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Abstract: A brief, tutorial account is given of the differ-
ences between the near and far regions of the electromag-
netic field emphasizing the source-dependent behavior of
the former and the universal properties of the latter. Field
patterns of near-field plates, that is, metasurfaces used for
sub-wavelength applications, are discussed in some detail.
Examples are given of fields that decay away from the
plates in an exponential manner, a ubiquitous feature of
many interface problems, and metasurfaces for which the
decay is not exponential, but algebraic. It is also shown that
a properly designed system of two parallel near-field plates
can produce fields that exhibit pseudo minima, which are
potentially useful for near-field tweezer-like applications.

Keywords: electromagnetic near field; metasurfaces;
near-field plates; subwavelength focusing; wireless power
transfer.

1 Introduction

Metasurfaces are artificial two-dimensional structures
used to generate a desired electromagnetic (EM) field
pattern or modify an incoming wave to obtain a pre-
determined result [1]. Most of the EM applications of met-
asurfaces, from microwave receivers and transmitters [2] to
reconfigurable devices [3] and flat optical lenses [4],
pertain to the radiation (or far) zone. Metasurfaces whose
primary function involves the near field are known as near-
field plates (NFPs) [5, 6]. Since the near zone encodes
detailed information about the sources, ignoring re-
strictions imposed by the standard diffraction limit [7] and,
moreover, because it allows one to separate the electric
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from the magnetic field, the interest in NFPs centers pri-
marily on subwavelength focusing [8] and wireless power
transfer [9].

In this work, we present an abridged review of the near
field properties of metasurfaces, emphasizing the forms of
decay of the EM field (although the elastic field is not
considered here, many of the results apply also to acoustic
metasurfaces [10]). Other than the ever present exponential
decay, commonly associated with interface phenomena [11],
we show cases where the decay of the near field is algebraic
in nature. We also introduce an arrangement of a pair of
metasurfaces and describe its potential use as EM tweezers.

2 The near field and evanescent
waves

2.1 Localized charges and currents

Textbooks tell us that the EM field of a confined distribution
of moving charges behaves very differently in regions that
are close to and far from the charges, with the length scale
determined by the wavelength of the radiation, A [12, 13].
Differentiation between the near and far behaviors appears
already in the expressions for the fields resulting from the
motion of a point charge. The corresponding Liénard—-Wie-
chert potentials involve the sum of two terms: (i) the near-
field contribution, which is associated with the static fields
and does not contain the acceleration of the sources, and (ii)
the radiation or far-field term, which vanishes as the accel-
eration goes to zero. The separation is also apparent in the
expressions for the EM field of a sinusoidally, time-varying
electric (magnetic) dipole where the electric (magnetic) field
dominates in the near zone whereas, far away from the
dipole, the electric and magnetic field are of the same
magnitude (Gaussian units), and both decay inversely pro-
portional to the distance. For various reasons, and leaving
aside the question of the sources needed to generate a
particular field, it is useful to frame the broad near-zone
versus far-zone discussion around the behavior of the EM
field in vacuum. For fields with time dependence given by
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e @ (w is the angular frequency), the empty-space poten-
tials in the Lorenz gauge satisfy the homogeneous Helmholtz
equation

(V’+@*/P)F=0 6]

where F is the electrostatic potential @ or a Cartesian
component of the potential vector A, and c is the speed of
light, with V- A - iwc™2® = 0. For localized sources, it is
convenient to expand F in terms of outgoing spherical
waves,

F= ZImAlmhI(l) (kn)Yim (0, §0) > ®)]

