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Abstract: It has been shown recently that the backscat-
tering of wave propagation in one-dimensional disordered
media can be entirely suppressed for normal incidence by
adding sample-specific gain and loss components to the
medium. Here, we study the Anderson localization be-
haviors of electromagnetic waves in such gain-loss
balanced random non-Hermitian systems when the
waves are obliquely incident on the random media. We
also study the case of normal incidence when the sample-
specific gain-loss profile is slightly altered so that the
Anderson localization occurs. Our results show that the
Anderson localization in the non-Hermitian system be-
haves differently from randomHermitian systems in which
the backscattering is suppressed.

Keywords: Anderson localization; gain-loss balanced
system; non-Hermitian system.

1 Introduction

Anderson localization has been extensively studied for
several decades since it was proposed by Anderson in 1958
[1–36]. Classical wave systems are good platforms to study
Anderson localization due to the ease of fabrication and
characterization and the absence of many-body in-
teractions in photonic or phononic systems [3–7]. It is now
well known that the localization of waves is induced by
the constructive interference between two counter-
propagating backscattering waves, which gives rise
to coherent backscattering effects and makes all waves

localized in one- and two-dimensional random media [3,
8–11]. For three-dimensional randommedia, there exist the
so-called mobility edges, which separate localized states
from extended states [3, 12, 13]. To identify whether the
Anderson localization occurs, one needs to check the
sample-size dependence of the transmission, which be-
haves quite differently between the linear decay in the
diffusive regime and exponential decay in the localization
regime [3]. Since absorption can also lead to an exponential
decay of the transmission, it is very difficult to separate the
effect of Anderson localization from that of absorption.
Therefore, the absorption was excluded in most of the
theoretical studies of Anderson localization. Effects of ab-
sorption or amplification on the Anderson localization
have also been investigated intensively [14–30].

Recently, it has been proposed and shown rigorously
that coherent backscattering effects can be totally sup-
pressed in one-dimensional (1D) random systems by add-
ing sample-specific gain and loss balanced profiles into the
systems so that total transmission is achieved without
reflection when waves are incident from one direction
normal to the layers [37]. The experimental demonstration
of the total transmission in such non-Hermitian random
media has been carried out in an acoustic tube system [38].
Since total transmission can be achieved independent of
the sample size, such non-Hermitian random systems
possess an infinite localization length. The existence of
such a critical point provides us a unique opportunity
to study the Anderson localization behaviors in non-
Hermitian system in the vicinity of the critical point. Here,
we numerically study two situations where Anderson
localization can occur. First, the sample-specific gain-loss
profile is slightly altered so the total transmission deviates
from unity. Second, the incident waves become oblique so
that reflections from both sides can occur. In both sce-
narios, it is expected that the presence of coherent back-
scattering can lead to the Anderson localization of waves,
i.e., the transmissionwill decay exponentially to zerowhen
the sample is sufficiently large. Our results will be
compared with the Anderson localization behaviors found
in some special Hermitian random systems, where locali-
zation length is also known to be infinite at normal
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incidence such as random layered media with the same
impedance in all layers [31] and pseudospin-1 systems in 1D
random potential [32, 33].

It should be pointed out that the gain-loss balanced
non-Hermitian random systems considered here are
different from the non-Hermitian PT symmetric systems
studied extensively recently [39–43]. It has been shown
that non-Hermiticity in the PT symmetric systems can give
rise to many novel physical phenomena not seen in Her-
mitian systems due to presence of exceptional points, such
as laser absorber [42, 43], impurity immunity [44], unidi-
rectional transmission [45] and negative refraction [46].
Although our systems do not obey the PT symmetry due to
the random structures, they do have the property that the
spatial integration of the imaginary parts of dielectric
constant is zero in every random configuration so that the
gain and loss are always balanced.

