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Abstract: We show that the second-harmonic generation
(SHG) is enhanced in the chiral one-dimensional electron
currents in a broad frequency range. The origin of the
enhancement is twofold: first, the linear dispersion of the
quasiparticles and the associated plasmonic mode as well
as the quasi-linear dispersion of plasmon-polariton result
in the lift of the phase-matching condition. Moreover, the
strong field localization leads to the further increase of the
SHG in the structure. The results suggest that the chiral
currents localized at the domain walls of magnetic topo-
logical insulators can be an efficient source of the second-
harmonic signal in the terahertz frequency range.

Keywords: magnetic topological insulator; plasmon-
polariton; second-harmonic generation.

1 Introduction

In recent years, the field of plasmonics has been enjoying
the exploration of plasmonic excitations in novel topo-
logical materials [1–3]. The appeal of the topological ma-
terials for plasmonics is largely dictated by the fact that the
topologically protected surface currents in these materials
support plasmonic excitations inheriting the immunity to
backscattering, resulting in the suppression of the net
plasmonic loss rate, which is of paramount importance for
enabling applications of plasmonics in various fields [4].
The field of topological plasmonics is now rapidly

evolving, and a plethora of novel low-loss plasmonic
excitations have been predicted and observed in various
topological insulators [5–9] and other topological mate-
rials, such as, e.g., Weyl semimetals [10–13].

One of themost promising applications of plasmonics is
the enhancement of the nonlinear optical processes, specif-
ically second-harmonic generation (SHG) and higher har-
monic generation [14–17]. The amplification of the nonlinear
signal is achieved owing to the plasmon-assisted field
enhancement. One of the limiting factors for the harmonic
generation efficiency is the ubiquitous ohmic losses. In this
perspective, exploitation of topological plasmons with sup-
pressed loss rates for the nonlinear frequency conversion
could significantly enhance the conversion efficiencies.

Noteworthy, the topologically nontrivial photonic
structures have been recently proposed for the enhance-
ment of the higher harmonic generation (see the review by
Smirnova et al. [18] and the references within). While in
most of these studies the nonlinear current is produced by
the conventional optically nonlinear media (such as
lithium niobate or GaAs), the topologically nontrivial edge
and surface states emerging in these structures facilitate
the strong field enhancement, extended lifetime, and uni-
directionalmode propagationwhich cumulatively increase
the conversion efficiency [19].

At the same time, it has been shown in a number of
papers that the linear electronic dispersion arising in to-
pologically protected surface states as well as in low-
dimensional Dirac materials such as graphene may result
in drastic enhancement of the nonlinear current [20–22].

Topological plasmon-polariton, composite quasipar-
ticle, a superposition of the topologically protected surface
or edge current and an electromagnetic field could thus
provide a twofold source for the enhancement of the
nonlinear signal since they emerge owing to the interaction
of the electrons with linear dispersion, hence, with im-
munity to backscattering, and the subwavelengthly local-
ized electromagnetic field.

In this letter, we exploit this simple idea by studying
the SHG by the edge plasmon-polariton (EPP) localized at
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the domain wall in the magnetic topological insulator
(MTI).

The MTI can be realized, e.g., in the form of a ferro-
magnet thin film in close proximity to a surface of the 3D
topological insulator or topological semimetal [23–25]. A
perpendicular-to-plane magnetization component in the
ferromagnet induces a finite effectivemass of the otherwise
massless surface electrons. This results in a bandgap in the
spectrum of the surface states. A one-dimensional domain
wall in the ferromagnet is, however, imaged in the Dirac
electron system as a zero mass line that supports a helical
electronic state. These quasi-one-dimensional edge states
are characterized by the linear electron dispersion and are
anomalous Hall counterparts of the quantum Hall edge
states.

It has been recently demonstrated that the MTI can be
realized in a single material without the need for the real-
ization of the proximity effect, namely, in the study by Yin
et al. [26], it has been shown that TbMn6Sn6 is character-
ized both by the topological surface states and finite
magnetization, which results in the gap opening in the
surface state spectrum. Notably, the width of the gap
observed in thismaterial (34meV) is an order of magnitude
larger than the gaps occurring owing to the proximity
effects (1–2 meV).

In the study by Iorsh et al. [27], we have shown that
these currents support a strongly localized low-loss helical
plasmon-polaritons with almost linear dispersion. Here,
we consider a SHG supported by this EPP mode, namely,
we consider the situation shown schematically in Figure 1.
A linear EPP is excited by a point-like scatterer (it may be a
tip of the scattering near-field optical microscope [28–30]

or a deeply subwavelength resonant nanoantenna [31]).We
then calculate the nonlinear conductivity, nonlinear cur-
rent and the intensity of the second-harmonic signal in this
setup.

