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Abstract. Starting with Maxwell’s equations, we derive the fundamental results of the Huygens-Fresnel-
Kirchhoff and Rayleigh-Sommerfeld theories of scalar diffraction and scattering. These results are then 
extended to cover the case of vector electromagnetic fields. The famous Sommerfeld solution to the 
problem of diffraction from a perfectly conducting half-plane is elaborated. Far-field scattering of plane 
waves from obstacles is treated in some detail, and the well-known optical cross-section theorem, which 
relates the scattering cross-section of an obstacle to its forward scattering amplitude, is derived. Also 
examined is the case of scattering from mild inhomogeneities within an otherwise homogeneous medium, 
where, in the first Born approximation, a fairly simple formula is found to relate the far-field scattering 
amplitude to the host medium’s optical properties. The related problem of neutron scattering from 
ferromagnetic materials is treated in the final section of the paper. 

1. Introduction. The classical theories of electromagnetic (EM) scattering and diffraction were 
developed throughout the nineteenth century by the likes of Augustine Jean Fresnel (1788-1827), 
Gustav Kirchhoff (1824-1887), John William Strutt (Lord Rayleigh, 1842-1919), and Arnold 
Sommerfeld (1868-1951).1-3 A thorough appreciation of these theories requires an understanding 
of the Maxwell-Lorentz electrodynamics4-11 and a working knowledge of vector calculus, 
differential equations, Fourier transformation, and complex-plane integration techniques.12 The 
relevant physical and mathematical arguments have been covered (to varying degrees of clarity 
and completeness) in numerous textbooks, monographs, and research papers.13-23 The goal of this 
tutorial is to present the core concepts of the classical theories of scattering and diffraction by 
starting with Maxwell’s equations and deriving the fundamental results using mathematical 
arguments that should be accessible to students of optical sciences as well as practitioners of 
modern optical engineering and photonics technologies. A consistent notation and uniform 
terminology is used throughout the paper. To maintain the focus on the main results and reduce 
the potential for distraction, some of the longer derivations and secondary arguments have been 
relegated to the appendices. 

The organization of the paper is as follows. After a brief review of Maxwell’s equations in 
Sec.2, we provide a detailed analysis of an all-important Green function in Sec.3. The Huygens-
Fresnel-Kirchhoff scalar theory of diffraction is the subject of Sec.4, followed by the Rayleigh-
Sommerfeld modification and enhancement of that theory in Sec.5. These scalar theories are 
subsequently generalized in Sec.6 to arrive at a number of formulas for vector scattering and 
vector diffraction of EM waves under various settings and circumstances. Section 6 also contains 
a few examples that demonstrate the application of vector diffraction formulas in situations of 
practical interest. The famous Sommerfeld solution to the problem of diffraction from a perfectly 
electrically conducting half-plane is presented in some detail in Sec.7. 

Applying the vector formulas of Sec.6 to far-field scattering, we show in Sec.8 how the 
forward scattering amplitude for a plane-wave that illuminates an arbitrary object relates to the 
scattering cross-section of that object. This important result in the classical theory of scattering is 
formally known as the optical cross-section theorem (or the optical theorem).1,9,24 

An alternative approach to the problem of EM scattering when the host medium contains a 
region of weak inhomogeneities is described in Sec.9. Here, we use Maxwell’s macroscopic 
equations in conjunction with the Green function of Sec.3 to derive a fairly simple formula for 
the far-field scattering amplitude in the first Born approximation. The related problem of slow 
neutron scattering from ferromagnetic media is treated in Sec.10. The paper closes with a few 
conclusions and final remarks in Sec.11. 
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2. Maxwell’s equations. The standard equations of the classical Maxwell-Lorenz theory of 
electrodynamics relate four material sources to four EM fields in the Minkowski spacetime ( , ).4-11 The sources are the free charge density , free current density , polarization , 
and magnetization , while the fields are the electric field , magnetic field , displacement , 
and magnetic induction . In the  system of units, where the free space (or vacuum) has 
permittivity  and permeability , the displacement is defined as = + , and the 
magnetic induction as = + . Let the total charge-density ( , ) and total current-
density ( , ) be defined as 

 ( , ) = ( , ) ( , ). (1) 

 ( , ) = ( , ) + ( , ) + × ( , ). (2) 

The charge-current continuity equation, + = 0, is generally satisfied by the above 
densities, irrespective of whether their corresponding sources are free (i.e.,  and ), or 
bound electric charges within electric dipoles (i.e.,  and ), or bound electric currents 
within magnetic dipoles (i.e., × ). Invoking Eqs.(1) and (2), Maxwell’s macroscopic 
equations are written as follows: 

 ( , ) = ( , ). (3) 

 × ( , ) =  ( , ) + ( , ). (4) 

 × ( , ) = ( , ). (5) 

 ( , ) = 0. (6) 

Taking the curl of both sides of the third equation, using the vector identity × × =( ) , and substituting from the first and second equations, we find 

 × × =                ( ) =  + . (7) 

Here, = ( ) ½ is the speed of light in vacuum. Similarly, taking the curl of both sides 
of Eq.(4) and substituting from Eqs.(5) and (6), we find 

 × × = ×                       ( ) = × . (8) 

The scalar and vector potentials, ( , ) and ( , ), are defined such that = ×  and = . With these definitions, Maxwell’s third and fourth equations are automatically 
satisfied. In the Lorenz gauge, where + = 0, Maxwell’s second equation yields 

 × × =  ( )         ( ) =  . (9) 

Similarly, substitution into Maxwell’s first equation for the -field in terms of the potentials 
yields 
 ( + ) =                       ( ) = . (10) 

Since monochromatic fields oscillate at a single frequency , their time-dependence factor 
is generally written as exp( i ). Consequently, the spatiotemporal dependence of all the fields 
and all the sources can be separated into a space part and a time part. For example, the -field 
may now be written as ( ) , the total electric charge-density as ( ) , and so on. 
Defining the free-space wavenumber = , the Helmholtz equations (7) - (10) now become 
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 ( + ) ( ) = i  ( ) + ( ). (11) 

 ( + ) ( ) = × ( ). (12) 

 ( + ) ( ) =  ( ). (13) 

 ( + ) ( ) = ( ) . (14) 

In regions of free space, where ( ) = 0 and ( ) = 0, the right-hand sides of Eqs.(11) -
(14) vanish, thus allowing one to replace ( ) with ( ), and similarly for ( ), ( ), 
and ( ), whenever the need arises. These substitutions will be used in the following sections. 

3. The Green function. In the spherical coordinate system ( , , ), the Laplacian of the 
spherically symmetric function ( ) =  equals ( ) = ( ) everywhere 
except at the origin = 0, where the function has a singularity. Thus, ( + ) ( ) = 0 at all 
points  except at the origin. A good way to handle the singularity at = 0 is to treat ( ) as the 
limiting form of another function that has no such singularity, namely, 

 ( ) = + . (15) 

The Laplacian of our well-behaved, non-singular function is readily found to be 

 +  = ( ) ( ) + ( ) . (16) 

The first two functions appearing inside the square brackets on the right-hand side of 
Eq.(16) are confined to the vicinity of the origin at = 0; they are tall, narrow, symmetric, and 
have the following volume integrals (see Appendix A for details): 

 4 ( + ) d = 4 3 . (17) 

 4 ( + ) d = 4  
. (18) 

Thus, in the limit of sufficiently small , the first two functions appearing on the right-hand 
side of Eq.(16) can be represented by -functions,† and the entire equation may be written as 

 ( + )( + ) = 4 (1 i2 ) ( ). (19) 

This is the sense in which we can now state that ( + ) ( ) = 4 ( ) in the limit 
when 0. Shifting the center of the function to an arbitrary point , we will have 

 ( + ) ( , ) = 4 ( ). (20) 

The gradient of the Green function ( , ), which plays an important role in our 
discussions of the following sections, is now found to be 

 ( , ) = | ||   | = (i | | ) | ||   |   |   | 
. (21) 

Appendix B provides an analysis of Eq.(20), an inhomogeneous Helmholtz equation, via 
Fourier transformation. 
                                                           