2 Gain-loss balanced random
media

According to a study by Bender and Boettcher [37], the total
transmission of a randommedium, which is embedded in a
homogenous medium, can always be achieved by intro-
ducing a sample-specific imaginary part to the relative
permittivity of the random medium, i.e., (−1/k0)∂xW(x),
where k0 is the wave vector in the backgroundmedium and
W(x) denotes the dielectric constant of the random me-
dium. The 1D random system we studied is shown in
Figure 1(a). The system has N layers of randomly arranged
dielectric media with gain/loss coatings at each interface.
The whole system is embedded in a homogeneousmedium
with an averaged permittivity of the random layers. We
assume that the relative permittivity in each layer fluctu-
ates independently with a uniform distribution in the in-
terval [1−σ, 1+σ], where σ controls the strength of the
randomness. In this case, the embedding medium is the
vacuum. In this work, we set σ = 0.5. All layers are
nonmagnetic and assumed to have the same thickness
d = 1. When an interface layer of width dc is inserted be-
tween two adjacent layers i−1 and i with dielectric con-
stants ni−1 and ni, respectively, we assume the real part of
the dielectric constant of the interface layer W(x) has the
form W(x) � ni−1 + (ni − ni−1)(x − xi−1)/dc, where xi−1 de-
notes the position of the right boundary of the (i−1)-th
layer. Thus, by using (−1/k0)∂xW(x), the total trans-
mission without reflections can be achieved for waves
normally incident from the left if the imaginary parts of the
relative permittivity of the interface layer is chosen as
−(ni − ni−1)/dck0. For the simplicity of calculation, we also

assume that the interface layer is much thinner than the
wavelength so that the imaginary part of its relative permit-
tivity reduces to the form (−1/k0)(ni − ni−1)δ(x − xi−1). In this
limit, the real part of the relative permittivity of the interface
layer becomes irrelevant as there is no phase change
occurring in the electric field across the boundary. It should
be pointed out that the Anderson localization behavior re-
mains the same if the interface layer has a finite thickness
(see Supplementary Note 1). This is expected as the critical
behaviors normally do not depend on the details of the
system.

In order to study the Anderson localization of the
system, we take the following more general form for the
relative permittivity of the interface coating between the
(i−1)-th and i-th layers:

Im(εi−1, i/ε0) � −
α
k0

⋅ (ni − ni−1) ⋅ δ(x − xi−1), (1)

where α is a dimensionless parameter that controls the
strength of gain/loss. It is easy to see from Eq. (1) that the
sum of Im(εi−1, i) for all interfaces is zero. Thus, the system
as awhole has no net gain or loss. Since the transmission is
always unity for normally incident waves when α = 1 in-
dependent of random configuration or sample size, the
Anderson localization length diverges at this critical point.
We will study the divergent behavior of the Anderson
localization length when α is close to unity. We will also
study the divergent behavior for obliquely incident waves
at α = 1 when the incident angle is close to zero.

By utilizing Eq. (1) and the Maxwell’s equations, we
can obtain the boundary conditions at an interface, say,
x � xi−1 for a harmonic wave with frequency ω (see Sup-
plementary Note 2 for details):

Ei, y(x � x+i−1) � Ei−1, y(x � xi−1− ), (2)

Ei, z(x � x+i−1) � Ei−1, z(x � xi−1− ), (3)

Hi, y(x � x+i−1) − Hi−1, y(x � xi−1− ) � −
α
Z0

(ni − ni−1)Ez(x � xi−1),
(4)

Hi, z(x � x+i−1) − Hi−1, z(x � xi−1− ) � α
Z0

(ni − ni−1)Ey(x � xi−1),
(5)

where Ei,y (Hi,y) and Ei,z (Hi,z) are the y and z components of
the electric (magnetic) field in the i-th layer, respectively,
and Z0 is the vacuum impedance. Equations (2) and (3)
describe the continuity of the tangential components of the
electric field. However, the two tangential components of
magnetic field are not continuous due to the presence of
the imaginary part of the permittivity at the interface,
which acts as a current source in the direction parallel/
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antiparallel to the tangential components of the electric
field, as shown in Eqs. (4) and (5). Equations (2)–(5) show
that due to the vanishing thickness of the coating layer, the
real part of the permittivity of the coating does not play a
role in the boundary conditions.

It is important to point out that when α = 1, Eq. (1)
always gives unity transmission with zero reflection when
the wave with wavevector k0 in the background medium is
incident from the left, independent of the random
arrangement [37]. In this case, the magnitude of electric
field is a constant in all layers. To see this explicitly, we
consider the case when the electric and magnetic fields are
aligned with the y and z axes, respectively, i.e., Ey and Hz.
Let (Ei−1, y ,  Hi−1, z) and (Ei, y ,  Hi, z) be the electric and mag-
netic fields of the incident wave in the layer i−1 and
transmitted wave in the layer i, respectively. If there is no
reflection, the boundary conditions in Eqs. (2) and (5) give
the following energy flux change across the interface be-
tween layer i−1 and i

ΔS � Ei, y(x � x+i−1) ⋅ Hi, z(x � x+i−1)
−Ei−1, y(x � xi−1− ) ⋅ Hi−1, z(x � xi−1− )

