffraction.'”” Consider a scalar function ¥ (r)
that satisfies the homogeneous Helmholtz equation (V2 + k2)y(r) = 0 everywhere within a
volume V of free space enclosed by a surface S. Two examples of the geometry under
consideration are depicted in Fig.1.” In general, (1) can represent the scalar potential or any
Cartesian component of the monochromatic E-field, B-field, or A-field associated with an EM
wave propagating in free space with frequency w and wave-number k, = w/c. In Fig.1(a), the
EM wave arrives at the surface S, from sources located on the left-hand side of S, and enters the
volume V contained within the closed surface S = S, + S,. In Fig.1(b), the EM waves emanate
from inside the closed surface S, and permeate the volume V enclosed by S, on one side and by a
second closed surface S, that defines the outer boundary of V. In both figures, the point r,,
where the field is being observed, is located inside the volume V, and the surface normals 1
everywhere on the closed surface S are unit-vectors that point inward (i.e., into the volume V).

(2) (b)

Fig.1. Two surfaces S; and S, bound the scattering region, which is assumed to be free of sources and
material bodies. All the radiation within the scattering region comes from the outside. In (a) the
sources of radiation are on the left-hand side of S;, while in (b) the radiation emanates from the
sources inside the closed surface S;. The observation point r, is an arbitrary point within the
scattering region. All the points located on S, are assumed to be far away from 1, so that the fields
that reach S, do not contribute to the fields observed at r,. At each and every point on S; and S, the
surface normals 1 point info the scattering region.

The essence of the theory developed by G. Kirchhoff in 1882 (building upon the original
ideas of Huygens and Fresnel)' is an exact mathematical relation between the observed field
Y(r,) and the field Y (r) that exists everywhere on the closed surface S. This relation is derived
below using the sifting property of Dirac’s §-function, the relation between the §-function and
the Green function given in Eq.(20), some well-known identities in standard vector calculus, and
Gauss’s famous theorem of vector calculus, according to which fV V-Vdv = 935 V - ds. We have

Y(r,) = fvll)(r)5(7' —r,)dr =—(4n)"1! fvl/J(T)(VZ + k2)G(r,r,)dr <—
= —(4n)~ 1 fV [W@V-vG(r,r,) — G(r,r )V -Vy(r)]dr <—| Replace k21 with —V%y. |

—(4n)~1 fV[V- @Wve) —W— V- (GVy) W]drq V-@V)=V-Vp+¢V-V|

= (4n)™?! fs [W@m-VG) —Gm-Vy)lds <—| Gauss’ theorem; 7 points into the volume V. |

= (4m)~! [([Y()0,6(r,1,) — G(r, 1),y (r)]ds. (22)
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Example. In the extreme situation where S is a small sphere of radius ¢ centered at r,, we will
have ¥(r) = Y(r,), G(r,r,) = ek /e, and 3,G(r,1,) = —(ik, — £ *)e'*0¢/e. Given that the
surface area of the sphere is 4me?, the second term in Eq.(22) makes a negligible contribution to
the overall integral when € — 0. The first term, however, contains e'ko€ /2 wwhich integrates to
4 in the limit of € — 0, yielding () as the final result.

Taking the spherical (or hemi-spherical) surface S, in Fig.1 to be far away from the region
of interest, the field ¥ (r) everywhere on S, should have the general form of £ (8, @)e' " /r and,
consequently, 9, (r)~(ik, — r~1)y(r). Similarly, across the surface S,, the Green function has
the asymptotic form G (r,7,)~ e*°” /r and, therefore, 0,G (r,r,)~(ik, — r~*)G(r,7,). Thus, on
the faraway surface S,, the integrand in Eq.(22) must decline faster than 1/r2, which means that
the contribution of S, to Y (r,) as given by Eq.(22) should be negligible. Kirchhoff’s diffraction
integral now relates the field at the observation point 7, to the field distribution on S, as follows:

Y(ry) = (4m)~ [ [Y(1)0,6(r,m) — G(r,1,)0,3(r)]ds. (23)

To make contact with the Huygens-Fresnel theory of diffraction, Kirchhoff suggested that
both Y (r) and 0,3 (r) vanish on the opaque areas of the screen S,, whereas in the open (or
transparent, or unobstructed) regions, they retain the profiles they would have had in the absence
of the screen. These suggestions, while reasonable from a practical standpoint and resulting in
good agreement with experimental observations under many circumstances, are subject to
criticism for their mathematical inconsistency, as will be elaborated in the next section.

5. The Rayleigh-Sommerfeld theory. In the important special case where the surface S,
coincides with the xy-plane at z = 0, one can adjust the Green function in such a way as to
eliminate either the first or the second term in the integrand of Eq.(23). These situations would
then correspond, respectively, to the so-called Neumann and Dirichlet boundary conditions."’
Let the observation point, which we assume to reside on the right-hand side of the planar surface
S,, be denoted by {7 = (x,, ¥y, 2,), While its mirror image in S; (located on the left-hand side of
S,) is denoted by r; = (x, Vo, —2,). If we use G(r,r}) in Eq.(23), we obtain Y(r,) on the left-
hand side of the equation, but if we use G (r,r; ) instead, the integral will yield zero— simply
because the peak of the corresponding §-function now resides outside the integration volume.
Thus, we can replace G(r,1,) in Eq.(23) with either of the two functions G(r,r{) + G(r,1}).
On the S, plane, where z = 0, we have G(r,ry) = G(r,r}) and 0,G(r,1ry) = —0,G(r,1)).
The resulting diffraction integrals, respectively satisfying the Neumann and Dirichlet boundary
conditions, will then be

— _ 1 | explkolr-rol)
W) = —= f 2l g (s (24)
_ 1 | (ko —Ir—rol™") exp(iko|r — o)) _ P
v =5 | 1 oo [ —7) - 7] Y(r)ds. )

Note that, while Eq.(23) applies to any arbitrary surface S,, the Rayleigh-Sommerfeld
equations (24) and (25) are restricted to distributions that are specified on a flat plane. Given the
scalar field profile ¥ (r) and/or its gradient on a flat plane, all three equations are exact
consequences of Maxwell’s equations. To apply these equations in practice, one must resort to
some form of approximation to estimate the field distribution on S,. The conventional
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approximation is that, in the opaque regions of the screen S,, either 1 (r) or 9, (r) or both are
vanishingly small and, therefore, negligible, whereas in the transparent (or unobstructed) regions
of S,, the field ¥ (1) and/or its gradient 0,y (r) (along the surface-normal) retain the profile they
would have had in the absence of the screen. In this way, one can proceed to evaluate the integral
on the open (or transparent, or unobstructed) apertures of S, in order to arrive at a reasonable
estimate of Y (7,) at the desired observation location.

As a formula for computing diffraction patterns from one or more apertures in an otherwise
opaque screen, the problem with Eq.(23) is that, when combined with Kirchhoff’s assumption
that both 1 and 0,1 vanish on the opaque regions of the physical screen at S,, it becomes
mathematically inconsistent. This is because an analytic function such as ¥ (r) vanishes
everywhere if both ¥ and 0,3 happen to be zero on any patch of the surface S,. In contrast,
Eq.(24), when applied to a physical screen, requires only the assumption that d,,3) be zero on the
opaque regions of the screen. While still an approximation, this is a much more mathematically
palatable condition than the Kirchhoff requirement.” Similarly, Eq.(25) requires only the
approximation that i) be zero on the opaque regions. Thus, on the grounds of mathematical
consistency, there is a preference for either Eq.(24) or Eq.(25) over Eq.(23). However, given the
aforementioned approximate nature of the values chosen for ¥ and d,,1) across the screen at S, it
turns out that scalar diffraction calculations based on these three formulas yield nearly identical
results, rendering them equally useful in practical applications."

An auxiliary consequence of Egs.(24) and (25) is that, upon subtracting one from the other,
the integral of d,,(Gy) over the entire flat plane S, is found to vanish; that is,

Jy, 0a[G (r, )y (r)]ds = 0. (26)

We will have occasion to use this important identity in the following section.

6. Vector diffraction. Applying the Kirchhoff formula in Eq.(22), where the integral is over the
closed surface S = S, + S,, and the function Y (7) is any scalar field that satisfies the Helmholtz
equation, to a Cartesian component of the E-field, say, E,, we write

47TEx(r0) = fS [Ex(r)anG(rl ro) - G(r, ro)anEx(r)]ds

[V(¢9p) = o7y + V¢ |
= [ [(R-VG)E, — (R-VE,)G]ds = [ [2(R- VG)E, Ya. V(GE,)]ds

=2 fs (n-VG)E,ds + fV V - V(GE,)dr.<{Gauss’ theorem; fi points into the volume V | (27)

Given that Eq.(27) is similarly satisfied by the remaining components E,, E, of the E-field,
the vectorial version of Kirchhoff’s formula may be written down straightforwardly. Algebraic
manipulations (using standard vector calculus identities described in Appendix C) simplify the
final result, yielding the following expression for the E-field at the observation point:’

E(r,) = (4m)~ 1! fs[(ﬁ X E) X VG + (n-E)VG + iw(n x B)G]ds. (28)

Once again, it is easy to show that the contribution of the spherical (or hemi-spherical)
surface S, to the overall integral in Eq.(28) is negligible. This is because, in the far field,
fi-E— 0and i x B - E/c, while |E|~e*o" /r, G~ e'*" /r and VG~ —(ik, — r~V)e*o"fi/r.
Consequently,

E(r,) = (4m) 7 [ [(A X E) X VG + (- E)VG + iw(R X B)G]ds. (29)

A similar argument can be used to arrive at the vector Kirchhoff formula for the B-field, namely,
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B(r,) = (4m)~t fsl[(ﬁ X B)xVG+ (fi-B)VG —i(w/c?)(f X E)G]ds. (30)

Needless to say, Eq.(30) could also be derived directly from Eq.(29), or vice versa, although
the algebra becomes tedious at times; see Appendix D for one such derivation.