†

 When multiplied by , as required by Eq.(16), the integrand in Eq.(17) peaks at ~ ½ at = , then drops 
steadily to ~  at = . Similarly, the integrand in Eq.(18), again multiplied by , peaks at ~1 at = ½ , then 
drops steadily to ~  at = . 
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4. The Huygens-Fresnel-Kirchhoff theory of diffraction.1-3,9 Consider a scalar function ( ) 
that satisfies the homogeneous Helmholtz equation ( + ) ( ) = 0 everywhere within a 
volume  of free space enclosed by a surface . Two examples of the geometry under 
consideration are depicted in Fig.1.9 In general, ( ) can represent the scalar potential or any 
Cartesian component of the monochromatic -field, -field, or -field associated with an EM 
wave propagating in free space with frequency  and wave-number = . In Fig.1(a), the 
EM wave arrives at the surface  from sources located on the left-hand side of , and enters the 
volume  contained within the closed surface = + . In Fig.1(b), the EM waves emanate 
from inside the closed surface  and permeate the volume  enclosed by  on one side and by a 
second closed surface  that defines the outer boundary of . In both figures, the point , 
where the field is being observed, is located inside the volume , and the surface normals  
everywhere on the closed surface  are unit-vectors that point inward (i.e., into the volume ). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Two surfaces  and  bound the scattering region, which is assumed to be free of sources and 
material bodies. All the radiation within the scattering region comes from the outside. In (a) the 
sources of radiation are on the left-hand side of , while in (b) the radiation emanates from the 
sources inside the closed surface . The observation point  is an arbitrary point within the 
scattering region. All the points located on  are assumed to be far away from , so that the fields 
that reach  do not contribute to the fields observed at . At each and every point on  and , the 
surface normals  point into the scattering region. 

The essence of the theory developed by G. Kirchhoff in 1882 (building upon the original 
ideas of Huygens and Fresnel)1 is an exact mathematical relation between the observed field ( ) and the field ( ) that exists everywhere on the closed surface . This relation is derived 
below using the sifting property of Dirac’s -function, the relation between the -function and 
the Green function given in Eq.(20), some well-known identities in standard vector calculus, and 
Gauss’s famous theorem of vector calculus, according to which d = d . We have 

 ( ) = ( ) ( )d = (4 ) ( )( + ) ( , )d  

 = (4 ) [ ( ) ( , ) ( , ) ( )]d  

 = (4 ) [ ( ) ( ) + ]d  

 = (4 ) [ ( ) ( )]d  

 = (4 ) [ ( ) ( , ) ( , ) ( )]d . (22) 

( ) = +  

Replace  with . 

 

 

 × 
 

 
(a) 

 
0 

 
0× 

 

 

(b) 

Gauss’ theorem;  points into the volume . 

See Eq.(20) 
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Example. In the extreme situation where  is a small sphere of radius  centered at , we will 
have ( ) ( ), ( , ) = , and ( , ) = (i ) . Given that the  
surface area of the sphere is 4 , the second term in Eq.(22) makes a negligible contribution to 
the overall integral when 0. The first term, however, contains , which integrates to 4  in the limit of 0, yielding ( ) as the final result. 

Taking the spherical (or hemi-spherical) surface  in Fig.1 to be far away from the region 
of interest, the field ( ) everywhere on  should have the general form of ( , )  and, 
consequently, ( )~(i ) ( ). Similarly, across the surface , the Green function has 
the asymptotic form ( , )~  and, therefore, ( , )~(i ) ( , ). Thus, on 
the faraway surface , the integrand in Eq.(22) must decline faster than 1 , which means that 
the contribution of  to ( ) as given by Eq.(22) should be negligible. Kirchhoff’s diffraction 
integral now relates the field at the observation point  to the field distribution on , as follows: 

 ( ) = (4 ) [ ( ) ( , ) ( , ) ( )]d . (23) 

To make contact with the Huygens-Fresnel theory of diffraction, Kirchhoff suggested that 
both ( ) and ( ) vanish on the opaque areas of the screen , whereas in the open (or 
transparent, or unobstructed) regions, they retain the profiles they would have had in the absence 
of the screen. These suggestions, while reasonable from a practical standpoint and resulting in 
good agreement with experimental observations under many circumstances, are subject to 
criticism for their mathematical inconsistency, as will be elaborated in the next section.  

5. The Rayleigh-Sommerfeld theory. In the important special case where the surface  
coincides with the -plane at = 0, one can adjust the Green function in such a way as to 
eliminate either the first or the second term in the integrand of Eq.(23). These situations would 
then correspond, respectively, to the so-called Neumann and Dirichlet boundary conditions.1,9 
Let the observation point, which we assume to reside on the right-hand side of the planar surface 

, be denoted by = ( , , ), while its mirror image in  (located on the left-hand side of 
) is denoted by = ( , , ). If we use ( , ) in Eq.(23), we obtain ( ) on the left-

hand side of the equation, but if we use ( , ) instead, the integral will yield zero — simply 
because the peak of the corresponding -function now resides outside the integration volume. 
Thus, we can replace ( , ) in Eq.(23) with either of the two functions ( , ) ± ( , ). 
On the  plane, where = 0, we have ( , ) = ( , ) and ( , ) = ( , ). 
The resulting diffraction integrals, respectively satisfying the Neumann and Dirichlet boundary 
conditions, will then be 

 ( ) = ( | |)| | ( )d . (24) 

 ( ) = (   | | ) ( |   |)|   | [( ) ] ( )d . (25) 

Note that, while Eq.(23) applies to any arbitrary surface , the Rayleigh-Sommerfeld 
equations (24) and (25) are restricted to distributions that are specified on a flat plane. Given the 
scalar field profile ( ) and/or its gradient on a flat plane, all three equations are exact 
consequences of Maxwell’s equations. To apply these equations in practice, one must resort to 
some form of approximation to estimate the field distribution on . The conventional 
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approximation is that, in the opaque regions of the screen , either ( ) or ( ) or both are 
vanishingly small and, therefore, negligible, whereas in the transparent (or unobstructed) regions 
of , the field ( ) and/or its gradient ( ) (along the surface-normal) retain the profile they 
would have had in the absence of the screen. In this way, one can proceed to evaluate the integral 
on the open (or transparent, or unobstructed) apertures of  in order to arrive at a reasonable 
estimate of ( ) at the desired observation location. 

As a formula for computing diffraction patterns from one or more apertures in an otherwise 
opaque screen, the problem with Eq.(23) is that, when combined with Kirchhoff’s assumption 
that both  and  vanish on the opaque regions of the physical screen at , it becomes 
mathematically inconsistent. This is because an analytic function such as ( ) vanishes 
everywhere if both  and  happen to be zero on any patch of the surface . In contrast, 
Eq.(24), when applied to a physical screen, requires only the assumption that  be zero on the 
opaque regions of the screen. While still an approximation, this is a much more mathematically 
palatable condition than the Kirchhoff requirement.9 Similarly, Eq.(25) requires only the 
approximation that  be zero on the opaque regions. Thus, on the grounds of mathematical 
consistency, there is a preference for either Eq.(24) or Eq.(25) over Eq.(23). However, given the 
aforementioned approximate nature of the values chosen for  and  across the screen at , it 
turns out that scalar diffraction calculations based on these three formulas yield nearly identical 
results, rendering them equally useful in practical applications.1,9 

An auxiliary consequence of Eqs.(24) and (25) is that, upon subtracting one from the other, 
the integral of ( ) over the entire flat plane  is found to vanish; that is, 

 [ ( , ) ( )]d = 0. (26) 

We will have occasion to use this important identity in the following section. 

6. Vector diffraction. Applying the Kirchhoff formula in Eq.(22), where the integral is over the 
closed surface = + , and the function ( ) is any scalar field that satisfies the Helmholtz 
equation, to a Cartesian component of the -field, say, , we write 

 4 ( ) = [ ( ) ( , ) ( , ) ( )]d  

 = [( ) ( ) ]d = [2( ) ( )]d  

 = 2 ( ) d + ( )d . (27) 

Given that Eq.(27) is similarly satisfied by the remaining components ,  of the -field, 
the vectorial version of Kirchhoff’s formula may be written down straightforwardly. Algebraic 
manipulations (using standard vector calculus identities described in Appendix C) simplify the 
final result, yielding the following expression for the -field at the observation point:9  

 ( ) = (4 ) [( × ) × + ( ) + i ( × ) ]d . (28) 

Once again, it is easy to show that the contribution of the spherical (or hemi-spherical) 
surface  to the overall integral in Eq.(28) is negligible. This is because, in the far field, 0 and × , while | |~ , ~  and ~ (i ) . 
Consequently, 
 ( ) = (4 ) [( × ) × + ( ) + i ( × ) ]d . (29) 

A similar argument can be used to arrive at the vector Kirchhoff formula for the -field, namely, 

Gauss’ theorem;  points into the volume  

( ) = +   
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 ( ) = (4 ) [( × ) × + ( ) i( )( × ) ]d . (30) 

Needless to say, Eq.(30) could also be derived directly from Eq.(29), or vice versa, although 
the algebra becomes tedious at times; see Appendix D for one such derivation. 