2 Results and discussion

A helical electronic state arising at the single domain wall
in the MTI structure is described by the Hamiltonian:

Ĥ � v [σ × p]z + Δ tanh (x/a0)σz  , (1)

where v is the Fermi velocity, Δ is the gap width propor-
tional to the net magnetization, and a0 is the width of the
domainwall. The eigenenergies of the edge states are given
simply by E � ℏvky, and the eigenstates are given by

Ψν(x, y) � Fν(x) e
iqy���
2π

√ , Fν(x) � [a0B(1/2, ν)]− 1
2

coshν  (x/a0)  , (2)

where ν � a0/l, l � ℏv/Δ, and B is the Euler beta function. In
the limit of the infinitely thin domain wall, a0  �  0:

F(x) � F0(x) � 1�
l

√  exp [− |x|
l
]. (3)

In what follows, we assume that the Fermi energy lies
in the center of the bulk gap and that the frequency of the
electromagnetic field is smaller than the gap width ℏω < Δ.
Within this approximation, we can neglect the excitation of
the bulk states and assume that both linear and nonlinear
currents are generated solely by the intraband transitions
of the edge state. Both linear and nonlinear conductivities
can be obtained within the unified formalism based on the
density matrix approach, namely, the average current is
given by

〈J(t)〉 � Tr[Jρ(t)] � ∑
n

e−βEn

Z
〈 n(t)∣∣∣∣̂J(t)∣∣∣∣n(t)〉  , (4)

where J is the current operator, ρ(t) is the density matrix
operator, En and |n(t)〉 are the eigenvalues and eigen-
functions written in the interaction picture, respectively,
and Z is the corresponding partition function. The time-
dependent eigenstates in the interaction picture are simply
|n(t)〉 � e−i/ℏ∫

t
dt′V(t′)|n〉, where the interaction term is given

by

V(t) � −ev[σ × A(t)] , (5)

where A(t) is the vector potential of the perturbing field.
The current operator is found as J � ∂V/∂A(t). The linear
conductivity of this system has been evaluated in the study
by Iorsh et al. [27] and is written as:

Figure 1: Scheme of the second-harmonic generation (SHG) by the
chiral current in magnetic TI. A point dipole excited an edge
plasmon-polariton (EPP) localized at the domain wall. Nonlinear
conductivity results in the emergence of the SH signal, which is also
localized at the domain wall. TI, topological insulator.
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σyy(ω, q, x, x′, z, z ′ ) � αi
2π

v2q
ω

F2
ν(x)F2

ν(x ′ )
(k0 − vq/c) δ(z)δ(z ′ ) , (6)

where α is the fine structure constant, k0 � ω/c, and F(x) is
the function describing the transverse profile of the quasi-
one-dimensional current. In the limit of the infinitely nar-
row domain F(x) is given by (3).

It can be seen that the linear dispersion has a reso-
nance at the dispersion of the chiral plasmonω � vq.While
these plasmons cannot be excited by a plane wave since
their dispersion lies well below the light cone, they can be
excited by a evanescent field of the point-like scatterers.
The dressing of the chiral plasmon by the electromagnetic
field leads to formation of plasmon-polariton defined by
the equation [27]:

S(q,ω) � 1 − ṽq̃ − αṽ2q̃
(q̃2 − 1)
Γ4(ν) ∫

∞

0

dx
|Γ(ν(1 + ix/2))|4������������
q2l2 + x2 − k20l

2
√ � 0 ,

(7)

which in the limit a0 � 0 reduces to

S(q,ω) � 1 − ṽq̃ − αṽ2q̃(q̃2 − 1) (1 + κ2) tanh−1κ − κ
2πκ3

� 0 ,

(8)

where ṽ � v/c, q̃ � q/k0 and κ2 � 1 + (ℏω/2Δ)2ṽ2(1 − q̃2).
The dispersion defined by Eq. (8) is shown in Figure 2(a).