We mention in passing that the arguments that led to Eqgs.(29) and (30) could not be repeated
for the vector potential A(7), since in arriving at Eq.(28), in the step where V - E or V - B are set
to zero (see Appendix C), we now have V- A = iwy/ ¢}

In parallel with the arguments advanced previously in conjunction with the Rayleigh-
Sommerfeld formulation for scalar fields, one may also modify Eqs.(29) and (30) by setting
G(r,r,) =0and VG = 20,G(r,1r,)n, provided that S, is a planar surface. This is equivalent to
applying Eq.(25) directly to the x,y,z components of the E-field (or the B-field). It is not
permissible, however, to retain G and remove VG (again, in the case of a planar S,), because the
gradient of G(r, r}) + G(r,ry) has a nonzero projection onto the xy-plane.

In those special (yet important) cases where S, coincides with the xy-plane at z = 0, one
could begin by applying either Eq.(24) or Eq.(25) to the x,y,z components of the field under
consideration. Manipulating the resulting equation with the aid of vector-algebraic identities in
conjunction with the fact that VG = —V G, leads to vector diffraction formulas that could be
useful under special circumstances. For instance, the vectorial equivalent of Eq.(25) yields

2nE(r,) = [, [(A-VGE(r)ds = S [(n x E)x VG + (E - VG)n lds <{(axb)xc=(a-c)b— (b c)al

—f VGx(an)ds+{f V- (GE) - Mds}n V- @QV)=yV-V+V- -7y |

= J, Vo x [(@x E)G]ds + [f, V- (GE)ds]n +|Vx(¢V>—wV><V+V¢><V|

=V, % [, [Ax E(M]G(r,r,)ds + [ [0,06E,) + 0, (GE) + a/cms/ )]dxdy|a. (31)

It is easy to see that the first two terms of the second integral on the right-hand side of
Eq.(31) vanish since both GE, and GE, go to zero in the far out regions of the xy-plane. The
vanishing of the third term, however, requires invoking Eq.(26) as applied to the z-component of
the E-field. Note, as a matter of consistency, that on the left-hand side of Eq.(31), V, - E(r,) = 0
and that, on the right-hand side, the divergence of the curl is always zero.

A similar argument can be advanced for the B-field and, therefore, the following vector
diffraction equations are generally valid for a planar surface S;:

E(r,) = 2n)~ 'y, x fsl[ﬁ x E(r)]G(r,7r,)ds. (32)

B(r,) = (2m)7'W, x J, [ x B@)1G(r,7,)ds. (33)

*In setting V - E = 0, Maxwell’s first equation, £,V * E = proral = Prree + Poound» Nas been invoked, with the caveat
that the surface S is slightly detached from material bodies where electric charges of one kind or another may reside.
No such caveat is needed, however, when setting V- B = 0, which is simply Maxwell’s fourth equation. The
situation is quite different with the vector potential A, since setting V- A = 0 implies working in the Coulomb
gauge. While the standard relations B = V X A and E = —V — 9,4 remain valid in all gauges, the equations that
relate Y and A to the charge and current densities are gauge dependent. In particular, A in the Coulomb gauge
depends not only on the current-density J,., but also on the charge-density pio.. While the charge-current
continuity equation V - J + d,p = 0 can be used to arrive at a Helmholtz equation for A(r, t) in the Coulomb gauge,
the term appearing on the right-hand side of the equation will be the transverse current-density, which does not
necessarily vanish in the free-space regions of the system under consideration.
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In similar fashion, the vectorial equivalent of Eq.(24) yields

2rE(r,) = - [, G9,Eds = — f51 G[0,E X + 0,E,y — (0,E, J; d,E,)2]ds

- fsl[Ex(azG?c 0,62+ E, (3,69 —0,68) |V E=0° 05 =-(E+0,E)]

—0,(GE)® — 8,(GE,)y + 0,(GE,)2 + 0, (GE,)2]ds

= [, (AxE)x VGds — [[~ [Mﬂ%] 6)(64:/); 9, )zdxdy

= fsl V,G X (AxE)ds =V, x fsl[ﬁ x E(r)]G(r,r,)ds. (34)

On the penultimate line of Eq.(34), the first two terms in the integral are seen to vanish when
Eq.(26) is applied to the x and y components of the E-field; the 3™ and 4™ terms go to zero due
to the vanishing of GE, and GE|, in the far out regions of the xy-plane. Equation (34) thus yields
the same expression for E(r,) as the one reached via Eq.(31).

i(kxx+kyy+k,z—wt)

Example 1. A plane-wave E(r,t) = (E,,X + E,,J + E,,Z2)e arriving from the

region z < 0 is reflected from a perfectly conducting plane mirror located in the xy-plane at
z = 0. The exact cancellation of the tangential components of the E-field at the mirror surface
means that the scattered E-field in the xy-plane at z = 0% is given by®

Eg(x,y) = —(EnX + E, 0 + E, 2)elxxthyy), (35)

Beyond the mirror in the region z > 0, the scattered E-field is obtained from Eq.(32), as follows:

[(x—xo)2+(y—yo)2+25]l/2

2E (T ) =V, x ff fi X ( E, x E - FE 2)ei(kxx+kyy) expliko[(x—x0)*+(y—y0)*+251%} dxdy
s\o 20

(x2+y2+z3)%

=V, X (E,oR — E,,3)e txrotkyo) f f gilkxrtieyy) SRk G242 P 4 g (36

The 2D Fourier transform appearing in Eq.(36) is readily found to be (see Appendix E):

fj exp 1k0 x2+y2+z2 ) i(kxx"'ky”dxdy — i(ZTL’/kZ)eikZZ. (37)

Jx2+y24z2

This is a valid equation whether the incident beam is of the propagating type (i.e.,
homogeneous plane-wave, with real-valued k,), or of the evanescent type (i.e., inhomogeneous,
with imaginary k,). Substitution into Eq.(36) now yields

Es(ro) = Vo X i(EyOQ — Exoy)ei(kxx0+kyyo+kzzo)/kz
= [~EwX — E,o + (ky Eo + ko Ey)2/ k]! Fx¥otkyYotkzzo)

= —(EpoX + E,oy + E,o2)eikaXotkyyotkszo) (38)

¥ Whereas on opposite facets of the mirror the scattered E,, (as well as the scattered E. ,,) are identical, the presence of
surface charges requires that the sign of the scattered E, flip between z = 0~ and z = 0%. The scattered E-field
amplitude is thus (—E,, —E,, E,,) at z = 07 and (—E,, —E,o, —E,,) at z = 0*. Similarly, the existence of surface
currents requires the scattered B-field amplitude to be (Byo, By, —By) at z = 0~ and (—B,y, —B,, —B,,) atz = 0*.
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As expected, in the half-space z > 0, the scattered field precisely cancels out the incident
field. This result is quite general and applies to any profile for the incident beam, not just plane-
waves, for the simple reason that any incident beam can be expressed as a superposition of
plane-waves. It should also be clear that, in the absence of the perfectly conducting reflector in
the xy-plane, the distribution of the tangential E-field (or the tangential B-field) throughout the
xy-plane at z = 0 can be used to reconstruct the entire distribution in the z > 0 half-space via
either Eq.(32) or Eq.(33).

Example 2. Consider a screen in the xy-plane at z = 0 consisting of obstructing segment(s) in
the form of thin sheet(s) of perfect conductors and open regions otherwise. A monochromatic
incident beam creates surface charges and surface currents on the metallic segment(s) of this
planar screen. The scattered fields produced by the induced surface charges and currents can be
described in terms of the scattered scalar and vector potentials g (r, t) and A4(r,t). Given that
the induced surface current has no component along the z-axis, the vector potential will likewise
have only x and y components. Application of Eq.(24) to A, (1) and A, (1) yields

Ay(ry) = — f XU ToD (3,4, % + 9,45, 9)ds. (39)
N

|r—70|

Now, B;(r) = VX As(r) = —0,45yX + 0,A5,Y + (0,Asy — 0,As,)Z. Consequently,

_ 1 exp(ikg|r—rgl) ~ ~
As(ry) =~ | I (5% — B 9)ds. (40)
The symmetry of the scattered field ensures that B, and B, are zero in the open areas of

the screen, so the integral in Eq.(40) need be evaluated only on the metallic surfaces of the
screen. We will have

By(r)) = Vo x Ag(r) = @m0, x [ [ x By(r)] 2elrrad g, (41)
metal

In situations where a thin, flat metallic object acts as a scatterer, Eq.(41) provides a simple
way to compute the scattered field provided, of course, that an estimate of the magnetic field at
the metal surface (or, equivalently, an estimate of the induced surface current-density) can be
obtained. Needless to say, considering that, in the absence of the scatterer, the continued
propagation of the incident beam into the z > 0 half-space can be reconstructed from the
tangential component of the incident B-field in the z = 0 plane (see Example 1), one may add
the incident B-field to the scattered field of Eq.(41) and obtain, unsurprisingly, the general vector
diffraction formula of Eq.(33).