� Ey(x � xi−1) ⋅ [Hi, z(x � x+i−1) − Hi−1, z(x � xi−1− )]
� 1
Z0

(ni − ni−1)
∣∣∣∣Ey(x � xi−1)

∣∣∣∣2
(6)

It is easily seen that the above change of energy flux obeys
the Poynting theorem

∇ ⋅ S � −ωIm(ε) ⋅ |E(x � xi−1)|2 if Im(ε) has the form
prescribed in Eq. (1) with α = 1. Thus, the difference in
energy flux on each side is totally compensated by the
energy flux produced or dissipated at the interface coating
and the assumption of no reflection produces the correct
physical solution. However, if the wave is incident from the
right, the direction of the energy flux is reversed, the energy
flux difference changes its sign and reflection will occur in
order to make the energy flux conserved.

When α ≠ 1, reflections occur on both sides of an
interface, and Anderson localization will occur as a result

of coherent backscattering effects. This is also true for
oblique incidence even when α = 1.

In order to study the transport properties of the above
system, we consider an N-layer sample shown in
Figure 1(a) as a successive stack of N + 1 scattering ele-
ments. In Figure 1(b), we show the i-th scattering element
as the region from the right end of the (i−1)-th layer,
x � xi−1, to that of the i-th layer, x � xi. Using the transfer-
matrix method (TMM), one can obtain the transmission
and reflection amplitudes across each scattering element.
For the i-th scattering element, we let ti+(ri+) be the
transmission (reflection) amplitude for waves incident
from the left (forward waves), and ti−(ri−) for waves inci-
dent from the right (backward waves). Then, for forward
waves, the transmission amplitude t+(N + 1) through the
stack ofN + 1 scattering elements can be obtained from the
following recurrence relations [33–36] starting from i = 1
till i = N,

t+(i + 1) � t+(i)t(i+1)+
1 − r(i+1)+r−(i), (7)

r−(i) � ri− + r−(i − 1)ti−ti+
1 − r−(i − 1)ri+  (i ≥ 2), (8)

where t+(i) and r−(i) denote the forward transmission
amplitude and backward reflection amplitude of the first i
scattering elements, respectively. Note that when i = 1, we
have t+(1) � t1+ and r−(1) � r1−. From Eq. (7), we obtain the
transmission coefficient TN � |t+(N + 1)|2, and

lnTN � ln|t+(N + 1)|2

� ln|t+(N)|2 + ln
∣∣∣∣t(N+1)+∣∣∣∣2 − 2ln

∣∣∣∣1 − r(N+1)+r−(N)
∣∣∣∣, (9)

By applying the recursion equation (9) iteratively, we can
express TN as

lnTN � ∑
N+1

i�1
ln|ti+|2 − 2 ∑

N+1

i�2
ln|1 − ri+r−(i − 1)|. (10)

Next, we use the TMM to obtain the transmission and
reflection amplitudes of an individual scattering element.

Figure 1: (Color online) (a) The 1D random
system composed of random dielectric
layers (white) with gain/lossy coatings
(blue). The whole system is embedded in
air. (b) The schematic of wave propagations
inside the 1D random system. The black
dashed line indicates the choice of the i-th
scattering element. 1D, one dimensional.
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For normal incidence, as shown in Figure 1(b), the electric
fields can be expressed as:

Ei−1(x) � ai−1 exp[ini−1k0(x − xi−1)]
+ bi−1 exp[− ini−1k0(x − xi−1)] , (11)

in the (i−1)-th layer, and

Ei(x) � ai exp[inik0(x − xi)] + bi exp[− inik0(x − xi)] , (12)

in the i-th layer. Here k0 is the wave vector in vacuum. The
magnetic fields can be obtained through the relation
Hi � Ei/Zi, where Zi �

����
μ0/εi

√
is the impedance of the i-th

layer.
Using the boundary conditions in Eqs. (2)–(5), we can

obtain the transfer matrixm(i) connecting the electric fields
at the interfaces x = xi−1 and x = xi,

( ai

bi
) � (m(i)

11 m(i)
12

m(i)
21 m(i)

22

) ⋅ ( ai−1

bi−1
), (13)

with

m(i)
11 � 1

2
[(1 + α) + (1 − α) ni−1

ni
]exp(inik0d), (14)

m(i)
12 � 1

2
[(1 + α) − (1 + α) ni−1

ni
]exp(inik0d), (15)

m(i)
21 � 1

2
[(1 − α) − (1 − α) ni−1

ni
]exp(−inik0d), (16)

m(i)
22 � 1

2
[(1 − α) + (1 + α) ni−1

ni
]exp(−inik0d). (17)