themselves solutions of Eq. (1). Here, r is the radial dis-
tance, 6 and ¢ are the polar and azimuthal angles, k = w/c
is the wave-vector and 4, are expansion coefficients; h,"
and Y;, are, respectively, a spherical Hankel function of
the first kind and order | and a spherical harmonic.
Since h{" — e/r for kr > 1, regardless of I, the far-field 1/r
decay behavior is universal. Instead, the near-field prop-
erties depend on the particulars of the distribution.
Consider sources confined to a region of space of
dimensions d < A. Then, for d <r <A, b’ ~r ®V and,
since V2[r~ VY, (6, )] = 0, we get V°F = 0. This is to be
expected given that the Helmholtz equation becomes
Laplace’s equation in the limit ¢ — oo, when retardation
can be ignored (since magnetism is a relativistic effect, care
must be exerted when taking this limit for A). To lowest
order, we have @ ~ 1/r and A; ~ 1/r, which correspond,
respectively, to the fields of a static electric monopole and
magnetic dipole. We note that, unlike the Liénard-Wie-
chert expressions, the spherical-wave expansion does not
split into a separate sum of near- and far-zone terms.
Rather, each term in Eq. (2) gives the corresponding near-
and far-field expressions in two separate limits.

2.2 Sources behind a plane: cylindrical and
Cartesian waves, and exponential decay

The above considerations are not applicable to extended
sources of dimensions >A or, for that matter, to meta-
surfaces, which divide space into two halves. Let us assume
that all the sources are in the half-space defined by z < 0 and
expand the empty half-space potentials in terms of the
complete set of solutions of Helmholtz equation in cylin-
drical coordinates

F(p, ¢, z) = Yue™ | Bu (@) (gp)e* " dgq ()

where p = V2 =22, k> =k’ - ¢%, J,, is a Bessel function of
order n and B,, are the parameters of the expansion. Notice
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that B, = By, for azimuthally symmetric fields like, e.g.,
the axicon [14]. Eq. (3) divides into exponentially-decaying
components for which g > k, and traveling waves,
commonly known as Bessel beams [15], with real x < k. This
allows for a clear separation between the near and far
fields, associated primarily with the evanescent (x = i|k|)
and traveling components, respectively. Using the orthogo-
nality condition for Bessel functions, we get

Bn(q) = % | Fp. @. 0)e™ ], (gp)pdpde,  (4)

which, together with Eq. (3), establishes an exact rela-
tionship between values of the field at two parallel planes
(two values of z).

Consider now the equivalent Cartesian coordinate
approach [16, 17]. Let F(x, y, zo) be the potential field in the
plane z = z,. The angular spectrum in this plane is defined
as the Fourier transform

1 .
a(qx, q,. zo) =0 [[F(xy, 20)e' (49Y) dxdy.  (5)

As before, we assume that all the sources are in the half-
space z < 0. Then, the field at any point in the source-free
half-space is given by

F(X, Y, Z) — Ia(qw a, zo)ei [qxx+qyy+x(z—zo)]dqxdqy (6)

where

(-g-a)"| e+a<k

Note that, by construction, (V?+ w?/c?)F = 0. Like its cy-
lindrical counterpart, Egs. (3) and (4), this expression can
be used (i) to calculate the field propagation in the for-
ward direction or, by back propagation, (ii) to infer the
field at z = z, that will produce a desired field pattern
further ahead. The latter approach was applied to the
design of a NFP [5] mimicking the behavior of a negative-
index slab [18] to attain focusing beyond the standard
diffraction limit; one of the first realizations of a meta-
surface [6].

As for the cylindrical-wave representation, the (Carte-
sian) angular decomposition allows for a sharp separation
between the near- and the far-field depending on whether x
is purely imaginary or real [19]. This, however, should not
be construed to imply that the decay of the near-field
component of F is always exponential, for planar geome-
tries or otherwise (recall that the near field of a localized
charge distribution decays algebraically). Several exam-
ples of non-evanescent decay of the metasurface near field
are given below. Eq. (6) shows that a sufficient condition
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for exponential decay to occur is to have a sharp peakin the
angular spectrum at a wave-vector ¢, of modulus g, > k so

that F ~ e~@*)"2_ This is precisely the condition met by
important interface phenomena, such as total internal
reflection, surface polaritons [20] and focusing by a
negative-index slab [16]. Similar considerations apply to
cylindrical fields for which By, (q) oc 6(q — q,) with g > k;
see Egs. (3) and (4).