Example 3. Figure 2 shows a perfectly conducting thin sheet residing in the upper half of the xy-
plane at z = 0. The incident beam is a monochromatic plane-wave of frequency w, wavelength
A, = 2mc/w, linear-polarization aligned with ¥, and propagation direction along the unit-vector
0, = (sin6,,.)x + (cos 0,,.)Z, as follows:

E(r,t) = E;,.y explik,(sin 8,,. x + cos 6;,. z — ct)]. (42)

Using Eq.(32), we derive the diffracted E-field at the observation point r, = x,X + z,Z.
(The symmetry of the problem ensures that the field profile is independent of the y-coordinate of
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the observation point.) In what follows, we use the 0™ and 1* order Hankel functions of type 1,
HP(Q) and H™(Q), as well as the (complex) Fresnel integral F({) = | ;o exp(ix?) dx.***" For a

graphical representation of the Fresnel integral via the so-called Cornu spiral,”® see Appendix F.
The following identities will be needed further below:

@  [x2i72
%dx = inH® (). <{ G&RY 8.421-11 | (43)

d%Hé”(() = —HY(). <[ Gar" 84736 | (44)

Hfl)(5)~\/nzcei(z_%"). (¢ »1). < G&R' 84513 | (45)

F() = f0°° exp(ix?) dx — [f(f cos(x?) dx + ifog sin(x?) dx|

= Jn/4e™* —\[n/2[C()) +iS]. < G&RY 8.250-2,3| (46)
The E-field at the observation point r, is found to be

exp{ikol[(x—x¢)? +y?+2E]"

0
~ -1 ” 5 ) »iko Sin Bipcx }
E(ro) - (277:) VO X j fz_oo(z X Eincy)e 0 X [(x—x0)2+y2+zg]1/2 dydx

X=—00

= —1iV, X E;,. ifo elkosinbineX W[k [ (x — x,)% + z2]dx

kozo

0
= 1/2iEinc y.l- melko sin HinCXH](-l) [ko\/(x — xO)Z + Zg]dx

i _i3n/4Einc y 0 k . . .
= wTy [(x—x\(/);% exp(ik, sin 6,,. x) exp[lko\/(x —X,)% + zg] dx. (47)

Fig.2. A perfectly conducting thin sheet sits in the upper half of the xy-plane at z = 0. The incident plane-
wave, which is linearly polarized along the y-axis, has amplitude E;,,., frequency w, wave-number k, = w/c,
and propagation direction 6;,. = sin 6;,. X + cos 0;,. Z. The observation point r, is in the xz-plane.
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Here, we have used the large-argument approximate form of H”({) given by Eq.(45).
Assuming that z, » |x — x,|, we proceed by invoking the following approximation:

expliko/Gr = )2 + 23] /[ — ;)% + 22/ = ;% eolzar (o220 (4g)

Note that this approximation is not accurate when |x — x,| acquires large values; however,
the rapid phase variations of the integrand in Eq.(47) ensure that the contributions to the integral
at points x that are far from x, are insignificant. Substitution from Eq.(48) into Eq.(47) yields

E(r,) = VKo Einc3 4 i(kozo=rt/4) f_ooo exp(ik, sin 6;,. x) exp[ik,(x — x,)?/(2z,)] dx

2Tz

= Vo Einc 3 eli(kozo—1/4) exp[ik,(x, sin 8,,. — Y%z, sin? 6,,.)]

/_Zn'zo inc
x [ expliky (x — X, + 2, 5in 61,/ (22,)] dx

_ Eincd ik ( in Oinc+2o—%20 sin? Oipc) [ ix2

T Vmein/4 eltoro s e f\/ko/zzo(xo—zo sin Oinc) exp(ix”) dx

— Flym/Qo20) (xo — 20 5in Oinc)] 5 pikolxg sin Binc+2zo(1—Y2sin? Bipc)]

o Vrexp(im/4) Einc ¥ €70F0 e . (49)

At the edge of the geometric shadow, i.e., the straight line where x, = z, sin 6,,., we have

F(0) = ¥%/me™*. On this line, the E-field amplitude is %E,,.. Above the shadow’s edge, the
field amplitude steadily declines, whereas below the edge, there occur a large number of
oscillations before the field settles into what is essentially the incident plane-wave.' Figure 3
shows a typical plot of the far-field intensity (i.e., the square of the E-field amplitude) versus the
distance (along the x-axis at a fixed value of z,) from the edge of the geometric shadow.

1 1.4
A /\ \\ (12 2
" \ \ ]
AN \)ﬁb'%' U \'. | \ |0 2
\ | 108 E
\- 0.6 é
\ 1
| 04 Z
0.25 _)-'0.2
\_
20 -15  -—10  =s 0 5 10

Distance from the edge of geometric shadow (arbitrary units)

Fig.3. Normalized intensity in the far field of a sharp edge as a function of distance along the
x-axis (at fixed z,) from the edge of the geometric shadow, where x, = z, sin ;.

Example 4. Shown in Fig.4 is a circular aperture of radius R within an otherwise opaque screen
located in the xy-plane at z = 0. A plane-wave E(r,t) = E,,. expli(k,0;,. - ™ — wt)], where the
unit-vector a;,. specifies the direction of incidence, arrives at the aperture from the left-hand
side. Maxwell’s 3™ equation identifies the incident B-field as B = a,,. X E/c. The observation
point 1, = 1,0, is sufficiently far from the aperture for the following approximation to apply:
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exp(iko|r—7o|)

eXp[iko (rO —0q’ 1")] (50)
To :

G(r,r,) = = exp(ikoyT2 + 12 =21 1,)/Ir — 14| =

[r=70]

Let us assume that the screen is a thin sheet of a perfect conductor on whose surface the
tangential E-field necessarily vanishes. The appropriate diffraction equation will then be Eq.(32),
with the tangential E-field outside the aperture allowed to vanish (i.e., @ X E = 0 on the opaque
parts of the screen). Approximating the E-field within the aperture with that of the incident
plane-wave, we will have
expliko (o — a9 1)] ds

To

fsl[ﬁ X E(r)]G(r,r,)ds = (2 X E;,,.) exp(ik 0, " 1) X

aperture

= 2P0 (35 B [ expliko (0 — 0) - 7] ds
o a

perture

= SR (3% B, [, [T, explikyér cos ) rdgdr.  (51)
0 r= -

%_) )
e

w
1
=~

inc Oainc

=
X
I
x
Q

inc

OO\

Fig.4. A circular aperture of radius R inside an otherwise opaque screen located at z = 0 is illuminated by a
plane-wave whose E-field amplitude and propagation direction are specified as E;,. and a;,., respectively.
The observation point r, = 1,0, is in the far field; that is, 7, > R. The unit-vectors o;,. and o, have
respective polar coordinates (6;,c, @inc) and (6,, ¢,). The projection of the vector a;,. — @, onto the xy-
plane of the aperture is a vector of length { that makes an angle ¢ with the position vector r = xX + yy.

Here, ¢ is the magnitude of the projection of @;,. — 0, onto the xy-plane of the aperture,
while ¢ is the angle between that projection and the position vector r = xX + y¥; that is,

Oinc — 0y = (Sin B, cOS @i — sin B, cos py)X + (sin O, sin @y, — sin B, sin ¢,)¥ + (cos B, — cos 6,)2. (52)

{ = +/sinZ 8, + sinZ B, — 2 sin O;,, sin B, cos(Psnc — P). (53)

Consequently,
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[, [R X EMIG(r,r)ds = TR (2 By ) [, (kodr)dr

Jo() and J, (+) are Bessel functions L = 2nR exp(ikory )

of the first kind, orders 0 and 1. koto J1(koSR) 2 X Ejp. 54

The E-field at the observation point , = 1,0, (which is in the far field of the aperture, i.e.,
7, > R) is now found by computing the curl of the expression on the right-hand side of Eq.(54).
Considering that Z X E,_ is independent of r,, we use the vector identity V X (yV,) = Vi XV,
then ignore the small (far field) contributions to Vi due to the dependence of { on (8,, @,), to
arrive at

E(r,) = 2n)~tv, x fsl[ﬁ X E(M)]G(r,r,)ds
= (R/ko{)]1(ko{R)V, [exp(ik,r, ) /7,] X (Z X Ejy )

= (R/ko0)J1(koCR) (iky — 77 D [exp(ikoty ) /10 X (2 X En)

. ikgr
~ w [(Einc . 0'0)2 - COS(Qo) Einc]' (55)

10§

The approximate nature of these calculations should be borne in mind when comparing the
various estimates of an observed field obtained via different routes.” For instance, had we started
with Eq.(33) and proceeded by setting 1 X B = 0 on the opaque areas of the screen, we would
have arrived at the following estimate of the observed E-field:

iRJ1(kolR)elkoTo
r0¢ {
The differences between Eqs.(55) and (56), which, in general, are not insignificant, can be

traced to the assumptions regarding the nature of the opaque screen and the approximations
involved in equating the E and B fields within the aperture to those of the incident plane-wave.