The transmission and reflection amplitudes of the i-th
scattering element can be obtained from the transfer
matrix:

ti+ � (m(i)
11 m

(i)
22 −m(i)

12 m
(i)
21 )/m(i)

22 , ti− � 1/m(i)
22 , (18)

ri+ � −m(i)
21 /m(i)

22  , ri− � m(i)
12 /m(i)

22 . (19)

It is easily seen that when α = 1 we have m(i)
21 � 0 and

m(i)
12 ≠ 0, leading to zero reflection for wave incident from

left and finite reflection for waves coming from right.
Since this behavior is true for all layers, we will have
unity transmission and zero reflection for waves entering
from the left of the sample. Since the system is reciprocal,
unity transmission is also expected for waves coming
from right side of the sample even though the reflection is
not zero.

3 Anomalous Anderson
localization behaviors

We first study the Anderson localization behaviors for the
case of normal incidence when α deviates slightly from
unity. In this case, reflections occur on both sides of every
scattering element. As a result, coherent backscattering-
induced Anderson localization can occur, similar to the
case of Hermitian randommedia. The localization length ξ
can be obtained from the geometrical mean of the trans-
mission coefficient according to the relation:

ξ � − lim
L→∞

2L
〈lnTN 〉c

, (20)

where L = Nd is the sample length and <>c denotes
ensemble averaging.

In our numerical study, we set k0 and d to be unity for
simplicity. As will see in Section 4 that the critical behav-
iors will not be altered if these parameters are scaled ac-
cording to k′d′ = k0d = 1.We first use Eqs. (13)–(19) to obtain
the transmission and reflection amplitudes of each scat-
tering element. Then by applying the recursion equations
(7) and (8) iteratively, we obtain the transmission coeffi-
cient TN from Eq. (9). In Figure 2(a) and (b), we plot 〈lnTN 〉c

as a function of the sample length L = Nd (solid circles) at
four different values of α for both the cases of α < 1 and α > 1.
Each data point of 〈lnTN 〉c shown here (as well as in other
figures of thiswork) is obtained froman average of over 200
configurations and the length L used in the calculation of
〈lnTN 〉c is about five times of the localization length. For
each value of α, the plot of 〈lnTN 〉c vs. L can be well fitted
into a straight line with a negative slope, indicating the
exponential decay of the transmission TN with increasing
L, i.e., the occurrence of Anderson localization. Following
Eq. (20), we can obtain the localization length ξ through
the slope of the linear fitting. In the insets of Figure 2(a) and
(b), we plot the localization length lnξ as a function of
ln|α − 1| for the above two cases, respectively. From the
linear fits, we get

lnξ − � A− + B− ⋅ ln|α − 1| , α < 1, (21)

lnξ+ � A+ + B+ ⋅ ln|α − 1| , α > 1, (22)

with A− = 4.110, B− = −1.007, A+ = 9.139 and B+ = −1.010.
We can see that for both cases, the log–log plots of ξ vs.
|α − 1| follow a straight line with a slope −1 as indicated by
the blue lines in the insets, which indicates a ξ ∝ |α − 1|−v
behavior with the exponent ν = 1. Although the critical
exponent of ξ is the same for both α < 1 and α > 1, the
magnitude of ξ is about 150 times larger in the region of
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α > 1 than in the region of α < 1 for a given value of |α − 1|. As
we will see below, the asymmetry between α > 1 and α < 1
also leads to very different Anderson localization behav-
iors in the two regions for obliquely incident waves. The
origin of such significant asymmetry will be discussed in
Section 4.

In the above simulations, the strength of gain/loss is
tuned simultaneously by changing the value of α for all
interface coatings.We can also consider the case where the
value of α in each coating layer is distributed randomly in
an interval [1−Δ, 1+Δ]. Our simulation results show that the

Anderson localization length follows the ξ ∝ Δ−1 behavior.
Here, the inverse localization length is found to be linearly
proportional to the disorder strength Δ of the gain/loss.
This is different from the quadratic behavior normally
found in random Hermitian systems [3]. The detailed re-
sults are shown in Supplementary Note 3.