We can see that the plasmon is weakly hybridized by
the electromagnetic field and the dispersion of the plas-
mon-polariton is close to the one of plasmon. Moreover,
we can see that for the reasonable values of ν, the
dispersion of EPP depends on ν only weakly. For the
currently known experimental realizations of the MTI, the

value of ν lies in the range ν ∼ 10−2 − 10−1. We can see that
at ν � 0.1, the dispersion of EPP becomes indistinguish-
able from the one with ν � 0. In what follows, we all as-
sume ν � 0 in the calculations. Finally, it can be seen that
within the gap, the dispersion of the edge state is
almost linear. Specifically, it becomes increasingly
linear as ν approaches zero. Figure 2(b) shows the quan-
tity describing the linearity of the dispersion
(q(2ω) − 2q(ω))/q(ω). This quantity can be regarded as
the dimensionless phasemismatch. It can be seen that as ν
approaches zero, the phasemismatch is small across all of
the gap regions. As shown in the study by Iorsh et al. [27],
the structure excited by a point-like scatterer such as a tip
of scattering SNOM would support a long-living quasi-
one-dimensional plasmon-polariton with the dispersion
defined by (8).

The nonlinear conductivity responsible for the SHG
can be calculated straightforwardly from the expression

(4). The nonlocal nonlinear conductivity is found from the
relation

Ji(x,2ω,2q) �∬dx1dx2σSHG
ijk (ω,x,x1,x2,q)Eω, j(x1,q)Eω,k(x2,q)

(9)

Thedetails of the calculation canbe found inAppendix
A, and the expression for σnl is given by:

σSHG
yyy � c

e
q̃
α2ṽ3

2π
k−30 F2(x)F2(x1)F2(x2)

(1 − ṽq̃)2  . (10)

We see that according to the symmetry restrictions,
since our system possesses the center of symmetry, the
second-harmonic current should be proportional to the
wavevector of light in the direction of propagation [32],

J(2ω) ∼ E2q̃.
In calculation of the linear and nonlinear conductivity,

we have neglected the processes of photoionization,
i.e., the direct transitions between the edge states and the

Figure 2: (a) Dispersion of the EPP for different values of ν: ν � 0.1
(solid green), ν � 0.5 (dotted red), and ν � 1 (dashed blue). (b) The
dimensionless parameter of the phase mismatch. The line legend is
the same for figure (a). EPP, edge plasmon-polariton.
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bulk states in the conduction and valence bands. This
approximation is valid when (for the case of the Fermi
energy in the center of the gap) 2ω < Δ. Moreover, unlike the
case of the spin Hall effect edge currents, there is only one
edge state per edge; thus, direct optical transitions be-
tween two edge stateswith opposite helicities do not occur.
In order to avoid the thermal excitation of the bulk states,
we also consider the limit T ≪ Δ. The only source of the
spreading of the electron wavepacket is thus the mo-
mentum relaxation of the chiral electrons in the channel
due to impurity scattering, which is weak in the quantum
Hall edge currents.

We now consider the situation similar to one consid-
ered in the study by Iorsh et al. [27]: a helical EPP is excited
by a point-like scatterer and propagates along the domain
wall. At the sufficient distance from the scatterer, the pro-
file electric field is dominantly defined by the field of the
EPP. Its y component, the only one responsible for the
nonlinear current generation, reads for the plane z � 0:

EEPP
y (x, y) � E0E(ω, qEP , x)eiqEPy  , (11)

where E0 is the amplitude defined by the coupling effi-
ciency of the point-scatterer field to the EPP mode, qEP(ω)
is the wave vector of the EPP, defined by Eq. (8), and
dimensionless functions E define the profile of the field:

E(ω, q, x) � ∫dx ′ G(x − x′,ω, q)F2(x′ ) , (12)

where the Green’s function G is given by

Gyy(x − x′,ω, q) ∼ K0( ������
q2 − k20

√
|x − x′|) , (13)

where K0 is the Macdonald function.
According to Eq. (9), the nonlinear current can be

written as

Jy(x, 2ω, y) � c
e
q̃EP

α2ṽ3

2π
F2(x)E2

0Λ
2(ω, qEP)

k30(1 − ṽq̃EP)2 e2iqEPy  , (14)

where Λ(ω, q) � ∫dxF2(x)E(ω, q, x). The bare field at sec-
ond harmonic can then be written as

Ebare(2ω, x, y) � E2ωE(2ω, 2qEP , x) . (15)

However, the electric field at the second harmonic also gets
renormalized owing to the hybridization with the linear
EPPs at the second harmonic. Collecting all the terms
together, we get the expression for the electric field at the
second harmonic:

Ey(x, 2ω, y)e−2iqEPy � R(ω) αṽ
ek20

E2
0E(2ω, qEP , x) , (16)

where

R(ω) � [1 + αṽΛ(2ω, 2qEP)
S(2qEP , 2ω) ] 2q̃EPαṽ

2Λ2(ω, qEP)(1 − ṽq̃EP)2  , (17)

where S is defined by Eq. (8).
The profiles of the Ey field component in the xz plane

for frequencies ℏω/Δ � 1/3 and ℏω/Δ � 2/3 are shown in
Figure 3(a and b), respectively. It can be seen that the field
is distorted in the x direction owing to the finite localization
length l of the topological current and that the field at
second harmonic is more localized.