E(ro) = Einc ' 2) [ainc - (ainc ’ 0'0)0'0] — COS einc [Einc - (Einc ’ 60)60]}' (56)

7. Sommerfeld’s analysis of diffraction from a perfectly conducting half-plane. A rare
example of an exact solution of Maxwell’s equations as applied to EM diffraction was published
by A. Sommerfeld in 1896.% The simplified version of Sommerfeld’s original analysis presented
in this section closely parallels that of Ref.[1], Chapter 11. Consider an EM plane-wave
propagating in free space and illuminating a thin, perfectly conducting screen that sits in the
upper half of the xy-plane at z = 0. The geometry of the system is shown in Fig.5, where the
incident k-vector is denoted by k;, ., the oscillation frequency of the monochromatic wave is w,
the speed of light in vacuum is c, the wave-number is k, = w/c, and the unit-vector along the
direction of incidence is o;,.. The plane-wave is linearly polarized with its E-field amplitude E|
along the y-axis and H-field amplitude H, = E,/Z, in the xz-plane of incidence. (Z, = \/u,/&, 1s
the impedance of free space.) The electric current density induced in the semi-infinite screen is
denoted by J(r,t). In the chosen geometry, all the fields (incident as well as scattered) are
uniform along the y-axis; consequently, it suffices to specify the position of an arbitrary point in
the Cartesian xyz space by its x and z coordinates only; that is,

r=xXx+zZ=r(cosf@X+sinfz). (57)

Here, r = Vx2 + 2?2, and the angle 6 is measured clockwise from the positive x-axis. The
range of 6 is (0, ) for points r on the right-hand side of the screen, and (—m, 0) for the points



328 —— M. Mansuripur: A Tutorial on the Classical Theories of Electromagnetic Scattering and Diffraction DE GRUYTER

on the left-hand side. Figure 5 shows that k;,. makes an angle 6, € (0,7) with the positive x-
axis. The incident plane-wave is, thus, fully specified by the following equations:

k,.=kX+k,Z=k,0i, =k,(cosf,X+sinb,z). (58)

Einc(r' t) = Eoy exp[i(kinc r— (‘)t)] = Eoy exp[iko(ainc r— Ct)]

— Eoyeikor cos(G—Ho)e—iw{ (59)
H, .(rt) = —(E,/Z,)(sin 6, X — cos B, 2)e'kor cos(0=bo) o —iwt (60)
X
kinc = koainc
H(;\(g/
r,t
E, / J@r,t)
/ ' >Z
y
2

Fig.5. A plane, monochromatic EM wave propagating along the unit-vector a;,. = cos 6, X + sin 6, 2
arrives at a thin, semi-infinite, perfectly electrically conducting screen located in the upper half of the xy-
plane. The plane-wave is linearly polarized, with its E-field aligned with the y-axis, while its H-field has
components along the x and z directions. The induced current sheet, denoted by J(r, t), oscillates parallel
to the incident E-field along the direction of the y-axis. (The system depicted here is essentially the same
as that in Fig.2, with the exception of the angle of incidence 8, being the complement of 6;,,. of Fig.2.)

With the aid of the step-function step(x) and Dirac’s delta-function §(z), we now express
the electric current density J(r,t) excited on the thin-sheet conductor as a one-dimensional
Fourier transform, namely,

J(r,) = step(0)]s(0)8(2e 'y = [[ I (g, )™ 0% da |6 (2)e . (61)

In the above equation, g, represents spatial frequency along the x-axis, and J(o,) is the
(complex) amplitude of the induced surface-current-density along ¥, having spatial and temporal
frequencies o, and w, respectively. The first goal of our analysis is to find the function [J(o,)
such that its Fourier transform vanishes along the negative x-axis— as demanded by the step-
function in Eq.(61)— while its radiated E-field cancels the incident plane-wave’s E-field at the
surface of the screen along the positive x-axis. Now, a current sheet J(o,)e!Koox*~@D§(2)y
that fills the entire xy-plane at z = 0 radiates EM fields into the surrounding free space that can
easily be shown to have the following structure:

E(r,t) = =%(Zkoy/kz)J(04) explilkyx + k;|z| — wt)]. (62)

H(r,t) = %J(0,)[1X — (ky/k,)2] explilkyx + k,|z| — wi)]. (63)
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Here, k, = w/c is the wave-number in free space, while k,, = k,0,, and k, = \/kZ — k2 are
the k-vector components along the x and z axes. In general, k, must be real and positive when
|k,| < k,, and imaginary and positive otherwise. The * signs associated with H, indicate that
the plus sign must be used for the half-space on the right-hand side of the sheet, where z > 0,
while the minus sign is reserved for the left-hand side, where z < 0. The discontinuity of H, at
z = 0 thus equals the surface-current-density J(o,) along the y-direction, in compliance with
Maxwell’s requisite boundary conditions. Needless to say, Eqs.(62) and (63) represent a single
EM plane-wave on either side of the screen’s xy-plane, which satisfy the symmetry requirement
of radiation from the current sheet, and with the tangential component H, of the radiated H-field
chosen to satisfy the requisite boundary condition at the plane of the surface current. The plane-
waves emanating to the right and left of the xy-plane of the current sheet are homogeneous when
k, is real, and inhomogeneous (or evanescent) when k, is imaginary.

When working in the complex og,-plane, we must ensure that k, has the correct sign for all
values of the real parameter k, = k0, from —oo to co. Considering that k,/k, is the square root
of the product of (1 — a,.) and (1 + 7,), we choose for both of these complex numbers the range
of phase angles (—m, ], as depicted in Fig.6(a). The corresponding branch-cuts thus appear as
the semi-infinite line segments (—oo0, —1) and (1, ), and the integration path along the real axis
within the g,-plane, shown in Fig.6(b), will consist of semi-infinite line segments slightly above
and slightly below the real axis, as well as a short segment of the real-axis connecting —1 to 1.

This choice of the integration path ensures that k, = k,/1 — g acquires the correct sign for all
values of g,.

n

(a) (b) AOx
€
¥ cos 6,
D e Y5 g/
-1 D -1 > 1 2

Fig.6. (a) In the complex o,-plane, where the phase of the complex numbers 1 + o, is measured counterclock-
wise from the positive gy, axis, the range of both angles is confined to the (—, ] interval. (b) The integration
path along the o, axis is adjusted by shifting the part from —co to —1 slightly upward, and the part from 1 to o

slightly downward, so that k,/k, = /(1 — 0,)(1 + g,) has the correct sign everywhere. The pole at g, =
cos 6, is handled by locally deforming the contour into a semi-circular path below the real axis.

For reasons that will become clear as we proceed, Sommerfeld suggested the following
mathematical form for the surface current-density J as a function of o,:

J(O-x) = Jo\/ 1- o-x/(o—x — Cos 90)- (64)

The domain of this function is the slightly deformed real axis of the o,-plane depicted in
Fig.6(b). The proposed function has a simple pole at o, = cos 8,, where 6, is the orientation
angle of k;,. shown in Fig.5, and a (complex) constant coefficient J, that will be determined
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shortly. In addition, J(o,) contains the term /1 — g,, whose branch-cut in the system of
Fig.6(a) is the semi-infinite line-segment (1, 0) along the real axis of the og,-plane. It is now
possible to demonstrate that the proposed J(a,) satisfies its first required property, namely,
[ J(o)e*0%*da, = 7, N pikeoxxdg = 0, (x < 0). (65)
-0 oo 0x T COS 6o

For x < 0, the integration contour of Fig.6(b) can be closed with a large semi-circular path
in the lower half of the o,-plane. The only part of the integrand in Eq.(65) that requires a branch-
cut is /1 — g,, whose branch-cut is the line segment (1, ). The integration contour of Fig.6(b),
when closed in the lower-half of the o,-plane, does not contain this branch-cut. Moreover, the
pole at o, = cos 6, is outside the closed loop of integration, and the contributions to the integral
by the singular points g, = +1 are zero. Consequently, the current-density J(r,t) in the lower
half of the xy-plane turns out to be zero, exactly as required.