Now, we study the Anderson localization behaviors
when waves are obliquely incident with an incident angle
θ0. We consider S-polarized waves, where the electric field
E is perpendicular to the plane of incidence. In this case,
the electric field behaves as a scalar wave and can be
expressed as (see Figure 3)

Ei−1 � ai−1 exp{ini−1k0[(x − xi−1)cosθi−1 + ysinθi−1]}
+ bi−1 exp{ − ini−1k0[(x − xi−1)cosθi−1 − ysinθi−1]},

(23)

in the (i−1)-th layer, and

Ei � ai exp{inik0[(x − xi)cosθi + ysinθi]}
+ bi exp{ − inik0[(x − xi)cosθi − ysinθi]}, (24)

in the i-th layer. Using the boundary conditions Eqs. (2)–(5)
and the impedance relation H � ����

ε/μ0

√
⋅ E, we obtain the

following transfer matrix m(i) connecting the electric fields
at the interfaces xi−1 and xi:

m(i)
11 � 1

2
{ 1
nicosθi

⋅ [α(ni − ni−1) + ni−1cosθi−1] + 1}
× exp(inik0cosθid),

(25)

m(i)
12 � 1

2
{ 1
nicosθi

⋅ [α(ni − ni−1) − ni−1cosθi−1] + 1}
× exp(inik0cosθid),

(26)

m(i)
21 � 1

2
{− 1

nicosθi
⋅ [α(ni − ni−1) + ni−1cosθi−1] + 1}

× exp(− inik0cosθid),
(27)

m(i)
22 � 1

2
{− 1

nicosθi
⋅ [α(ni − ni−1) − ni−1cosθi−1] + 1}

× exp(− inik0cosθid),
(28)

where sinθi � n0 sinθ0/ni and θ0 is the incident angle. It is
easy to see that Eqs. (25)–(28) reduce to Eqs. (14)–(17) when

Figure 2: (Color online) (a) The ensemble
averaged ln TN as a function of the sample
length L for different values of α < 1. (b)
Same as (a), but for α > 1. The purple,
yellow, blue and green solid circles in
(a) denote the numerical results for
α = 0.999, 0.998, 0.997 and 0.996,
respectively, while in (b) for α = 1.002,
1.004, 1.006 and 1.008. The solid lines are
linear fits for different values of α in both
(a) and (b). The insets show the localization
length ξ retrieved from the slope of the
linear fit for different values of |α − 1| (solid

circles) for both α < 1 [inset in (a)] and α > 1 [inset in (b)] cases. All numerical results in the insets arewellfitted by a relation ξ ∝ |α − 1|v with v= 1
for both α < 1 and α > 1.

Figure 3: (Color online) The schematic of wave propagations for
S-polarized waves.
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θ0 = 0. By substituting Eqs. (25)–(28) into Eqs. (18) and (19)
and using Eqs. (7)–(9), we can study the dependence of
〈lnTN 〉c on the sample length L. It is expected that the
localization length diverges when θ0 = 0 and α = 1. The
results of α = k0 = 1 are shown in Figure 4 for different
incident angles (solid circles). It can be seen that 〈lnTN 〉c

decays linearly with the sample length L for all incident
angles, indicating Anderson localization. In the inset of
Figure 4, we plot the localization length ξ (retrieved from
the linear fitting of 〈lnTN 〉c vs. L) as a function of incident
angle. We find that the log-log plot of ξ vs. sinθ0 shows a
straight line, indicating a ξ ∝ sin−v′θ0 behavior at small θ0.
To obtain the critical exponent v′, we use the following
linear equation,

ln ξ � AS + BS ln sin θ0, (29)

to fit the numerical results and obtain AS = 4.810 and
BS = −1.996. The value of the slope suggests an exponent

v′ � 2, i.e., ξ ∝ sin−2θ0. This result is distinctly different
from those found in Hermitian impedance-matched 1D
random systems [31] and pseudospin-1 system [32], in
which the exponents found are both v′ � 4 rather than
v′ � 2.

As the model of uniformly distributed random dielec-
tric constants studied above is difficult to realize, we have
also studied the Anderson localization behavior of a binary
random system, which consists of two kinds of dielectric
layers with relative permittivity either 0.5 or 1.5 with equal
probability. Our simulation results show the same critical

behavior ξ ∝ sin−2θ0 as that of the uniformly distributed
randommedia, in line with the concept of universality. The
detailed results are given in Supplementary Note 4.