We mention in passing that the arguments that led to Eqs.(29) and (30) could not be repeated 
for the vector potential ( ), since in arriving at Eq.(28), in the step where  or  are set 
to zero (see Appendix C), we now have = i .‡ 

In parallel with the arguments advanced previously in conjunction with the Rayleigh-
Sommerfeld formulation for scalar fields, one may also modify Eqs.(29) and (30) by setting ( , ) = 0 and = 2 ( , ) , provided that  is a planar surface. This is equivalent to 
applying Eq.(25) directly to the , ,  components of the -field (or the -field). It is not 
permissible, however, to retain  and remove  (again, in the case of a planar ), because the 
gradient of ( , ) + ( , ) has a nonzero projection onto the -plane. 

In those special (yet important) cases where  coincides with the -plane at = 0, one 
could begin by applying either Eq.(24) or Eq.(25) to the , ,  components of the field under 
consideration. Manipulating the resulting equation with the aid of vector-algebraic identities in 
conjunction with the fact that = , leads to vector diffraction formulas that could be 
useful under special circumstances. For instance, the vectorial equivalent of Eq.(25) yields 

 2 ( ) = ( ) ( )d = [( × ) × + ( ) ]d  

 = × ( × )d + { [ ( ) ]d }  

 = × [( × ) ]d + [ ( )d ]  

 = × [ × ( )] ( , )d + [ ( ) + ( ) + ( )]d d . (31) 

It is easy to see that the first two terms of the second integral on the right-hand side of 
Eq.(31) vanish since both  and  go to zero in the far out regions of the -plane. The 
vanishing of the third term, however, requires invoking Eq.(26) as applied to the -component of 
the -field. Note, as a matter of consistency, that on the left-hand side of Eq.(31), ( ) = 0 
and that, on the right-hand side, the divergence of the curl is always zero. 

A similar argument can be advanced for the -field and, therefore, the following vector 
diffraction equations are generally valid for a planar surface : 

 ( ) = (2 ) × [ × ( )] ( , )d . (32) 

 ( ) = (2 ) × [ × ( )] ( , )d . (33) 

                                                           
‡ In setting = 0, Maxwell’s first equation, = = + , has been invoked, with the caveat 
that the surface  is slightly detached from material bodies where electric charges of one kind or another may reside. 
No such caveat is needed, however, when setting = 0, which is simply Maxwell’s fourth equation. The 
situation is quite different with the vector potential , since setting = 0 implies working in the Coulomb 
gauge. While the standard relations = ×  and =  remain valid in all gauges, the equations that 
relate  and  to the charge and current densities are gauge dependent. In particular,  in the Coulomb gauge 
depends not only on the current-density , but also on the charge-density . While the charge-current 
continuity equation + = 0 can be used to arrive at a Helmholtz equation for ( , ) in the Coulomb gauge,  
the term appearing on the right-hand side of the equation will be the transverse current-density, which does not 
necessarily vanish in the free-space regions of the system under consideration. 

0 
( × ) × = ( ) ( )  

0 0 0 

( ) = +  × ( ) = × + ×  
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In similar fashion, the vectorial equivalent of Eq.(24) yields 

 2 ( ) = d = [ + ( + ) ]d  

 = [ ( ) + ( ) 

 ( ) ( ) + ( ) + ( ) ]d  

 = ( × ) × d ( ) + ( ) ( ) ( ) d d  

 = × ( × )d = × [ × ( )] ( , )d . (34) 

On the penultimate line of Eq.(34), the first two terms in the integral are seen to vanish when 
Eq.(26) is applied to the  and  components of the -field; the 3rd and 4th terms go to zero due 
to the vanishing of  and  in the far out regions of the -plane. Equation (34) thus yields 
the same expression for ( ) as the one reached via Eq.(31). 

Example 1. A plane-wave ( , ) = ( + + ) ( ) arriving from the 
region < 0 is reflected from a perfectly conducting plane mirror located in the -plane at = 0. The exact cancellation of the tangential components of the -field at the mirror surface 
means that the scattered -field in the -plane at = 0  is given by§ 

 ( , ) = ( + + ) ( ). (35) 

Beyond the mirror in the region > 0, the scattered -field is obtained from Eq.(32), as follows: 

 2 ( ) = × × ( ) ( ) [( ) ( ) ]½[( ) ( ) ]½ d d  

 = × ( ) ( ) ( ) ( )½( )½ d d . (36) 

The 2D Fourier transform appearing in Eq.(36) is readily found to be (see Appendix E): 

 ( )d d = i(2 ) . (37) 

This is a valid equation whether the incident beam is of the propagating type (i.e., 
homogeneous plane-wave, with real-valued ), or of the evanescent type (i.e., inhomogeneous, 
with imaginary ). Substitution into Eq.(36) now yields 

 ( ) = × i( ) ( )  

 = [ + (  +  ) ] ( ) 
 = ( + + ) ( ). (38) 

                                                           
§ Whereas on opposite facets of the mirror the scattered  (as well as the scattered ) are identical, the presence of 
surface charges requires that the sign of the scattered  flip between = 0  and = 0 . The scattered -field 
amplitude is thus ( , , ) at = 0  and ( , , ) at = 0 . Similarly, the existence of surface 
currents requires the scattered -field amplitude to be ( , , ) at = 0  and  ( , , ) at = 0 . 

= 0  = ( + ) 
0 0 0 0 
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As expected, in the half-space > 0, the scattered field precisely cancels out the incident 
field. This result is quite general and applies to any profile for the incident beam, not just plane-
waves, for the simple reason that any incident beam can be expressed as a superposition of 
plane-waves. It should also be clear that, in the absence of the perfectly conducting reflector in 
the -plane, the distribution of the tangential -field (or the tangential -field) throughout the 

-plane at = 0 can be used to reconstruct the entire distribution in the > 0 half-space via 
either Eq.(32) or Eq.(33). 

Example 2. Consider a screen in the -plane at = 0 consisting of obstructing segment(s) in 
the form of thin sheet(s) of perfect conductors and open regions otherwise. A monochromatic 
incident beam creates surface charges and surface currents on the metallic segment(s) of this 
planar screen. The scattered fields produced by the induced surface charges and currents can be 
described in terms of the scattered scalar and vector potentials ( , ) and ( , ). Given that 
the induced surface current has no component along the -axis, the vector potential will likewise 
have only  and  components. Application of Eq.(24) to ( ) and ( ) yields 

 ( ) = ( | |)| | + d . (39) 

Now, ( ) = × ( ) = + + ( ) . Consequently, 

 ( ) = ( | |)| | ( )d . (40) 

The symmetry of the scattered field ensures that  and  are zero in the open areas of 
the screen, so the integral in Eq.(40) need be evaluated only on the metallic surfaces of the 
screen. We will have 

 ( ) = × ( ) = (2 ) × [ × ( )] ( | |)| | d . (41) 

In situations where a thin, flat metallic object acts as a scatterer, Eq.(41) provides a simple 
way to compute the scattered field provided, of course, that an estimate of the magnetic field at 
the metal surface (or, equivalently, an estimate of the induced surface current-density) can be 
obtained. Needless to say, considering that, in the absence of the scatterer, the continued 
propagation of the incident beam into the > 0 half-space can be reconstructed from the 
tangential component of the incident -field in the = 0 plane (see Example 1), one may add 
the incident -field to the scattered field of Eq.(41) and obtain, unsurprisingly, the general vector 
diffraction formula of Eq.(33).  