The radiated E-field, a superposition of contributions from the various (J(a,) in accordance
with Egs.(62) and (64), must cancel out the incident E-field at the surface of the screen; that is,

E,(x,y,z=0) = f_":o E,(a)e*0%da, = Y Z,k, [~ [J(0,)/k,le k0% da,

°° eikooxx

o J1+0y (o, — cos0g)

For x > 0, the contour of integration in Eq.(66) can be closed with a large semi-circle in the
upper-half of the o,-plane. The branch-cut for /1 + o, in the denominator of the integrand is the

line-segment (—oo,—1), which is below the integration path and, therefore, irrelevant for a
contour that closes in the upper-half-plane. For the singularities at g, = +1, the residues are

zero, whereas for the pole at g, = cos 6,, the residue is e¥0°5%%* / /1 + cos 6,. The requisite
boundary condition at the screen’s surface is thus seen to be satisfied if J, is specified as

Jo = —i(E,/nZ,)/1 + cos b,. (67)

Having found the functional form of J(o,), we now turn to the problem of computing the
scattered E-field E4(r) at the arbitrary observation point r = xX + zZ = r(cos 8 X + sin 6 2) in
accordance with Eqs.(62), (64), and (67); that is,

= —%Z,J, do, = —E,e'focosfx, (x> 0). (66)

B(r) = i(B3/2m) | 2 lr e s enplik (o + o, lzD] dor (68)

The integral in Eq.(68) must be evaluated at positive as well as negative values of x, and
also for values of z on both sides of the screen. The presence of k, in the exponent of the
integrand requires that the branch-cuts on both line-segments (—oo, —1) and (1, ) be taken into
account. For these reasons, the integration path of Fig.6(b) ceases to be convenient and we need
to change the variable o, to something that avoids the need for branch-cuts. We now switch the
variable from g, to ¢, where g, = cos ¢, with the integration path in the complex ¢-plane
shown in Fig.7(a). Considering that

cos @ = cos(p' +ip") = cos ¢’ coshp” —isin¢’sinh ", (69)

the depicted integration path represents the continuous variation of o, from —oo to co. Similarly,
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0, =41 —cos? @ =sin@ = sin ¢’ cosh ¢” + icos ¢’ sinh ¢" (70)
1s positive real on the horizontal branch, and positive imaginary on both vertical branches of the
depicted contour. It is also easy to verify that \/1 — o, = V2 sin(¢/2) has identical values at
corresponding points on the contours of Figs.(6b) and (7a), as does /1 + g, = V2 cos(¢/2).

Recalling that do, = —sin¢@ dgp = —/1 — cos? ¢ d¢g, we can rewrite Eq.(68) as

E\(r) = —i(E,9/2m) f

mT—ico

J1+cosfy+/1-cosg

cos @ — cos By

explik,r cos(p + 6)] do. (71)

The above equation yields the scattered E-field on both sides of the screen, with the minus
sign in the exponent corresponding to z > 0, and the plus sign to z < 0. In what follows, noting
the natural symmetry of the scattered field on the opposite sides of the xy-plane, we confine our
attention to Eq.(71) with only the minus sign in the exponent; the scattered E-field on the left
hand side of the screen is subsequently obtained by a simple change of the sign of z.

@ 47 b 42
| scey
1 i
| 0 + Yor
; 450
T s VSR .
0 6, 0| 4 6, u%\ 5
0 — Yorr |

Fig.7. (a) Contour of integration in the complex ¢-plane corresponding to the integration path in the o,-plane
shown in Fig.6(b). By definition, g, = cos ¢, which results in k, = k,0, = k, sin ¢, a well-defined function
everywhere in the ¢-plane that does not need branch-cuts. The small bump in the integration path around
@ = 6, corresponds to the small semi-circular part of the contour in Fig.6(b). The negative values of g, on
the semi-circle translate, in accordance with Eq.(69), into positive value of ¢” on the corresponding bump.
(b) Along the steepest-descent contour S(8) that passes through the saddle-point ¢ = 6, Re[cos(p — 6)] is
constant. At the saddle-point, S(8) makes a 45° angle with the horizontal and vertical lines, which represent
contours along which Im[cos(¢ — 8)] is constant. S(8) also has the property that Im[cos(¢ — 8)], which is
zero at the saddle-point, rises toward oo (continuously and symmetrically on both sides of the saddle) as ¢
moves away from the saddle-point along the contour.

The integration path of Fig.7(a) is now replaced with the steepest-descent contour S(6)
depicted in Fig.7(b). Passing through the saddle-point of expl[ikr cos(¢ — 6)] at ¢ = 6, this
contour has the property that Re[cos(¢ — 6)] everywhere on the contour equals 1. In contrast,
Im[cos(p — 0)] starts at zero at the saddle, then rises toward infinity (continuously and
symmetrically on opposite sides of the saddle) as ¢ moves away from the saddle-point at ¢ = 6.
It is easy to show that the original integration path of Fig.7(a) can be joined to S(€) to form a
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closed loop with negligible contributions to the overall loop integral by the segments that
connect the two contours at infinity.”

The only time when the single pole of the integrand at ¢ = 6, needs to be accounted for is
when 6 < 6,, at which point the pole is inside the closed contour, as Fig.7(b) clearly indicates. In
the vicinity of the pole, the denominator of the integrand in Eq.(71) can be approximated by the
first two terms of the Taylor series expansion of cos ¢, as follows:

cos @ — cos B, = [cos @, —sinf, (¢ —6,) + -] —cosf, = —sinb, (¢ — 6,). (72)

The residue at the pole is thus seen to be — exp[ik,r cos(6, — 8)], with a corresponding
contribution of —E,y exp[ik,r cos(8 — 6,)] to the scattered E-field. It must be emphasized that
the scattered field contributed by the pole at ¢ = 6, is relevant only when 8 < 6,, in which case
it cancels the contribution of the incident plane-wave of Eq.(59) to the overall EM field on the
right-hand side of the screen, where the screen casts its geometric shadow. Outside this
geometric shadow, where 8, < 8 < m, the incident beam spills into the z > 0 region — without
the counter-balancing effect of the scattered field produced by the pole at ¢ = 6,,.

Returning to the scattered E-field produced by the integral in Eq.(71) over the steepest-
descent contour S(8), the first term in the integrand can be further streamlined, as follows:

J1+cosfy/1-cosp _ 2 cos(8y/2) sin(p/2) _ % _ Y ) (73)
cos @ — cos by T2 sin[%(@+0¢)] sin[¥2(p—6,)] - sin[%(@+6p)]  sin[¥%(p—6))]
The scattered E-field on the right-hand side of the screen may thus be written as
b (r) - i(EOy/Ll'T[)eikor J;(49)(Si“[‘/2(ip+90)] * Sin[%(;-eo)]) eikoT[COSQP—Q)—ﬂd(p ) (74)

Note that we have factored out the imaginary part of the exponent and taken it outside the
integral as e'*o”; what remains of the exponent, namely, ik,r[cos(¢ — 6) — 1], is purely real on
S(8). We proceed to compute the integral in Eq.(74) only for the first term of the integrand and
refer to it as E ;; the contribution of the second term, E,, will then be found by switching the
sign of 6,.

A change of the variable from ¢ to ¢ — 8 would cause the steepest-descent contour to go
through the origin of the ¢-plane; this shifted contour will now be denoted by S,. Taking
advantage of the symmetry of S, with respect to the origin, we express the final result of
integration in terms of the integral on the upper half of S,, which is denoted by S. We will have

(RS ikor 1 1 ikor(cos p—1)
E,(r) = i(E,y/4m)e f+{sin[1/z(qa+0+90)]+sin[1/z(—qo+9+90)]}el oricose™de
So

— i %5 ikor sin[(6+6¢)/2] cos(@/2)  —iz2kyrsin2(g/2)
1(Eoy/7t)e j+ cos(p) — cos(6+6g) T SIIer2 de
N

0

sinZ(¢p/2) — sin2[(6+6¢)/2]

— —i(Eoy/ZTL') Sin[(e + 90)/2] eikor .I- cos(¢/2) exp[—izkorsin®(¢/2)] do. (75)
S+

0

™ On the short line-segments that connect the two contours at ¢” = +oo, the magnitude of the exponential factor in
the integrand in Eq.(71) is explk,7 sin(¢’ — 6) sinh(¢") ]. In the upper half-plane, —1 < sin(¢’ —0) < 0 and
sinh(¢") — o, whereas in the lower half-plane, 0 < sin(¢’ — 0) < 1 and sinh(¢") - —oo. Thus, in both cases,
the integrand vanishes.
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Another change of variable, this time from ¢ to the real-valued { = — exp(irr/4) sin(¢@/2),
where { ranges from 0 to oo along the steepest-descent contour S;t, now yields''

- . e i % (~2kor¢?)
E1(r) = —(E,3/m)sin[(6 + 6,) /2] e'*ore~17/4 ] ity 4 (76)

The integral appearing in the above equation is evaluated in Appendix G, where it is shown that

o0 a2 ;
| 2D 46 = Vinite T (I, 77

0

Here, F(a) = f;o exp(ix?) dx is the complex Fresnel integral defined in Eq.(46). We thus find