In the following, we study the Anderson localization
behaviors when α deviates from unity. In Figure 5, we plot
the numerical results of the inverse localization length 1/ξ
as a function of α for different incident angles. These results
suggest the following simple expression for the inverse
localization length in the region of α ≤ 1:

1/ξ ≃ A(1 − α) + B sin2 θ0, (30)

where A and B are two constants. If we use the fitting re-
sults of Eqs. (21) and (29) to set the values of A and B,
i.e., A � exp(−A−) � 1.640 × 10−2 and B � exp(−AS) �
8.146× 10−3, Eq. (30) gives excellent fitting results of the
data at three incident angles in the region of α ≤ 1 as shown
by the solid lines in Figure 5. Eq. (30) indicates that the
localization length at any point (1 − α,  θ0) in the critical
region is simply the harmonic mean of the localization
length at point (1 − α,  θ0 � 0) and the localization length at
point (α � 1,  θ0). This also suggests that 1−α and θ0 are two
independent parameters in the determination of Anderson
localization in the critical region of α ≤ 1. However, the
localization behavior in the region of α > 1 is more
complicated. As shown in Figure 5, for all the incident
angles studied sinθ0 ≠ 0, the function 1/ξ first follows the
linear decay of Eq. (30) to a minimum value and then turn
around and increases linearly with α. The existence of a
linear term 1−α instead of a quadratic term in Eq. (30)

Figure 4: (Color online) The ensemble averaged lnTN as a function of
the sample length L for different incident angles for S-polarized
waves when α = 1. The purple, yellow, blue and green solid circles
denote the numerical results for sin θ0 = 0.02, 0.04, 0.06 and 0.08,
respectively. The solid lines are linear fittings. The inset shows the
localization length ξ retrieved from the slope of the linear fitting for
different sinθ0 (solid circles), which are well fitted by a relation
ξ ∝ sin−2θ0(solid line).

Figure 5: (Color online) The plot of inverse localization length 1/ξ as
a function of α at different incident angles. The blue circles, red
hexagrams, yellow squares and purple triangles denote numerical
results for sin θ0 = 0, 0.04, 0.06 and 0.08, respectively. The straight
lines are the results of Eq. (30). The α = 1 is marked by a black solid
line. The inset shows the details at small values of 1/ξ in the region
of α ≥ 1.
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explains the asymmetry in the magnitudes of the locali-
zation length in the regions of α < 1 and α > 1 shown in
Figure 2.

4 The origin of anomalous
Anderson localization behaviors

In this section,wewill start from the stack recursion equation
(10) to understand the above anomalous localization behav-
iors. As can be seen from Eq. (10), the log of the transmission

consists of two terms: the first term ∑N+1
i�1 ln |ti+|2 involves the

transmission coefficients of individual scattering elements
only, and we call it noninterference term; the second term

−2∑N+1
i�2 ln |1 − ri+r−(i − 1)| involves both the modulus and

phaseof the reflection amplitudes andwewill refer to it as the
interference term. The stack recursion equation method has
been discussed in detail in the literature [33–36].

We first consider the case of normal incidence. In the
critical region, we can write α = 1 + δ with δ being a small
positive or negative number. By substituting Eqs. (14)–(17)
into Eqs. (18) and (19) and taking the small δ limit, we
obtain the following expressions for the transmission and
reflection amplitudes of the i-th scattering element:

ti+ ≅ [1 + 1
2
( ni

ni−1
− 1)δ]exp(inik0d), (31)

ti− ≅ [ni

ni−1
+ (− ni

2ni−1
+ n2i
2n2

i−1
)δ]exp(inik0d), (32)

ri+ ≅
1
2
( ni

ni−1
− 1)δ, (33)

ri− ≅ [− 1 + ni

ni−1
+ (− ni

2ni−1
+ n2

i

2n2
i−1
)δ]exp(2inik0d). (34)

It should be noted that k0 appears only in the phase factors
of Eqs. (31)–(34) and scales with 1/d, In our simulations, we
have chosen k0 = d = 1. The choice of another k′0 will not
change the total transmission TN in Eq. (10) if the layer
thickness is scaled to d′ � k0d/k′0. According to Eq. (20),
such scaling will only change the localization length of the
system by a factor d′/d. It will not change its critical
behavior. To the lowest order in δ, the noninterference term
in Eq. (10) can be expressed as

∑
N+1

i�1
ln |ti+|2 ≅ ∑

N+1

i�1
ln[1 + ( ni

ni−1
− 1)δ] ≈ δ ∑

N+1

i�1
( ni

ni−1
− 1) (35)