Example 3. Figure 2 shows a perfectly conducting thin sheet residing in the upper half of the -
plane at = 0. The incident beam is a monochromatic plane-wave of frequency , wavelength = 2 , linear-polarization aligned with , and propagation direction along the unit-vector = (sin ) + (cos ) , as follows: 

 ( , ) = exp[i (sin + cos )]. (42) 

Using Eq.(32), we derive the diffracted -field at the observation point = + . 
(The symmetry of the problem ensures that the field profile is independent of the -coordinate of 
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the observation point.) In what follows, we use the 0th and 1st order Hankel functions of type 1, ( )( ) and ( )( ), as well as the (complex) Fresnel integral ( ) = exp(i ) d .26,27 For a 
graphical representation of the Fresnel integral via the so-called Cornu spiral,28 see Appendix F. 
The following identities will be needed further below:  

 ( ) d = i ( )( ). (43) 

 ( )( ) = ( )( ). (44) 

 ( )( )~ ( ¾ ),      ( 1). (45) 

 ( ) = exp(i ) d cos( ) d + i sin( ) d  

 = 4 2 [ ( ) + i ( )]. (46) 

The -field at the observation point  is found to be 

 ( ) (2 ) × ( × ) × [( ) ]½[( ) ]½ d d  

 = ½i ×  ( ) ( ) + d  

 = ½i  [( ) ]½ ( ) ( ) + d  

    [( ) ] exp(i sin ) exp i ( ) + d . (47) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2. A perfectly conducting thin sheet sits in the upper half of the -plane at = 0. The incident plane-
wave, which is linearly polarized along the -axis, has amplitude , frequency , wave-number = , 
and propagation direction = sin + cos . The observation point  is in the -plane. 

 

 

   

× 
= +  

 
 

G&R27 8.421-11 

G&R27 8.473-6 

G&R27 8.451-3 

G&R27 8.250-2,3 
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Here, we have used the large-argument approximate form of ( )( ) given by Eq.(45). 
Assuming that | |, we proceed by invoking the following approximation: 

 exp i ( ) + [( ) + ] [ ( ) ]. (48) 

Note that this approximation is not accurate when | | acquires large values; however, 
the rapid phase variations of the integrand in Eq.(47) ensure that the contributions to the integral 
at points  that are far from  are insignificant. Substitution from Eq.(48) into Eq.(47) yields 

 ( )   ( ) exp(i sin ) exp[i ( ) (2 )] d  

 =   ( ) exp[i ( sin ½ sin )] 
 × exp[i ( + sin ) (2 )] d  

 =  ( ½ ) exp(i ) d( )  

 = ( ) (   )( )   [ ( ½ )]. (49) 

At the edge of the geometric shadow, i.e., the straight line where = sin , we have (0) = ½ . On this line, the -field amplitude is ½ . Above the shadow’s edge, the 
field amplitude steadily declines, whereas below the edge, there occur a large number of 
oscillations before the field settles into what is essentially the incident plane-wave.1 Figure 3 
shows a typical plot of the far-field intensity (i.e., the square of the -field amplitude) versus the 
distance (along the -axis at a fixed value of ) from the edge of the geometric shadow. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3. Normalized intensity in the far field of a sharp edge as a function of distance along the 
-axis (at fixed ) from the edge of the geometric shadow, where = sin . 

Example 4. Shown in Fig.4 is a circular aperture of radius  within an otherwise opaque screen 
located in the -plane at = 0. A plane-wave ( , ) = exp[i( )], where the 
unit-vector  specifies the direction of incidence, arrives at the aperture from the left-hand 
side. Maxwell’s 3rd equation identifies the incident -field as = × . The observation 
point =  is sufficiently far from the aperture for the following approximation to apply: 

20           15          10           5                 0                  5                 10 

Distance from the edge of geometric shadow (arbitrary units) 

1.4 1.2 1.0 0.8 0.6 0.4 N
or

m
al

iz
ed

 in
te

ns
ity

 

0.2 0.25 

M. Mansuripur: A Tutorial on the Classical Theories of Electromagnetic Scattering and Diff raction     325



 ( , ) = ( | |)| | = exp i + 2 | | [ (    )]. (50) 

Let us assume that the screen is a thin sheet of a perfect conductor on whose surface the 
tangential -field necessarily vanishes. The appropriate diffraction equation will then be Eq.(32), 
with the tangential -field outside the aperture allowed to vanish (i.e., × = 0 on the opaque 
parts of the screen). Approximating the -field within the aperture with that of the incident 
plane-wave, we will have 

 [ × ( )] ( , )d ( × ) exp(i ) × [ (    )] d  

 = (  ) ( × ) exp[i ( ) ] d  

 = (  ) ( × ) exp(i cos ) d d . (51) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4. A circular aperture of radius  inside an otherwise opaque screen located at = 0 is illuminated by a 
plane-wave whose -field amplitude and propagation direction are specified as  and , respectively. 
The observation point =  is in the far field; that is, . The unit-vectors  and  have 
respective polar coordinates ( , ) and ( , ). The projection of the vector  onto the -
plane of the aperture is a vector of length  that makes an angle  with the position vector = + . 

Here,  is the magnitude of the projection of  onto the -plane of the aperture, 
while  is the angle between that projection and the position vector = + ; that is, 
 = (sin cos sin cos ) + (sin sin sin sin ) + (cos cos ) . (52) 

 = sin + sin 2 sin sin cos( ). (53) 

Consequently, 

 

 

 

=  

 

=  
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 [ × ( )] ( , )d (  ) ( × ) ( )d  

 = (  ) ( ) × . (54) 

The -field at the observation point =  (which is in the far field of the aperture, i.e., 
) is now found by computing the curl of the expression on the right-hand side of Eq.(54). 

Considering that ×  is independent of , we use the vector identity × ( ) = × , 
then ignore the small (far field) contributions to  due to the dependence of  on ( , ), to 
arrive at 

 ( ) = (2 ) × [ × ( )] ( , )d  

 ( ) ( ) [exp(i  ) ] × ( × ) 

 = ( ) ( )(i )[exp(i  ) ] × ( × ) 

 ( ) [( ) cos( ) ]. (55) 

The approximate nature of these calculations should be borne in mind when comparing the 
various estimates of an observed field obtained via different routes.9 For instance, had we started 
with Eq.(33) and proceeded by setting × = 0 on the opaque areas of the screen, we would 
have arrived at the following estimate of the observed -field: 

 ( ) ( ) {( )[ ( ) ] cos [ ( ) ]}. (56) 

The differences between Eqs.(55) and (56), which, in general, are not insignificant, can be 
traced to the assumptions regarding the nature of the opaque screen and the approximations 
involved in equating the  and  fields within the aperture to those of the incident plane-wave. 

7. Sommerfeld’s analysis of diffraction from a perfectly conducting half-plane. A rare 
example of an exact solution of Maxwell’s equations as applied to EM diffraction was published 
by A. Sommerfeld in 1896.25 The simplified version of Sommerfeld’s original analysis presented 
in this section closely parallels that of Ref. [1], Chapter 11. Consider an EM plane-wave 
propagating in free space and illuminating a thin, perfectly conducting screen that sits in the 
upper half of the -plane at = 0. The geometry of the system is shown in Fig.5, where the 
incident -vector is denoted by , the oscillation frequency of the monochromatic wave is , 
the speed of light in vacuum is , the wave-number is = , and the unit-vector along the 
direction of incidence is . The plane-wave is linearly polarized with its -field amplitude  
along the -axis and -field amplitude = /  in the -plane of incidence. ( =  is 
the impedance of free space.) The electric current density induced in the semi-infinite screen is 
denoted by ( , ). In the chosen geometry, all the fields (incident as well as scattered) are 
uniform along the -axis; consequently, it suffices to specify the position of an arbitrary point in 
the Cartesian  space by its  and  coordinates only; that is, 

 = + = (cos + sin ). (57) 

Here, = + , and the angle  is measured clockwise from the positive -axis. The 
range of  is (0, ) for points  on the right-hand side of the screen, and ( , 0) for the points 

( ) and ( ) are Bessel functions 
of the first kind, orders 0 and 1. 
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on the left-hand side. Figure 5 shows that  makes an angle (0, ) with the positive -
axis. The incident plane-wave is, thus, fully specified by the following equations:  

 = + = = (cos + sin ). (58) 

 ( , ) = exp[i( )] = exp[i ( )] 
 = ( ) . (59) 

 ( , ) = ( )(sin cos ) ( ) . (60) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5. A plane, monochromatic EM wave propagating along the unit-vector = cos + sin  
arrives at a thin, semi-infinite, perfectly electrically conducting screen located in the upper half of the -
plane. The plane-wave is linearly polarized, with its -field aligned with the -axis, while its -field has 
components along the  and  directions. The induced current sheet, denoted by ( , ), oscillates parallel 
to the incident -field along the direction of the -axis. (The system depicted here is essentially the same 
as that in Fig.2, with the exception of the angle of incidence  being the complement of  of Fig.2.) 