E (1) = —(E,y/Vr)e "/ 4eikor g =i2kor sin®l(6+00)/2) p ( [2k v sin[(6 + 6,)/2]).  (78)

The expression for E,(r) is derived from Eq.(78) by switching the sign of 6,. One has to
be careful in this case, since sin[(6 — 6,)/2] may be negative. Given that both 6 and 6, are in
the (0, ) interval, the sign of sin[(6 — 6,)/2] will be positive if 8 > 6,, and negative if 0 < 6,,.
The scattered E-field of Eq.(74) is thus given by

Es(r) = E,, + E;, = —(E,y/Vm)e ™/ *{eor 05O+ F (([2k,r sin[(6 + 6,)/2])
teikorcos@=00)F (+ 2k, sin[(6 — 6,)/2])}. (79)

To this result we must add the contribution of the pole, namely, —E,y exp[ik,r cos(6 — 6,)]
when 8 < 6,, and the incident beam E,y exp|ik,r cos(6 — 6,)] for the entire range 0 < 6 < .
Recalling that

F(a) + F(—a) = f_ozo exp(ix?) dx = Vmel™/*, (80)
the total E-field on the right-hand side of the xy-plane, where 0 < 8 < m, becomes
E (1) = (e7™/*E,3 V) {eikor cosO=00) p (— [2k,r sin[(0 — 6,)/2])
—elkorcos@+0) (| [2k 7 sin[(6 + 6,)/2])}. (81)

On the left-hand side of the screen, where z < 0 and, therefore, —m < 8 < 0, the scattered
E-field is obtained by replacing 6 with |6 in Eq.(79) as well as in the contribution by the pole at
¢ = 6,. (Appendix H shows that the scattered E-field in the z < 0 region can also be evaluated
by direct integration over a modified contour in the complex ¢-plane.) Once again, adding the
incident E-field and invoking Eq.(80), we find

Eqorar () = (e77/* E,y /m){e o7 cosO=00)F ([2k,r sin[(6 — 6,)/2])

—eikor cos@+00) p(—_ (27 sin[(0 + 6,)/2])}. (82)

One obtains Eq.(82) by replacing 6 in Eq.(81) with 2 + 6, the latter 6 being in the (—, 0)
interval. Thus, Eq.(81) with 0 < 8 < 2m covers the entire range of observation points r. A clear

" Upon setting {? = isin?(¢/2), we find two possible choices for the new variable, namely, { = +e™/*sin(¢p/2).
Of these, the one with the minus sign represents the upper-half S, of the steepest-descent trajectory. To see this,
note that as Si approaches its extremity when ¢ — —%m + ico, we have sin(¢/2) - (=1 +1) exp(¢”/2)/2V?2,
which must be multiplied by —e'™# for ¢ to approach +oo.
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understanding of Eq.(81) requires familiarity with the general behavior of the Fresnel integral
F(a); Appendix F contains a detailed explanation in terms of the Cornu spiral representation of
F(a).* The general expression for the total (i.e., incident plus scattered) E-field given in Eq.(81)
is somewhat simplified in terms of the new function ®(a) = e i’ (a), as follows:

E,.(r) = E}f;f/‘f ®(—/2kyr sin[(6 — 6,)/2]) — (/2kor sin[(6 + 6,)/2]); (0 < 6 < 2m). (83)
It is worth mentioning that, the contribution to the scattered E-field by the pole at ¢ = 6,,,
namely, E;3(r) = —E,¥ exp[ik,r cos(6 — 6,)], which exists only in the intervals 0 < 6 < 6,
and 2w — 6, < 0 < 2m, cancels the incident E-field in the shadow region behind the screen,
while acting as the reflected field in front of the perfectly conducting half-mirror.

7.1. The magnetic field. The total H-field is computed from the E-field of Eq.(83) with the aid
of Maxwell’s equation ik,Z,H(r) =V X E(r) = —(r‘lagEy)? + (arEy)g. The identity

®'(a) = —1 — 2iad®(a) will be used in this calculation. To simplify the notation, we introduce
the new variables &; = —/2k,rsin[(6 — 6,)/2] and &, = \/2k,r sin[(6 + 6,)/2]. We find
Egeikor . . ivV2 cos(8/2) cos(8y/2)
Ho(r) = = [q»(gl) sin(6 — 6,) = @(&) sin(0 +6,) +——————|.  (84)
Egelkor iV2 sin(6/2) cos(6,/2)
Hy(r) = 22| 9(62) cos(0 — 6,) — () cos(0 + 6,) - MEUD) g5

The Cartesian components H, = H,.cos @ — Hy sin@ and H, = H, sin 8 + Hy cos 8 of the
magnetic field may now be obtained from the polar components H, and Hy, as follows:

EoeikoT‘

. iV2 cos(6/2) cos(6y/2)

H,(r) = —m{[q’(ﬁ) + ®(&,)] sin §, —~—— kO:OS : } (86)
Egelkor ivV2 sin(8/2) cos(6/2)

H, () = + 2 {0(6) - 0(6)] cos 6, + M2 De/D) (87)

It is readily verified that H, = 0 at the surface of the conductor, where 8 = 0, and that H,
equals the x component of the incident H-field in the open half of the xy-plane, where 6 = m.

8. Far field scattering and the optical theorem. In the system of Fig.1(b), let the object inside
the closed surface S, be illuminated from the outside, and let the observation point r, = 1,0, be
far away from the object, so that the approximate form of G (r,1,) given in Eq.(50) along with
its corresponding gradient VG = —ik,06,G(r,1,) would be applicable. Denoting by E () and
B (1) the scattered fields appearing on S,, Eq.(28) yields the E-field at the observation point as
E (r,) = %okon0) 1o x B)) — (A X E) X 6, — (- Eg)a,Je 0% Tds.  (88)

4TTTg S1

Considering that the local field in the vicinity of 7, has the character of a plane-wave, the
last term in the above integrand, which represents a contribution to E¢(r,) that is aligned with
the local k-vector, is expected to be cancelled out by an equal but opposite contribution from the
first term.” We thus arrive at the following simplified version of Eq.(88):

* Our Eq.(81) agrees with the corresponding result in Born & Wolf’s Principles of Optics,' provided that the angles
0 and «, in their Eq.(22) of Chapter 11, Section 5, are recognized as 2w — 8 and m — 6, in our notation.
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ikg exp(ikory )

E(r,) = - g, X fsl[ca0 X (fi X By) — i x E]le k%07 (s, (89)

41Ty

With reference to Fig.8, suppose now that the object is illuminated (and thus excited) by a
plane-wave arriving along the unit-vector a;,., whose E and B fields are

E.. (rt) = E;explik,(0;,. " T — ct)]. (90)
B,..(r,t) = ¢ loy,. X E;explik,(0;,. ' T — ct)]. 91)
The time-averaged total Poynting vector on the surface S, is readily evaluated, as follows:
(Sioral(1)) = YeRe[(Ejetko%ine T + E ) x gt (Beiko%ine ™ + B )*]

= Yuy 'Re(E; X B] + E X B} + E;e'fo%nc'" x B + E_ X Bje 0Tinc'T)

= 1/220_1(E1 ) Ei*)o-inc + 1/2/“1'0_1Re(Es X B;k) < Zy = lho/& =377 Q

+%Z;'Re{[cE] X B, + E; X (0, X Ef)]e " Ko%inc T}, (92)

If we dot-multiply both sides of Eq.(92) by —n, then integrate over the closed surface S,, we
obtain, on the left-hand side, the total rate of the inward flow of EM energy, which is the
absorbed EM power by the object. On the right-hand side, the first term integrates to zero,
because (E; - E;)o,,. is a constant and ﬁslﬁds = 0. The integral of the second term will be the
negative time-rate of the energy departure from the object via scattering, which can be moved to
the left-hand side of the equation. The combination of the two terms on the left-hand side now
yields the total EM power that is taken away from the incident beam — either by absorption or
due to scattering. We will have

Absorbed + Scattered Power = —%Z; 1Re ¢S1 - [cE] x B, + E, x (0;,. X E]")]e #0%inc'Tdg

[a-(bxc)=(axb) c}>=%Z;'Re 9551[c(ﬁ X B)-E —(fiXE,))- (0,0 X E)]e ko%inc'Tds

= %Z;Re {Ei* - ﬁsl[c(ﬁ xB,)— (M xE,) X amc]e‘“‘oainc'rds}. (93)

0. L., " o

Fig.8. A monochromatic plane-wave propagating along the unit-vector ;. is scattered from a
small object in the vicinity of the origin of the coordinate system. The scattered electric and
magnetic fields on the closed surface S, surrounding the object are denoted by E4(r) and B (r).
The surface normals 7 at every point on S, are outward directed. The scattered light reaching the
far away observation point r, = 1,0, has the k-vector k,0, and the EM fields E(r,) and B4 (r,).
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Comparison with Eq.(88) reveals that the integral in Eq.(93) is proportional to the scattered
E-field in the direction of 6, = 0;,. as observed in the far field. (Recall that the term (72 - E) 0,
in the integrand of Eq.(88) has been deemed inconsequential.) If Eq.(93) is normalized by the
incident EM power per unit area, namely, P,,. = %Z; 'Re(E;- E;), the left-hand side will
become the scattering cross-section of the object, while the right-hand side, aside from the
coefficient ik,e'*0™ /(4mr,), will be the projection of the forward-scattered E-field (i.c.,
o0, = 0;,.) on the incident E-field. This important result in the theory of scattering has come to
be known as the optical theorem (or the optical cross-section theorem).'”**