Thus, the ensemble average of the noninterference term
can be written as

〈 ∑
N+1

i�1
ln|ti+|2〉

c

≅(N + 1)δ(〈 ni
ni−1

〉
c

−1) � (N + 1) ⋅ C1(σ) ⋅ δ

(36)

The above linear dependence in δ actually gives rise to both
the unity critical exponent and the localization length
asymmetry between the regions of δ > 0 and δ < 0. For the
uniform distribution of the relative permittivity in the in-
terval [1−σ, 1+σ], the coefficient C1 (σ) can be evaluated as

C1(σ) � 1
4σ2

∫
1+σ

1−σ
dεi ∫

1+σ

1−σ
dεi−1(

��
εi

√
���
εi−1

√ − 1)
� (2/3σ2) ⋅ (σ2 + 1 −

�����
1 − σ2

√ ) − 1, (37)

For our case σ = 0.5, we can get C1 (σ = 0.5) = 0.0239. It is
important to point out that the linear dependence of the
noninterference term shown in Eq. (36) acts as a delocal-
ization effect when δ > 0 as it enhances the transmission.
Similarly, using Eq. (33), we can expand the ensemble
average of the interference term in Eq. (10) as

−2〈 ∑
N+1

i�2
ln|1 − ri+r−(i − 1)|〉

c

� −2〈 ∑
N+1

i�2
ln
∣∣∣∣∣∣∣∣1 − δ ⋅

1
2
( ni

ni−1
− 1)r−(i − 1)

∣∣∣∣∣∣∣∣〉
c

≅〈 ∑
N+1

i�2
Re[( ni

ni−1
− 1)r−(i − 1)] 〉

c

⋅ δ

≅NC(1)
2,±(σ,  k0d) ⋅ δ, (38)

where the subscripts ‘+’ and ‘−’ in C(1)
2,±(σ,  k0d) denote the

coefficients calculated in the regions of α > 1 and α < 1,
respectively. The difference is due to the term r−(i − 1) in Eq.
(38), which has different behaviors across the critical point
at α = 1. From Eqs. (10), (20), (36) and (38), the localization

length can be expressed as ξ ≅ − 2d
C1(σ)+ lim

N→∞
C(1)2,±(σ, k0d)

δ−1 for the

normal incidence, which shows explicitly the ξ ∝ |α − 1|−1
behavior found in Figure 2. Since we have already obtained
numerically the divergent behavior of ξ in Eqs. (21) and (22)

for the case of k0 = d = 1, i.e., ξ ± ≅ exp(A±) ⋅ δ−1, the values of
limN→∞C

(1)
2,±(0.5,  1) can be obtained from the values of A±

and C1 (σ = 0.5), from which we can get limN→∞C
(1)
2,−

(σ � 0.5,  1) � 0.00887 and limN→∞C
(1)
2,+(σ � 0.5,  1) �

−0.0241. Note that C(1)
2,−(0.5,  1) and C(1)

2,+(0.5,  1) have the

opposite signs so that C(1)
2,±(0.5,  1) ⋅ δ is always negative,

which means the interference term always gives positive
contribution to the localization effect. From the above
analysis, it is clearly seen that the unity critical exponent
arising from the linear term δ in the expansion of lnTN of Eq.
(10) is independent of the choices of k0d and σ. And the
significant asymmetry found in the localization lengths be-
tween the regions α < 1 and α > 1 is due to the delocalization
effect of the noninterference term in the region α > 1, which
significantly enlarge the localization length.
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Now we consider the case of oblique incidence with
α = 1. To obtain the transmission and reflection amplitudes
of the i-th scattering element at small θ0, we expand Eqs.
(25)–(28) to the leading order in θ0 and obtain

ri+ ≅ (− 1
4
+ ni−1
4ni

) ρ2

n2
i−1
, (39)

ti+ ≅ [1 + (− 1
4
+ ni−1

4ni
) ρ2

n2
i−1
]exp(inik0cosθid), (40)

ti− ≅ [ni
ni−1

+ (1
4
−
ni−1
2ni

+ ni

4ni−1
) ρ2

n2
i−1
]exp(inik0cosθid), (41)

ri− � [− 1 + ni
ni−1

+ (1
4
−
ni−1
2ni

+ ni
4ni−1

) ρ2

n2i−1
]exp(2inik0cosθid),

(42)

where ρ � n0sinθ0. Using Eq. (40), the noninterference term
can be written as

∑
N+1

i�1
ln|ti+|2 ≅ ∑

N+1

i�1
2ln[1 + (− 1

4
+ ni−1

4ni
) ρ2

n2i−1
]

≅ ρ2 ∑
N+1

i�1
(− 1

2
+ ni−1
2ni

) 1
n2i−1

.