3 One-dimensional metasurfaces
and near-field plates

From now on, and for simplicity, we focus the attention on
problems for which dF/dx = 0. In this case, the most general
outgoing-wave solution to Helmholtz’ equation is of the
form

F = Y,C.H (kn)e™ (8)
where n? = y? + z2 and tanf = y/z. H\" is a Hankel function
of the first kind and order n, and C, are constants. Since

n = 0 is the only singularity of the Hankel functions, this
expansion accounts for the field on the source-free side of a
one-dimensional metasurface placed at arbitrary z > 0.
Once again, the behavior of the (two-dimensional) far field
is universal since H" (kn) — e*/n"? for kn > 1, while the
near field properties depend on the specifics of the source
distribution. Replacing the Hankel functions by their small
argument limit, we get
. 2iC, i n
limF = =—1n(kn/2) — = ¥.C.L (1) (2/kn)"e™.  (9)
kn—0 n n
This expression is formally identical to the general solution
of the two-dimensional Laplace’s equation in polar co-
ordinates that is consistent with F — 0 at infinity. With F
becoming a harmonic function (that is, a function that
satisfies V’F = 0 in two dimensions) and, after some rear-
rangement of terms, the limit kn — O leads to the multipole
expansion of the static electric (®) and magnetic (A) po-
tentials (we observe once more that caution must be
applied when calculating A since the magnetic field van-
ishes for ¢ — o0).
Figure 1 shows results for
Y H, (kn)

F=Y -2 —~—""cosnf.

n=0 H" (kR) (10)

At large N, this expression gives a field that is sharply
peaked at =0 in the circle n=R. The contour plot,
Figure 1A, and Figure 1B (y = 0) reveal three distinctive
regions with the subwavelength scale R setting the
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Figure 1: Near and far field of a one-dimensional metasurface; see
Eq. (10). (A) Contour plot of the normalized field, Re[F(y, 2)1/|F(0, 2)I,
forN=20,R=10and A = 10°. (B) In|F(0, 2)| versus z (blue curve). Gray
curves are asymptotes. For small and intermediate distances from

the metasurface, Focz"and Foc Inz (102 < z < 10°). These near-field
forms correspond, respectively, to the small argument limit of H,(Vl)

and H". In the far field, z > 10, F oc 1/+/Z.

boundary between the two that belong to the near field. For

y=0andz <« R « A, the behavior of F is determined by H (l),
the leading term of which is z" while, in the intermediate
near-zone region R« z <« A, the dominant term is

H (()1) ~1Inkz. As expected, F o< z"” in the far field (kz > 1).
Also important is that, for z < R, F shows a peak of width
~z/N centered at y = O (Figure 1A covers too large a range to
notice the z-dependence of the width).

Returning to the angular spectrum representation,
consider a situation where F(y, 0) is localized mainly in a
segment of length «A, as in the above example and, more
generally, for a generic NFP. We can then ignore contri-
butions to a(g, 0) from all, but spatial frequencies >k, so
that the near field can be approximated by the harmonic
expression
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Figure 2: Near field of the modulated-grating metasurface; see Eq. (12).
(A) Contour plot of the normalized intensity, Re’[Aly, 2)]/Re’[F0O, 2)],
for go=7 and L =2.5. (B) In|F0, 2)| versus z (blue curve). Gray curves are
asymptotes. For small (large) z, F decays exponentially (F oc 1/2).

F(y, z) = [a(g, 0)e”e%dgq. (11)

It is well known that arbitrary functions of the form f{iy + z) are
solutions to Laplace’s equation in two dimensions. Thus, the
near field associated with a subwavelength-localized F(y, 0)
is a harmonic function that is analytic in the half-space z > 0
and decays with increasing z.

4 Modulated grating and single-
aperture near-field plates

Figure 2 shows calculations using Eq. (11) for

F(y, 0) = 2 1)
(y > ) - y2 + L2’
the corresponding angular spectrum is a(q, 0) =

eLle-wol/2L. The modulated-grating profile mirrors the
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behavior of the EM field at the exit side of a negative-index
slab [5, 21]. If g, > k, near identical results are obtained
using the exact expression, Eq. (6). We emphasize that the
plots show only the near field. Because of the dominant
peak of a(g, 0) at g = qo, F decays first exponentially,
turning later into a 1/z dependence for z > g;'. Not shown
in Figure 2 is the far field, which manifests itself for z > kKt
and decays ~1/z" for y = 0, as expected. For completeness,
we give below the explicit expression of the near field in
terms of harmonic functions:

1 1 e oL

Flv.2) = (L+iy+z) (L+iy-z)| 2L
eqo(iy_z)

" L+iy-z)(L-iy+z)’

(13)

From here, one can show that, as the distance z from the
metasurface increases, the width of |F(y, z)| decreases
reaching a minimum value ~g,' at z = L. This closely

30F
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102 10%

Figure 3: Near field of the single-aperture metasurface; see Eq. (14).
(A) Contour plot of Re’[F(y, 2)]/Re’[F(0, 2)] for A =10 and L =1. (B)
In|F(0, 2)| versus z (blue curve). Gray curves are asymptotes. For small
(large) z, Fis nearly constant (F oc 1/2).
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simulates the behavior of subwavelength focusing by a
negative-index slab [18]. Because the field magnitude
decreases with increasing z, the focus is a saddle point,
something that could have been anticipated since har-
monic functions do not have absolute maxima or minima
[22].

Figure 3 shows an example of near-field focusing
without exponential decay. The calculations are for a
single-aperture NFP with

2 2

F(y,0)=m/2~ arctan?— (14)

This expression gives a Lorentzian-like peak of half-width L
for L > A whereas, for L < A, F = 0 except for [y| < A where
itis nearly constant. The corresponding angular spectra are
roughly of the form ™" and sin (gA)/q, respectively. Using
these approximations and Eq. (11), we get

L+z
Ve Lr2) =8
F(y,z)= . As AL (15)
- (tanl—y + tanl—y> (L <)
2 z z

In the limit L > A (L < A), and for z < L (A), F(O, z) is
nearly constant while F(y, z) exhibits a peak at y = 0 of half-
width =L (A). At large values of z (but z < A), F oc 1/z. The
case A =10, L = 1 is illustrated in Figure 3. As for the cal-
culations of Figure 2, we underline the fact that these plots
depict only the near field. The results show that neither the
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amplitude (Figure 3B) nor the width of the field vary much
in the range z <« A. This makes the single-aperture NFP a
promising candidate for subwavelength focusing and
power-transfer applications, with the drawback that the
high resolution is restricted to distances from the NFP on
the order of the resolution itself (the same limitation as in
evanescent-wave focusing [23]).

5 Pair of parallel near-field plates

As discussed earlier, at distances z <« A, the near-field of a
metasurface is well described by a harmonic function that
decays away from the plate. For a pair of parallel plates,
however, the decay requirement does not longer apply
and, thus, an arbitrary singularity-free harmonic function
represents a physically realizable near field. This offers a
path for the development of near-field devices that could
meet the needs of particular applications. Of interest here is
the design of near-field structures that can be used to
manipulate subwavelength objects by means of radiation
pressure, like optical tweezers. Even though harmonic
functions such as F do not possess maxima or minima [22],
the saddle points make it possible to devise an intensity
pattern that comes close to providing a confinement po-
tential for the intensity. Figure 4 shows one such an
example. The three-dimensional plot gives Re’[F(y, z)],
which is proportional to the intensity, for

Figure 4: Near field of a system of two-
metasurfaces; see Eq. (16). The 3D plot
shows the square of the field, Re’[Ay, 2)].
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_ oo (v-2) 1 oo (v+2) _q (16)

. _VO)
y—-z

iy+z

with parameters qo = 4 and V, = 8. The latter value was
chosen so that there is a saddle point at F =~ 0. The depression
around the origin is not a true minimum for it is possible to
descend towards regions of lower intensity using the
canyon-like features along the planes x = +1. Nevertheless,
the dip can be used to trap a particle with a refractive index
smaller than that of the surrounding medium provided its
size is large enough to prevent escape through the canyons.

6 Conclusions

We showed that, unlike the far field, the EM field close to a
metasurface exhibits a variety of dependencies with dis-
tance, from that of evanescent waves, often (and wrongly)
viewed as the hallmark of the near field, to various forms of
algebraic decay. We also demonstrated that fields between
two parallel near-field plates can have pseudo minima, a
property that is potentially useful for applications as near-
field EM tweezers.
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