9. Scattering from weak inhomogeneities.” Figure 9 shows a monochromatic plane-wave of
frequency w passing through a transparent, linear, isotropic medium that has a region of weak
inhomogeneities in the vicinity of the origin of coordinates. The host medium is described by its
relative permittivity £(r, w) and permeability u(r, ), which consist of a spatially homogeneous
background plus slight variations (localized in the vicinity of 7 = 0) on this background; that is,

e(r,w) = g,(w) + de(r, w). (94)

.u(rr (1)) = .uh(w) + 6.“(1'1 (U) (95)

The displacement field is thus written as D(r,w) = €,e(r, w)E(r,w) and the magnetic
induction is given by B(r, w) = p,u(r,w)H(r, w). In the absence of free charges and currents,
i.e., when py..(r, w) = 0 and J;..(r, ) = 0, Maxwell’s macroscopic equations will be*"!

V-D =0; VX H = —iwD; VXE = iwB; V-B=0. (96)

Noting that the D and B fields depart only slightly from the respective values ¢,¢,E and
oty H that they would have had in the absence of the §¢ and du perturbations, we write

0
VXVX(D—e¢geE) = W— V2D —iwe,s,V X B
= —V?D —iwe,&, [V X (B — uopp H) + phoptV X H]
= —V?D —iwe, &,V X (B — pouyH) — (w/c)*u,e,D. 97)

AX

Fig.9. A monochromatic plane-wave of frequency w and E-field amplitude E;,. propagates along
the unit-vector a;,. within a mildly inhomogeneous host medium of refractive index n,(w) =
(une,)”. The inhomogeneous region of the host, a small patch in the vicinity of the origin of
coordinates, is specified by its relative permittivity €,(w) + §&(r, w) and relative permeability
Up(w) + Su(r, w). The scattered field is observed at the faraway point r, = 1,0,.
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Recalling that the refractive index of the homogeneous (background) material is defined as
n, = (U€,)”, and that the free-space wave-number is k, = w/c, Eq.(97) may be rewritten as

V2D + (kyn,)?D = —i(k,&,/c)V X (SuH) — £,V X V X (8¢E). (98)

This Helmholtz equation has a homogeneous solution, which we denote by D, (r, w), and an
inhomogeneous solution, which arises from the local deviations d¢ and du of the host medium.
Recalling that the Green function G(r,r,) = exp(ik,n,|r —r,|)/|r — r,| is a solution of the
Helmbholtz equation V2G + (k,n,)?G = —4nS(r —r,), an integral relation for the scattered
field solution D4(r, w) of Eq.(98) in terms of the total fields E(r, w) and H(r, w) will be

| dr stands for dxdydz |
v
[i(k,e,/c)V X (SuH) + £,V X V X (8€E)| G(r,1r,)dr. (99)

D(r,, w) = (4m)~*

volume

Using a far-field approximation to G (r,1,) similar to that in Eq.(50), we will have

. exp(ikonpro)
DS(rO' (1)) - 4mry fvolume

[i(kye,/c)V X (SuH) + £,V X V X (8€E)]e om0 Tdy  (100)

The vector identity (V7 x V)e %' 7 = ik x Ve ' T + ¥ x (Ve™'™) can be used to replace
the first term in the integrand of Eq.(100) with —(kZe,n,/c)e ko™ Tg x SuH. The volume
integral of V x (Ve *'T) becomes the surface integral of e ¥ TV x ds, which subsequently
vanishes because, for away from the inhomogeneous region, Su — 0. Similarly, the second term
of the integrand is replaced by ig,k,n,0, X [V X (§€E)]e~ ko™ T Another application of the
vector identity then replaces the remaining term with —g,k2nZa, X (6, X §eE)e " *omh%0'T Ve
thus arrive at

Ds(rm w) ~ (konp)? exp(ikonhro)f

41Ty volume

[(e,/n,0)8uH + £,0, X 6€E] X a,e *o™o%0 Tdy  (101)

In the first Born approximation, the E(r) and H(r) fields in the integrand of Eq.(101) are
replaced with the solutions E,(r) and H, (1) of the homogeneous Helmholtz equation. When the
homogeneous background wave is a plane-wave, we will have

Eh(r) = Einc exp(ikonhainc ' T). (102)
Hh(r) = ’%ainc X Einc exp(ikonhainc ' 1"). (103)

A final substitution from Eqgs.(102) and (103) into Eq.(101) yields

2 .
~ So€nkg exp(ikonpto)
DS (TO, (x)) - 477, fvolume

[(‘gha//‘o‘inc + //lh580'0) X Einc] X O'Oeikonh(ainc - 09) ‘Tdr.
(104)

Thus, in the first Born approximation, the scattered field Ds(r,, w) = ,6,E¢(r,, w) is
directly related to the host medium perturbations d&(r, w) and Su(r, w) via the volume integral
in Eq.(104). Here, E;,. embodies not only the strength but also the polarization state of the
incident plane-wave, the unit-vector g;,. is the direction of incidence, 6, = r,/1; is a unit-vector

pointing from the origin of coordinates to the observation point r,, and q = k,n,(0,,. — 7,) is
the difference between the incident and scattered k-vectors.
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10. Neutron scattering from magnetic electrons in Born’s first approximation. The
scattering of slow neutrons from ferromagnetic materials can be treated in ways that are similar
to our analysis of EM scattering from mild inhomogeneities discussed in the preceding section.
The wave function Y (r,t) of a particle of mass 7 in the scalar potential field V (7, t) satisfies
the following Schrédinger equation: **2°

iR (r, t) = —(h2/2m)V2P(r, t) + V(r, O (r, £). (105)

When the potential is time-independent and the particle is in an eigenstate of energy &,,, we
will have the time-independent Schrédinger equation, namely,

[(h?/2m)V? + E,JP(r) = V(r)yY(r). (106)

The Green function for Eq.(106) is G(r,1") = eik|r‘r’|/|r — 1’|, where hk = (2mE,)". If,
in the absence of the potential V (r), the solution of the homogeneous equation is found to be
Y, (1), then, when the potential is introduced, we will have [dr’ stands for dx’dy’dz’ |

Pr) = o) — (m/2mh?) [ G,V e, (107)

Note that Eq.(107) is not an actual solution of Eq.(106); rather, considering that the desired
wave-function (1) appears in the integrand on the right hand-side, Eq.(107) is an integral form
of the differential equation (106). In the case of Born’s first approximation, one assumes that
V(r) is a fairly weak potential, in which case 1, (r") can be substituted for 1 (r"), yielding

W) =, (r) — (m/2mh?) [[[° G, )V ), )dr'. (108)

In a typical scattering problem, an incoming particle of mass 7 and well-defined
momentum p = hk has the initial wave-function ¥,(r) = e*'". Upon interacting with a weak
scattering potential V(r), the wave-function will change in accordance with Eq.(108). Let V(1)
have significant values only in the vicinity of the origin, ¥ = 0, and assume that the scattering
process is elastic, so that the momentum P of the particle after scattering will have the same
magnitude Ak as before, but the direction of propagation changes from that of k to that of k. At
an observation point r far from the origin, that is, || > |r’|, the scattered particle’s momentum
is expected to be p = hk = hk#, and the Green function may be approximated as

exp(iklr-7'|) _ expliky G —71")-(r—1r")] _ explik(r —r'-#)] _ exp(ikr) e‘iT‘ !

lr-7'| = T = T - r (109)
Substitution into Eq.(108) now yields
. ikr [®° . =~ '
Y =ek - (22 f V(r)elk-07 gy (110)

Denoting the change in the direction of the particle’s momentum by q = p — P, and noting
that e'*" /r is simply a spherical wave emanating from the origin, the scattering amplitude f(q)
is readily seen to be

fl@) = -] vahe ' /mdr. (111)

Here, f£(q) has the dimensions of length (meter in SI). Note that the presence of e*" /r in
Eq.(110) makes the wave-function ¥ (r) dimensionless. Let dQ = sin 8 d6d¢ be the differential
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element of the solid angle viewed from the origin of the coordinates. The differential scattering
cross-section will then be do/dQ = |f(q)|?, with the total cross-section being o = [|f(q)|*dQ.