(43)

The ensemble average of the noninterference term can be
expressed as

〈 ∑
N+1

i�1
ln|ti+|2〉

c

≅(N + 1)ρ2〈(− 1
2
+ ni−1
2ni

) 1
n2
i−1
〉
c

� (N + 1) ⋅ D1(σ) ⋅ ρ2, (44)

where

D1(σ) � ∫
1+σ

1−σ
dεi ∫

1+σ

1−σ
(− 1

2
+

���
εi−1

√
2

��
εi

√ ) 1
εi−1

⋅ dεi−1

� −σ ⋅ ln
1 + σ
1 − σ

+ 4(1 − �����
1 − σ2

√ ), (45)

Then we can get D1 (σ = 0.5) = −0.0134 by substituting
σ = 0.5.

Using Eq. (39), the ensemble average of interference
term can be expressed as:

〈− 2 ∑
N+1

i�2
ln|1 − ri+r−(i − 1)|〉 � 〈− 2 ∑

N+1

i�2
ln
∣∣∣∣∣∣∣∣1 − (− 1

4
+ ni−1

4ni
) ρ2

n2
i−1

⋅ r−(i − 1)
∣∣∣∣∣∣∣∣〉

   ≅〈 ∑
N+1

i�2
Re[(− 1

2
+ ni−1
2ni

) 1
n2i−1

⋅ r−(i − 1)]〉 ⋅ ρ2

≅ ND(1)
2 ⋅ ρ2, (46)

where D(1)
2 denotes the coefficient of the leading term in

small ρ2. We can now express the localization length

as ξ � − 2d
D1(σ)+ lim

N→∞
D(1)
2 (σ, k0d) ρ

−2, which shows exactly the

ξ ∝ sin−2θ0 behavior found in Figure 4. From the result of

ξ ≅ exp(AS) ⋅ δ−1 in Eq. (29) and the value of D1 (σ) in Eq.

(45), we found limN→∞D
(1)
2 (σ � 0.5,  k0d � 1) � −0.00289.

From Eqs. (36), (38), (44) and (46), it is clearly seen that the

critical exponents ν and ν′ do not dependent on the choice
of σ. Thus, our results are universal for different strengths
of randomness.

5 Conclusion

We have numerically studied the Andersion localization
behavior of the incident waves of a given wavevector k0 in
1D random layered non-Hermitian media with sample-
specific gain and loss inserted between any two adjacent
layers as described in Eq. (1). At normal incidence θ0 = 0,
the systems always possess unity transmission at a specific
strength of gain and loss (α = 1 in Eq. (1)), independent of
the random configuration and the sample size. The exis-
tence of such an infinite localization length allows us to
study the behavior of Anderson localization in a small
critical region surrounding the critical point. We found
the following anomalous behaviors. In the case of
normal incidence, the localization length behaves like

ξ ≈ A|α − 1|−1. While the exponent ν is the same in both
regions of α > 1 and α < 1, the prefactorA in the region of α > 1
is much greater than that in the α < 1 region. In the case of
oblique incidence (θ0 ≠ 0), the localization length behaves

like ξ ≈ Bsin−2θ0 for S-polarized waves at α = 1. The expo-

nent ν′ � 2 is different from the behavior ξ ∝ 1/sin4θ0 found
in impedance-matched systems and pseudospin-1 Hermi-
tian systems. We have also studied the localization length
behavior at oblique incidence when α ≠ 1. Very different
behaviors are found between the region of α > 1 and α < 1
even though the system is gain/loss balanced on average in
both cases. The asymmetry of the localization behaviors in
the two regions is due to the presence of a delocalization
effect in the noninterference term when α > 1, which makes
the localization length very large compared to that in the
α < 1 region.

We note that in ordinary Hermitian randommedia, the
critical point is normally at the ordered media where the
localization length diverges. The addition of sample-
specific balanced gain and loss in 1D media can move the
critical point fromordered to disorderedmedia. This allows
us to study the Anderson localization behavior of non-
Hermitian disordered systems in the vicinity of its critical
point. Although our study was done for some specific
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choices of disorder strength σ = 0.5, the critical exponents
found here are universal and independent of the choices of
σ as can be seen in Section 4. We have also studied a few
cases of k0d ≠ 1 and found that different values of k0d will
only change the magnitude of the localization length. The
exponents ν = 1 and ν′ � 2 remain unchanged.
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