With the aid of the step-function step( ) and Dirac’s delta-function ( ), we now express 
the electric current density ( , ) excited on the thin-sheet conductor as a one-dimensional 
Fourier transform, namely, 

 ( , ) = step( ) ( ) ( ) = ( ) d ( ) . (61) 

In the above equation,  represents spatial frequency along the -axis, and ( ) is the 
(complex) amplitude of the induced surface-current-density along , having spatial and temporal 
frequencies  and , respectively. The first goal of our analysis is to find the function ( ) 
such that its Fourier transform vanishes along the negative -axis — as demanded by the step-
function in Eq.(61) — while its radiated -field cancels the incident plane-wave’s -field at the 
surface of the screen along the positive -axis. Now, a current sheet ( ) ( ) ( )  
that fills the entire -plane at = 0 radiates EM fields into the surrounding free space that can 
easily be shown to have the following structure:  

 ( , ) = ½( ) ( ) exp[i( + | | )]. (62) 

 ( , ) = ½ ( )[± ( ) ] exp[i( + | | )]. (63) 

 

 

 

 
( , ) 

 

=  
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Here, =  is the wave-number in free space, while = , and =  are 
the -vector components along the  and  axes. In general,  must be real and positive when | | , and imaginary and positive otherwise. The ± signs associated with  indicate that 
the plus sign must be used for the half-space on the right-hand side of the sheet, where > 0, 
while the minus sign is reserved for the left-hand side, where < 0. The discontinuity of  at = 0 thus equals the surface-current-density ( ) along the -direction, in compliance with 
Maxwell’s requisite boundary conditions. Needless to say, Eqs.(62) and (63) represent a single 
EM plane-wave on either side of the screen’s -plane, which satisfy the symmetry requirement 
of radiation from the current sheet, and with the tangential component  of the radiated -field 
chosen to satisfy the requisite boundary condition at the plane of the surface current. The plane-
waves emanating to the right and left of the -plane of the current sheet are homogeneous when 

 is real, and inhomogeneous (or evanescent) when  is imaginary. 
When working in the complex -plane, we must ensure that  has the correct sign for all 

values of the real parameter =  from  to . Considering that  is the square root 
of the product of (1 ) and (1 + ), we choose for both of these complex numbers the range 
of phase angles ( , ], as depicted in Fig.6(a). The corresponding branch-cuts thus appear as 
the semi-infinite line segments ( , 1) and (1, ), and the integration path along the real axis 
within the -plane, shown in Fig.6(b), will consist of semi-infinite line segments slightly above 
and slightly below the real axis, as well as a short segment of the real-axis connecting 1 to 1. 
This choice of the integration path ensures that = 1  acquires the correct sign for all 
values of . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.6. (a) In the complex -plane, where the phase of the complex numbers 1 ±  is measured counterclock-
wise from the positive  axis, the range of both angles is confined to the ( , ] interval. (b) The integration 
path along the  axis is adjusted by shifting the part from  to 1 slightly upward, and the part from 1 to  
slightly downward, so that = (1 )(1 + ) has the correct sign everywhere. The pole at =cos  is handled by locally deforming the contour into a semi-circular path below the real axis. 

For reasons that will become clear as we proceed, Sommerfeld suggested the following 
mathematical form for the surface current-density  as a function of : 

 ( ) = 1 ( cos ). (64) 

The domain of this function is the slightly deformed real axis of the -plane depicted in 
Fig.6(b). The proposed function has a simple pole at = cos , where  is the orientation 
angle of  shown in Fig.5, and a (complex) constant coefficient  that will be determined 

 1 1 

 

 1 +  1  
 1 1 

 

cos  
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shortly. In addition, ( ) contains the term 1 , whose branch-cut in the system of 
Fig.6(a) is the semi-infinite line-segment (1, ) along the real axis of the -plane. It is now 
possible to demonstrate that the proposed ( ) satisfies its first required property, namely, 

 ( ) d =   d = 0,              ( < 0). (65) 

For < 0, the integration contour of Fig.6(b) can be closed with a large semi-circular path 
in the lower half of the -plane. The only part of the integrand in Eq.(65) that requires a branch-
cut is 1 , whose branch-cut is the line segment (1, ). The integration contour of Fig.6(b), 
when closed in the lower-half of the -plane, does not contain this branch-cut. Moreover, the 
pole at = cos  is outside the closed loop of integration, and the contributions to the integral 
by the singular points = ±1 are zero. Consequently, the current-density ( , ) in the lower 
half of the -plane turns out to be zero, exactly as required. 

The radiated -field, a superposition of contributions from the various ( ) in accordance 
with Eqs.(62) and (64), must cancel out the incident -field at the surface of the screen; that is, 

 ( , , = 0) = ( ) d = ½ [ ( ) ] d  

 = ½  (   ) d = ,       ( > 0). (66) 

For > 0, the contour of integration in Eq.(66) can be closed with a large semi-circle in the 
upper-half of the -plane. The branch-cut for 1 +  in the denominator of the integrand is the 
line-segment ( , 1), which is below the integration path and, therefore, irrelevant for a 
contour that closes in the upper-half-plane. For the singularities at = ±1, the residues are 
zero, whereas for the pole at = cos , the residue is 1 + cos . The requisite 
boundary condition at the screen’s surface is thus seen to be satisfied if  is specified as 

 = i( ) 1 + cos . (67) 

Having found the functional form of ( ), we now turn to the problem of computing the 
scattered -field ( ) at the arbitrary observation point = + = (cos + sin ) in 
accordance with Eqs.(62), (64), and (67); that is, 

 ( ) = i( 2 )    (   ) exp[i ( + | |)] d . (68) 

The integral in Eq.(68) must be evaluated at positive as well as negative values of , and 
also for values of  on both sides of the screen. The presence of  in the exponent of the 
integrand requires that the branch-cuts on both line-segments ( , 1) and (1, ) be taken into 
account. For these reasons, the integration path of Fig.6(b) ceases to be convenient and we need 
to change the variable  to something that avoids the need for branch-cuts. We now switch the 
variable from  to , where = cos , with the integration path in the complex -plane 
shown in Fig.7(a). Considering that 

 cos = cos( + i ) = cos cosh i sin sinh , (69) 

the depicted integration path represents the continuous variation of  from  to . Similarly, 
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 = 1 cos = sin = sin cosh + i cos sinh  (70) 

is positive real on the horizontal branch, and positive imaginary on both vertical branches of the 
depicted contour. It is also easy to verify that 1 = 2 sin( 2) has identical values at 
corresponding points on the contours of Figs.(6b) and (7a), as does 1 + = 2 cos( 2). 
Recalling that d = sin d = 1 cos d , we can rewrite Eq.(68) as 

 ( ) = i( 2 )         exp[i cos( )] d . (71) 

The above equation yields the scattered -field on both sides of the screen, with the minus 
sign in the exponent corresponding to > 0, and the plus sign to < 0. In what follows, noting 
the natural symmetry of the scattered field on the opposite sides of the -plane, we confine our 
attention to Eq.(71) with only the minus sign in the exponent; the scattered -field on the left 
hand side of the screen is subsequently obtained by a simple change of the sign of . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7. (a) Contour of integration in the complex -plane corresponding to the integration path in the -plane 
shown in Fig.6(b). By definition, = cos , which results in = = sin , a well-defined function 
everywhere in the -plane that does not need branch-cuts. The small bump in the integration path around =  corresponds to the small semi-circular part of the contour in Fig.6(b). The negative values of  on 
the semi-circle translate, in accordance with Eq.(69), into positive value of  on the corresponding bump. 
(b) Along the steepest-descent contour ( ) that passes through the saddle-point = , Re[cos( )] is 
constant. At the saddle-point, ( ) makes a 45° angle with the horizontal and vertical lines, which represent 
contours along which Im[cos( )] is constant. ( ) also has the property that Im[cos( )], which is 
zero at the saddle-point, rises toward  (continuously and symmetrically on both sides of the saddle) as  
moves away from the saddle-point along the contour. 