Example 1. A particle of mass m is scattered by the spherically symmetric potential V(1)
corresponding to a fixed particle located at r = 0. The scattering amplitude, computed from
Eq.(111), will be

flq) = - # f:o f;lo V(r) exp(iqr cos 8 /h) (2mr? sin 0)dOdr = — Zh—t: fooo rV(r) sin(qr/h) dr.(112)

Considering that ¢ = p — P, and that p and p have the same magnitude p, we denote by 6
the angle between p and P, and proceed to write ¢ = 2p sin(6/2). The scattering amplitude thus
has circular symmetry around the direction of the incident momentum p. The ambiguity of
Eq.(112) with regard to forward scattering at & = 0 is resolved if the forward amplitude f(0) is
directly computed from Eq.(110)— with the destructive interference between the incident and
scattered amplitudes properly taken into account.

For the Yukawa potential V(r) = v,e” %" /r, with a > 0 being the range parameter, the
scattering amplitude is obtained upon integrating Eq.(112), as follows:

2muvg 2muyg

f(q) = - hq foooe_ar sin(CIr/h) dr = —m. (113)

In the limit when a — 0, the Yukawa potential approaches the Coulomb potential V(1) =
v,/T. When a particle having electric charge +e and energy & = p?/2m is scattered from
another particle of charge +e, the scattering cross-section will be

do _ 2 _ 62 2 1
a0 |f(q)| - (1611'808) sin4(68/2)" (114)

This is the famous Rutherford scattering cross-section.”

Example 2. In low-energy scattering, k = 0 and the scattering amplitude in all directions
becomes (6, @) = —(m/2mh?) f_i V(r)dr. In the case of low-energy, soft-sphere scattering,
where V(r) = V, when r < 1, and zero otherwise, we find

f(0,9) = —(m/2nh*)(4nr /3)V,. (115a)
da/dQ = |f(8,9)|* = @mr2V,/3h%)2. (115b)
o = 4n(do/dQ) = 16mm?rfV,z2/9h*. (115¢)

Let us now consider the case of a polarized neutron entering a ferromagnetic medium and
getting scattered from the host’s magnetic electrons.”’ To obtain an estimate of the corresponding
scattering potential V (r), we begin by noting that the magnetic field surrounding a point-dipole
mé(r)Z in free space is | The magnetic dipole moment m should not be confused with the particle’s mass #1. |

H(r) = 7#1(2 cos O # + sin 6 8) /(4mp,r?). (116)

A second magnetic point-dipole m', located at  # 0, will have the energy € = —m' - H(r),
which may be written as follows:

E=—-m'-m[3cosOF — (cosOF —sinb B)]/(4mu,r?)

=m'-m(Z—3cosO7)/(4nu,r®) = [m-m’' —3(m-#)(m' - #)]/(4mu,r?®). (117)
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These results are consistent with the Einstein-Laub formula F = (m - V)H for the force as
well as T = m x H for the torque experienced by a point-dipole in a magnetic field.***' Recall
that, in contrast to the standard formula for the dipole moment, our definition of B as u,H + M
maintains that the magnitude of m equals p, times the electrical current times the area of a small
current loop. Consequently, the aforementioned expression for £ coincides with the well-known
expression € = —m - B(r) of the energy of the dipole m in the external field B(r) = u,H(r).*’

Equation (117) must be augmented by the contact term —2m - m'S(r)/3u, to account for
the energy of the dipole pair when m and m’ overlap in space.”” We will have

m'-3(m-#Hm’-#) 2m-m's@)
4mpgr3 310 ’

e =2

(118)

Suppose the electron has wave-function ¥(r,) and magnetic dipole moment u., while the
incoming neutron has wave-function exp(ik - r,), magnetic dipole moment u,, and mass 7.
We assume the scattering process does not involve a spin flip, so that both u, and u, retain their
orientations after the collision. Moreover, we assume the electron—being bound to its host
lattice — does not get dislocated or otherwise distorted, so that Y (r,) is the same before and
after the collision. Thus, the potential energy distribution across the landscape of the incoming
neutron is the integral over r, of the product of the electron’s probability-density function
| (r.)|? and the dipole-dipole interaction energy E(r, —r,) between the neutron and the
electron. Consequently, in the first Born approximation, the scattering amplitude from an initial
neutron momentum p = hk to a final momentum p’ = hk’', is given by

f(pll p) = _(2 hz)f |lp(re)| 8(1"n - re) exp[l(k k,) ’ rn] dredry,. (119)

Defining the electronic magnetization (i.e., magnetic moment density of the electron) by
M(r,) = [y (r.)|?u. and its Fourier transform by M(k) = f_ozo M(r,) exp(ik - r,) dr,, upon
substitution from Eq.(118) into Eq.(119) and setting r = r,- 1, we find

n— n s n !
f'p) = - hzf [” W DF_ 31 (r)”] M(r,) expli(p — p') - rp/h] dredry. (120)

Defining ¢ = p — p’ and changing the variables from (r,,r,) to (r,,r =r, —r,) — whose
transformation Jacobian is 1.0 — substantially simplifies the above integral, yielding

r3

% n— nHF 4 n M 3
@) = -2 f [fo=2n DT _S100) . fp(q/h) exp(iq - r/h)dr.  (121)
Appendix I shows that the exact evaluation of the integral in Eq.(121) leads to
f@ = (3225 ) - (M a/0) — [M(q/h) - 313}, (122)

This is the same result as given in Ref.[29], Eq.(23), in the case of A = 1. The coefficient
4mu, appears here because we have worked in the SI system of units with B = y H + M.

11. Concluding remarks. In this paper, we described some of the fundamental theories of EM
scattering and diffraction using the electrodynamics of Maxwell and Lorentz in conjunction with
standard mathematical methods of the vector calculus, complex analysis, differential equations,
and Fourier transform theory. The scalar Huygens-Fresnel-Kirchhoff and Rayleigh-Sommerfeld
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theories were presented at first, followed by their extensions that cover the case of vector
diffraction of EM waves. Examples were provided to showcase the application of these vector
diffraction and scattering formulas to certain problems of practical interest. We did not discuss
the alternate method of diffraction calculations by means of Fourier transformation, which
involves an expansion of the initial field profile in the xy-plane at z = 0 into its plane-wave
constituents. In fact, with the aid of the two-dimensional Fourier transform of G (7, 0) given in
Eq.(37), it is rather easy to establish the equivalence of the Fourier expansion method with the
Rayleigh-Sommerfeld formula in Eq.(25), and also with the related vector formulas in Eqs.(32)
and (33). Appendix J outlines the mathematical steps needed to establish these equivalencies.

The Sommerfeld solution to the problem of diffraction from a thin, perfectly conducting
half-plane described in Sec.7 is one of the few problems in the EM theory of diffraction for
which an exact analytical solution has been found; for a discussion of related problems of this
type, see Ref.[1], Chapter 11. Scattering of plane-waves from spherical particles of known
relative permittivity €(w) and permeability u(w), the so-called Mie scattering, is another
problem for which an exact solution (albeit in the form of an infinite series) exists; for a
discussion of this and related problems the reader is referred to the vast literature of Mie
scattering. "+

In our analysis of neutron scattering from ferromagnets in Sec.10, we used the contact term
—2m-m'6(r)/3u, to account for the interaction energy of the dipole pair m,m' when they
happen to overlap at the same location in space. This is tantamount to assuming that the dipolar
magnetic moments are produced by circulating electrical currents. The contact term would have
been m - m'5(r)/3u, had each magnetic moment been produced by a pair of equal and opposite
magnetic monopoles residing within the corresponding particle. Since the Amperian current loop
model has been found to agree most closely with experimental findings, we used the former
expression for the contact term in Eq.(118); see Ref.[9], Sec.5.7, and Ref. [29] for a pedagogical
discussion of the experimental evidence — from neutron scattering as well as the existence of the
famous 21 cm astrophysical spectral line of atomic hydrogen —in favor of the Amperian current
loop model of the intrinsic magnetic dipole moments of subatomic particles.

Although we did not discuss the Babinet principle of complementary screens that is well
known in classical optics, it is worth mentioning here that a rigorous version of this principle has
been proven in Maxwellian electrodynamics.'” The original version of Babinet’s principle is
based on the Kirchhoff diffraction integral of Eq.(23), and the notion that, if S, consists of
apertures in an opaque screen, then the complement of S, would be opaque where S, is
transmissive, and transmissive where S, is opaque. Considering that, in Kirchhoff’s
approximation, Y (r) and 0, (r) in Eq.(23) retain the values of the incident beam in the open
aperture(s) but vanish in the opaque regions, it is a reasonable conjecture that the observed field
in the presence of S, and that in the presence of S;’s complement would add up to the observed
field when all screens are removed —1i.e., when the unobstructed beam reaches the observation
point. Similar arguments can be based on either of the Rayleigh-Sommerfeld diffraction integrals
in Egs.(24) and (25), provided, of course, that the Kirchhoff approximation remains applicable.
Appendix K describes the rigorous version of the Babinet principle and provides a simple proof
that relies on symmetry arguments similar to those used in Example 2 of Sec.6.

Finally, to keep the size and scope of this tutorial within reasonable boundaries, we did not
broach the important problem of EM scattering from small dielectric spheres, nor that of EM
scattering from small perfectly conducting spheres. The interested reader can find a detailed
discussion of these problems in Appendices L and M, respectively.
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