The integration path of Fig.7(a) is now replaced with the steepest-descent contour ( ) 
depicted in Fig.7(b). Passing through the saddle-point of exp[i cos( )] at = , this 
contour has the property that Re[cos( )] everywhere on the contour equals 1. In contrast, Im[cos( )] starts at zero at the saddle, then rises toward infinity (continuously and 
symmetrically on opposite sides of the saddle) as  moves away from the saddle-point at = . 
It is easy to show that the original integration path of Fig.7(a) can be joined to ( ) to form a 

  0 

 

 
  0 

 

  

+ ½  

½  
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closed loop with negligible contributions to the overall loop integral by the segments that 
connect the two contours at infinity.** 

The only time when the single pole of the integrand at =  needs to be accounted for is 
when < , at which point the pole is inside the closed contour, as Fig.7(b) clearly indicates. In 
the vicinity of the pole, the denominator of the integrand in Eq.(71) can be approximated by the 
first two terms of the Taylor series expansion of cos , as follows: 

 cos cos = [cos sin ( ) + ] cos sin ( ). (72) 

The residue at the pole is thus seen to be exp[i cos( )], with a corresponding 
contribution of exp[i cos( )] to the scattered -field. It must be emphasized that 
the scattered field contributed by the pole at =  is relevant only when < , in which case 
it cancels the contribution of the incident plane-wave of Eq.(59) to the overall EM field on the 
right-hand side of the screen, where the screen casts its geometric shadow. Outside this 
geometric shadow, where < , the incident beam spills into the 0 region — without 
the counter-balancing effect of the scattered field produced by the pole at = . 

Returning to the scattered -field produced by the integral in Eq.(71) over the steepest-
descent contour ( ), the first term in the integrand can be further streamlined, as follows: 

       = ( ) ( )[½( )] [½( )] = ½[½( )] ½[½( )] 
. (73) 

The scattered -field on the right-hand side of the screen may thus be written as 

  ( ) = i( 4 ) [½( )]  [½( )]( ) [ ( ) ]d  . (74) 

Note that we have factored out the imaginary part of the exponent and taken it outside the 
integral as ; what remains of the exponent, namely, i [cos( ) 1], is purely real on ( ). We proceed to compute the integral in Eq.(74) only for the first term of the integrand and 
refer to it as , ; the contribution of the second term, , , will then be found by switching the 
sign of . 

A change of the variable from  to  would cause the steepest-descent contour to go 
through the origin of the -plane; this shifted contour will now be denoted by . Taking 
advantage of the symmetry of  with respect to the origin, we express the final result of 
integration in terms of the integral on the upper half of , which is denoted by . We will have  

  , ( ) = i( 4 ) [½( )]  [½( )] ( )  

 = i( ) [( ) ] ( ) ( )  ( ) ( )  

 = i( 2 ) sin[( + ) 2]  ( ) [ ( )] ( )  [( ) ] . (75) 

                                                           
** On the short line-segments that connect the two contours at = ± , the magnitude of the exponential factor in 
the integrand in Eq.(71) is exp[ sin( ) sinh( ) ]. In the upper half-plane, 1  sin( ) 0 and sinh( ) , whereas in the lower half-plane, 0  sin( ) 1 and sinh( ) . Thus, in both cases, 
the integrand vanishes. 
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Another change of variable, this time from  to the real-valued = exp(i 4) sin( 2), 
where  ranges from 0 to  along the steepest-descent contour , now yields†† 

 , ( ) = ( ) sin[( + ) 2] ( )  [( ) ] d . (76) 

The integral appearing in the above equation is evaluated in Appendix G, where it is shown that  

 ( )  d = | | (| | ). (77) 

Here, ( ) = exp(i ) d  is the complex Fresnel integral defined in Eq.(46). We thus find 

 , ( ) = [( ) ] 2 sin[( + ) 2] . (78) 

The expression for , ( ) is derived from Eq.(78) by switching the sign of . One has to 
be careful in this case, since sin[( ) 2] may be negative. Given that both  and  are in 
the (0, ) interval, the sign of sin[( ) 2] will be positive if > , and negative if < . 
The scattered -field of Eq.(74) is thus given by 

 ( ) = , + , = ( ) 2 sin[( + ) 2]  

 ± ( ) ± 2 sin[( ) 2] . (79) 

To this result we must add the contribution of the pole, namely, exp[i cos( )] 
when < , and the incident beam exp[i cos( )] for the entire range 0 . 
Recalling that 

 ( ) + ( ) = exp(i ) d = , (80) 

the total -field on the right-hand side of the -plane, where 0 , becomes 

 ( ) = ( ) 2 sin[( ) 2]  

 ( ) 2 sin[( + ) 2] . (81) 

On the left-hand side of the screen, where < 0 and, therefore, 0, the scattered 
-field is obtained by replacing  with | | in Eq.(79) as well as in the contribution by the pole at = . (Appendix H shows that the scattered -field in the < 0 region can also be evaluated 

by direct integration over a modified contour in the complex -plane.) Once again, adding the 
incident -field and invoking Eq.(80), we find 

 ( ) = ( ) 2 sin[( ) 2]  

 ( ) 2 sin[( + ) 2] . (82) 

One obtains Eq.(82) by replacing  in Eq.(81) with 2 + , the latter  being in the ( , 0) 
interval. Thus, Eq.(81) with 0 2  covers the entire range of observation points . A clear 
                                                           
†† Upon setting = i sin ( 2), we find two possible choices for the new variable, namely, = ± sin( 2). 
Of these, the one with the minus sign represents the upper-half  of the steepest-descent trajectory. To see this, 
note that as  approaches its extremity when ½ + i , we have sin( 2) ( 1 + i) exp( 2) 2 2, 
which must be multiplied by  for  to approach + . 
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understanding of Eq.(81) requires familiarity with the general behavior of the Fresnel integral ( ); Appendix F contains a detailed explanation in terms of the Cornu spiral representation of ( ).‡‡ The general expression for the total (i.e., incident plus scattered) -field given in Eq.(81) 
is somewhat simplified in terms of the new function ( ) = ( ), as follows: 

 ( ) = 2 sin[( ) 2] 2 sin[( + ) 2] ;    (0 2 ). (83) 

It is worth mentioning that, the contribution to the scattered -field by the pole at = , 
namely, , ( ) = exp[i cos( )], which exists only in the intervals 0 <  
and 2 < 2 , cancels the incident -field in the shadow region behind the screen, 
while acting as the reflected field in front of the perfectly conducting half-mirror.  

7.1. The magnetic field. The total -field is computed from the -field of Eq.(83) with the aid 
of Maxwell’s equation i ( ) = × ( ) = ( ) + ( ) . The identity ( ) = 1 2i ( ) will be used in this calculation. To simplify the notation, we introduce 
the new variables = 2 sin[( ) 2] and = 2 sin[( + ) 2]. We find 

 ( ) =   ( ) sin( ) ( ) sin( + ) + ( ) ( ) . (84) 

 ( ) =   ( ) cos( ) ( ) cos( + ) ( ) ( ) . (85) 

The Cartesian components = cos sin  and = sin + cos  of the 
magnetic field may now be obtained from the polar components  and , as follows: 

 ( ) =   [ ( ) + ( )] sin ( ) ( ) . (86) 

 ( ) = +   [ ( ) ( )] cos + ( ) ( ) . (87) 

It is readily verified that = 0 at the surface of the conductor, where = 0, and that  
equals the  component of the incident -field in the open half of the -plane, where = . 

8. Far field scattering and the optical theorem. In the system of Fig.1(b), let the object inside 
the closed surface  be illuminated from the outside, and let the observation point =  be 
far away from the object, so that the approximate form of ( , ) given in Eq.(50) along with 
its corresponding gradient i ( , ) would be applicable. Denoting by ( ) and ( ) the scattered fields appearing on , Eq.(28) yields the -field at the observation point as 

 ( ) (  ) [ ( × ) ( × ) × ( ) ]e  d . (88) 

Considering that the local field in the vicinity of  has the character of a plane-wave, the 
last term in the above integrand, which represents a contribution to ( ) that is aligned with 
the local -vector, is expected to be cancelled out by an equal but opposite contribution from the 
first term.9 We thus arrive at the following simplified version of Eq.(88): 
                                                           
‡‡ Our Eq.(81) agrees with the corresponding result in Born & Wolf’s Principles of Optics,1 provided that the angles 

 and  in their Eq.(22) of Chapter 11, Section 5, are recognized as 2  and  in our notation. 
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 ( ) (  ) × [ × ( × ) × ]e  d . (89) 

With reference to Fig.8, suppose now that the object is illuminated (and thus excited) by a 
plane-wave arriving along the unit-vector , whose  and  fields are 

 ( , ) = exp[i ( )]. (90) 

 ( , ) = × exp[i ( )]. (91) 

The time-averaged total Poynting vector on the surface  is readily evaluated, as follows: 

 ( ) = ½Re (   + ) × (   + )  

 = ½ Re × + × +   × + ×    

 = ½ ( ) + ½ Re( × ) 

 +½ Re [ × + × ( × )]   . (92)  

If we dot-multiply both sides of Eq.(92) by , then integrate over the closed surface , we 
obtain, on the left-hand side, the total rate of the inward flow of EM energy, which is the 
absorbed EM power by the object. On the right-hand side, the first term integrates to zero, 
because ( )  is a constant and d = 0. The integral of the second term will be the 
negative time-rate of the energy departure from the object via scattering, which can be moved to 
the left-hand side of the equation. The combination of the two terms on the left-hand side now 
yields the total EM power that is taken away from the incident beam — either by absorption or 
due to scattering. We will have 

 Absorbed + Scattered Power = ½ Re [ × + × ( × )]   d  

 = ½ Re [ ( × ) ( × ) ( × )]   d  

 = ½ Re [ ( × ) ( × ) × ]   d . (93) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.8. A monochromatic plane-wave propagating along the unit-vector  is scattered from a 
small object in the vicinity of the origin of the coordinate system. The scattered electric and 
magnetic fields on the closed surface  surrounding the object are denoted by ( ) and ( ). 
The surface normals  at every point on  are outward directed. The scattered light reaching the 
far away observation point =  has the -vector  and the EM fields ( ) and ( ). 
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Comparison with Eq.(88) reveals that the integral in Eq.(93) is proportional to the scattered 
-field in the direction of =  as observed in the far field. (Recall that the term ( )  

in the integrand of Eq.(88) has been deemed inconsequential.) If Eq.(93) is normalized by the 
incident EM power per unit area, namely, = ½ Re( ), the left-hand side will 
become the scattering cross-section of the object, while the right-hand side, aside from the 
coefficient i (4 ), will be the projection of the forward-scattered -field (i.e., = ) on the incident -field. This important result in the theory of scattering has come to 
be known as the optical theorem (or the optical cross-section theorem).1,9,24 

9. Scattering from weak inhomogeneities.9 Figure 9 shows a monochromatic plane-wave of 
frequency  passing through a transparent, linear, isotropic medium that has a region of weak 
inhomogeneities in the vicinity of the origin of coordinates. The host medium is described by its 
relative permittivity ( , ) and permeability ( , ), which consist of a spatially homogeneous 
background plus slight variations (localized in the vicinity of = 0) on this background; that is,  

 ( , ) = ( ) + ( , ). (94) 

 ( , ) = ( ) + ( , ). (95) 

The displacement field is thus written as ( , ) = ( , ) ( , ) and the magnetic 
induction is given by ( , ) = ( , ) ( , ). In the absence of free charges and currents, 
i.e., when ( , ) = 0 and ( , ) = 0, Maxwell’s macroscopic equations will be4-11 

 = 0; × = i ; × = i ; = 0. (96) 

Noting that the  and  fields depart only slightly from the respective values  and 
 that they would have had in the absence of the  and  perturbations, we write 

 × × ( ) = ( ) i ×  

 = i [ × ( ) + × ] 
 = i × ( ) ( ) . (97) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.9. A monochromatic plane-wave of frequency  and -field amplitude  propagates along 
the unit-vector  within a mildly inhomogeneous host medium of refractive index ( ) =( )½. The inhomogeneous region of the host, a small patch in the vicinity of the origin of 
coordinates, is specified by its relative permittivity ( ) + ( , ) and relative permeability ( ) + ( , ). The scattered field is observed at the faraway point = . 
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Recalling that the refractive index of the homogeneous (background) material is defined as = ( )½, and that the free-space wave-number is = , Eq.(97) may be rewritten as 

 + ( ) = i( ) × ( ) × × ( ). (98) 

This Helmholtz equation has a homogeneous solution, which we denote by ( , ), and an 
inhomogeneous solution, which arises from the local deviations  and  of the host medium. 
Recalling that the Green function ( , ) = exp(i | |) | | is a solution of the 
Helmholtz equation + ( ) = 4 ( ), an integral relation for the scattered 
field solution ( , ) of Eq.(98) in terms of the total fields ( , ) and ( , ) will be 

 ( , ) = (4 ) [i( ) × ( ) + × × ( )] ( , )d . (99) 

Using a far-field approximation to ( , ) similar to that in Eq.(50), we will have 

 ( , ) ( ) [i( ) × ( ) + × × ( )]  d . (100) 

The vector identity ( × )   = i ×   + × (   ) can be used to replace 
the first term in the integrand of Eq.(100) with ( )  × . The volume 
integral of × (   ) becomes the surface integral of   × d , which subsequently 
vanishes because, for away from the inhomogeneous region, 0. Similarly, the second term 
of the integrand is replaced by i × [ × ( )]  . Another application of the 
vector identity then replaces the remaining term with × ( × )  . We 
thus arrive at 

 ( , ) ( ) ( ) [( ) + × ] ×  d . (101) 

In the first Born approximation, the ( ) and ( ) fields in the integrand of Eq.(101) are 
replaced with the solutions ( ) and ( ) of the homogeneous Helmholtz equation. When the 
homogeneous background wave is a plane-wave, we will have 

 ( ) = exp(i ). (102) 

 ( ) = × exp(i ). (103) 

A final substitution from Eqs.(102) and (103) into Eq.(101) yields 

 ( , ) ( ) [( + ) × ] × (   )  d . 
 (104) 

Thus, in the first Born approximation, the scattered field ( , ) = ( , ) is 
directly related to the host medium perturbations ( , ) and ( , ) via the volume integral 
in Eq.(104). Here,  embodies not only the strength but also the polarization state of the 
incident plane-wave, the unit-vector  is the direction of incidence, = /  is a unit-vector 
pointing from the origin of coordinates to the observation point , and = ( ) is 
the difference between the incident and scattered -vectors. 

d  stands for d d d  
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10. Neutron scattering from magnetic electrons in Born’s first approximation. The 
scattering of slow neutrons from ferromagnetic materials can be treated in ways that are similar 
to our analysis of EM scattering from mild inhomogeneities discussed in the preceding section. 
The wave function ( , ) of a particle of mass  in the scalar potential field ( , ) satisfies 
the following Schrödinger equation:6-8, 20 

 i ( , ) = ( 2 ) ( , ) + ( , ) ( , ). (105) 

When the potential is time-independent and the particle is in an eigenstate of energy , we 
will have the time-independent Schrödinger equation, namely, 

 [( 2 ) + ] ( ) = ( ) ( ). (106) 

The Green function for Eq.(106) is ( , ) = |  – | | |, where = (2 )½. If, 
in the absence of the potential ( ), the solution of the homogeneous equation is found to be ( ), then, when the potential is introduced, we will have 

 ( ) = ( ) ( 2 ) ( , ) ( ) ( )d . (107) 

Note that Eq.(107) is not an actual solution of Eq.(106); rather, considering that the desired 
wave-function ( ) appears in the integrand on the right hand-side, Eq.(107) is an integral form 
of the differential equation (106). In the case of Born’s first approximation, one assumes that ( ) is a fairly weak potential, in which case ( ) can be substituted for ( ), yielding 

 ( ) ( ) ( 2 ) ( , ) ( ) ( )d . (108) 

In a typical scattering problem, an incoming particle of mass  and well-defined 
momentum =  has the initial wave-function ( ) =   . Upon interacting with a weak 
scattering potential ( ), the wave-function will change in accordance with Eq.(108). Let ( ) 
have significant values only in the vicinity of the origin, = 0, and assume that the scattering 
process is elastic, so that the momentum  of the particle after scattering will have the same 
magnitude  as before, but the direction of propagation changes from that of  to that of . At 
an observation point  far from the origin, that is, | | | |, the scattered particle’s momentum 
is expected to be = = , and the Green function may be approximated as 

 ( |  – |)|  – | [ (   )  (   )] [ (    )] = ( )   . (109) 

Substitution into Eq.(108) now yields 

 ( )   ( ) (  – )  d . (110) 

Denoting the change in the direction of the particle’s momentum by = , and noting 
that  is simply a spherical wave emanating from the origin, the scattering amplitude ( ) 
is readily seen to be 

 ( ) ( )    d . (111) 

Here, ( ) has the dimensions of length (meter in ). Note that the presence of  in 
Eq.(110) makes the wave-function ( ) dimensionless. Let d = sin d d  be the differential 

d  stands for d d d  
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element of the solid angle viewed from the origin of the coordinates. The differential scattering 
cross-section will then be d d = | ( )| , with the total cross-section being = | ( )| d .  

Example 1. A particle of mass  is scattered by the spherically symmetric potential ( ) 
corresponding to a fixed particle located at = 0. The scattering amplitude, computed from 
Eq.(111), will be 

 ( ) = ( ) exp(i cos ) (2 sin )d d = ( ) sin( ) d .(112) 

Considering that = , and that  and  have the same magnitude , we denote by  
the angle between  and , and proceed to write = 2 sin( 2). The scattering amplitude thus 
has circular symmetry around the direction of the incident momentum . The ambiguity of 
Eq.(112) with regard to forward scattering at = 0 is resolved if the forward amplitude (0) is 
directly computed from Eq.(110) — with the destructive interference between the incident and 
scattered amplitudes properly taken into account. 

For the Yukawa potential ( ) = , with > 0 being the range parameter, the 
scattering amplitude is obtained upon integrating Eq.(112), as follows: 

 ( ) = sin( ) d =   ( ) . (113) 

In the limit when 0, the Yukawa potential approaches the Coulomb potential ( ) =
. When a particle having electric charge ±  and energy = 2  is scattered from 

another particle of charge ± , the scattering cross-section will be 

 = | ( )| = ( ). (114) 

This is the famous Rutherford scattering cross-section.9 

Example 2. In low-energy scattering, 0 and the scattering amplitude in all directions 
becomes ( , ) ( 2 ) ( )d . In the case of low-energy, soft-sphere scattering, 
where ( ) =  when  and zero otherwise, we find 

 ( , ) = ( 2 )(4 3) . (115a) 

 d d = | ( , )| = (2 ) . (115b) 

 = 4 (d d ) = 16 . (115c) 

Let us now consider the case of a polarized neutron entering a ferromagnetic medium and 
getting scattered from the host’s magnetic electrons.29 To obtain an estimate of the corresponding 
scattering potential ( ), we begin by noting that the magnetic field surrounding a point-dipole ( )  in free space is 

 ( ) = (2 cos + sin ) (4 ). (116) 

A second magnetic point-dipole , located at 0, will have the energy = ( ), 
which may be written as follows: 

 = [3 cos (cos sin )] (4 ) 

 = ( 3 cos ) (4 ) = [ 3( )( )] (4 ). (117) 

The magnetic dipole moment  should not be confused with the particle’s mass . 
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These results are consistent with the Einstein-Laub formula = ( )  for the force as 
well as = ×  for the torque experienced by a point-dipole in a magnetic field.30,31 Recall 
that, in contrast to the standard formula for the dipole moment, our definition of  as +  
maintains that the magnitude of  equals  times the electrical current times the area of a small 
current loop. Consequently, the aforementioned expression for  coincides with the well-known 
expression = ( ) of the energy of the dipole  in the external field ( ) = ( ).6,9 

Equation (117) must be augmented by the contact term 2 ( ) 3  to account for 
the energy of the dipole pair when  and  overlap in space.29 We will have 

 ( ) =    (   )(  )   ( ). (118) 

Suppose the electron has wave-function ( ) and magnetic dipole moment , while the 
incoming neutron has wave-function exp(i ), magnetic dipole moment , and mass . 
We assume the scattering process does not involve a spin flip, so that both  and  retain their 
orientations after the collision. Moreover, we assume the electron — being bound to its host 
lattice — does not get dislocated or otherwise distorted, so that ( ) is the same before and 
after the collision. Thus, the potential energy distribution across the landscape of the incoming 
neutron is the integral over  of the product of the electron’s probability-density function | ( )|  and the dipole-dipole interaction energy ( ) between the neutron and the 
electron. Consequently, in the first Born approximation, the scattering amplitude from an initial 
neutron momentum =  to a final momentum = , is given by 

 ( , ) = | ( )| ( ) exp[i( ) ] d d . (119) 

Defining the electronic magnetization (i.e., magnetic moment density of the electron) by ( ) = | ( )|  and its Fourier transform by ( ) = ( ) exp(i ) d , upon 
substitution from Eq.(118) into Eq.(119) and setting = – , we find 

 ( , ) = (   ) – ( ) ( ) exp[i( ) ] d d . (120) 

Defining =  and changing the variables from ( , ) to ( , = ) — whose 
transformation Jacobian is 1.0 — substantially simplifies the above integral, yielding 

 ( ) = (   ) – ( ) ( ) exp(i ) d . (121) 

Appendix I shows that the exact evaluation of the integral in Eq.(121) leads to 

 ( ) = ( ) [ ( ) ] . (122) 

This is the same result as given in Ref. [29], Eq.(23), in the case of = 1. The coefficient 4  appears here because we have worked in the  system of units with = + . 

11. Concluding remarks. In this paper, we described some of the fundamental theories of EM 
scattering and diffraction using the electrodynamics of Maxwell and Lorentz in conjunction with 
standard mathematical methods of the vector calculus, complex analysis, differential equations, 
and Fourier transform theory. The scalar Huygens-Fresnel-Kirchhoff and Rayleigh-Sommerfeld 
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theories were presented at first, followed by their extensions that cover the case of vector 
diffraction of EM waves. Examples were provided to showcase the application of these vector 
diffraction and scattering formulas to certain problems of practical interest. We did not discuss 
the alternate method of diffraction calculations by means of Fourier transformation, which 
involves an expansion of the initial field profile in the -plane at = 0 into its plane-wave 
constituents. In fact, with the aid of the two-dimensional Fourier transform of ( , 0) given in 
Eq.(37), it is rather easy to establish the equivalence of the Fourier expansion method with the 
Rayleigh-Sommerfeld formula in Eq.(25), and also with the related vector formulas in Eqs.(32) 
and (33). Appendix J outlines the mathematical steps needed to establish these equivalencies. 

The Sommerfeld solution to the problem of diffraction from a thin, perfectly conducting 
half-plane described in Sec.7 is one of the few problems in the EM theory of diffraction for 
which an exact analytical solution has been found; for a discussion of related problems of this 
type, see Ref.[1], Chapter 11. Scattering of plane-waves from spherical particles of known 
relative permittivity ( ) and permeability ( ), the so-called Mie scattering, is another 
problem for which an exact solution (albeit in the form of an infinite series) exists; for a 
discussion of this and related problems the reader is referred to the vast literature of Mie 
scattering.1,4,9-11,22 

In our analysis of neutron scattering from ferromagnets in Sec.10, we used the contact term 2 ( ) 3  to account for the interaction energy of the dipole pair ,  when they 
happen to overlap at the same location in space. This is tantamount to assuming that the dipolar 
magnetic moments are produced by circulating electrical currents. The contact term would have 
been ( ) 3  had each magnetic moment been produced by a pair of equal and opposite 
magnetic monopoles residing within the corresponding particle. Since the Amperian current loop 
model has been found to agree most closely with experimental findings, we used the former 
expression for the contact term in Eq.(118); see Ref. [9], Sec.5.7, and Ref. [29] for a pedagogical 
discussion of the experimental evidence — from neutron scattering as well as the existence of the 
famous 21 cm astrophysical spectral line of atomic hydrogen — in favor of the Amperian current 
loop model of the intrinsic magnetic dipole moments of subatomic particles. 

Although we did not discuss the Babinet principle of complementary screens that is well 
known in classical optics, it is worth mentioning here that a rigorous version of this principle has 
been proven in Maxwellian electrodynamics.1,9 The original version of Babinet’s principle is 
based on the Kirchhoff diffraction integral of Eq.(23), and the notion that, if  consists of 
apertures in an opaque screen, then the complement of  would be opaque where  is 
transmissive, and transmissive where  is opaque. Considering that, in Kirchhoff’s 
approximation, ( ) and ( ) in Eq.(23) retain the values of the incident beam in the open 
aperture(s) but vanish in the opaque regions, it is a reasonable conjecture that the observed field 
in the presence of  and that in the presence of ’s complement would add up to the observed 
field when all screens are removed — i.e., when the unobstructed beam reaches the observation 
point. Similar arguments can be based on either of the Rayleigh-Sommerfeld diffraction integrals 
in Eqs.(24) and (25), provided, of course, that the Kirchhoff approximation remains applicable. 
Appendix K describes the rigorous version of the Babinet principle and provides a simple proof 
that relies on symmetry arguments similar to those used in Example 2 of Sec.6. 

Finally, to keep the size and scope of this tutorial within reasonable boundaries, we did not 
broach the important problem of EM scattering from small dielectric spheres, nor that of EM 
scattering from small perfectly conducting spheres. The interested reader can find a detailed 
discussion of these problems in Appendices L and M, respectively. 
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