Different terms entering Eq. (17) are plotted in
Figure 3(c), namely, the term S in the denominator can be
regarded as the phase-matching factor. Naturally, owing to
the almost linear dispersion of the EPP, S is quite small,
and the resonant contribution to the SHG signal is signifi-
cant. The termsΛ correspond to the field enhancement due
to the subwavelength field localization in the EPP mode.
The function Λ has a logarithmic divergence in the limit of
low frequencies. This however can be regularized either by
introducing small but finite skin depth of the edge current
in the z direction or introducing a low frequency cutoff
which is done further in themanuscript. The value of R(ω),
which cumulatively includes contributions fromΛ and 1/S,

is of the order of 10−3 in the broad frequency range.
Omitting the spatial profiles, the ratio of the field am-

plitudes at the second and fundamental harmonic can be
presented as

Figure 3: Profiles of the Ey component of the EPP field at ℏω/Δ � 1/3
(a) and ℏω/Δ � 2/3 (b). (c) Spectrum of different contributions to the
SHG enhancement factor R. EPP, edge plasmon-polariton; SHG,
second-harmonic generation.
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ESHG/E0 � R(ω)[eE0v/ω
ℏω

] . (18)

We can see that the efficiency of the SHG is proportional to
the ratio of the maximum kinetic energy gain by electron
per the EM field period and the photon energy. First, let us
recall that in the conventional conducting systems in the
limit of low frequencies, the mean momentum is propor-
tional to the relaxation time τ rather than to the field
period. The relaxation time τ is defined by the impurity-
assisted backscattering and by the thermal fluctuation–
assisted ionization of the edge state electrons to the bulk
conduction band. The latter processes are suppressed by a
factor exp[ −Δ/(kBT)], which can be vanishingly small for
low temperatures. The former process is suppressed in the
anomalous Hall regime since there is no backpropagating
state. This is in stark contrast to the case of spin Hall
regime, where there are two counter-propagating edge
states with opposite spins, and thus any magnetized im-
purity or even electron-electron interactions can result in
effective momenutm relaxation. We thus argue that for the
case of anomalous Hall plasmon-polaritons, the upper
limit for the nonlinear response is defined not by the in-
ternal losses, but rather by the finite size of the domain
wall. Specifically, it is evident that when the kinetic energy
gain per EM cycle exceeds Δ, the electrons reach the bulk
conduction band and that our approximations cannot be
applied. It means that the upper limit for the numerator of
the bracketed expression in Eq. (18) is Δ. At the same time,
we have considered the infinitely long domain wall. This
approximation holds when the longitudinal extent of the
domainwall L is much larger than the effective wavelength
of the plasmon-polariton, which can be approximated by
λEP ∼ 2πv/ω. With this, we can estimate the upper limit for
the quantity in brackets:

Q(ω) � [eE0v/ω
ℏω

] <
ΔL
2πℏv

� L
2πl

 . (19)

For the domain wall length of 10 μm, the dimensionless
quantity can be as large as 20. For the adequate electric
field amplitudes, a more accurate approximation may be
made, namely, the characteristic timescale is defined not
by momentum relaxation τ but rather by the time τ0 � L/v
taken by the electron to travel along the whole domain
wall. In this case, we can write

Q(ω) < eE0L
Δ

L
2πl

� eE0L
2

2πℏv
. (20)

Let us consider the specific case of ℏω � 0.5 meV,
Δ � 1.5 meV, and v � c/600. In this case, l � ≈160 nm. We

also assume L = 10 μm. In this case, τ0 ≈ 20 ps
and T � 2π/ω ≈ 10 ps ≈ τ0. In this case, for a moderate
field amplitude of 1V/cm Q(ω) ≈ 6.5. Multiplying it
by the respective value of R, we can estimate the effec-
tive nonlinear susceptibility as 7 × 10−3 cmV−1, which is
five orders of magnitude larger than in the bulk GaAs, 1.7 ×
10−8 [cm/V] [33], four orders of magnitude larger than in
the GaAs quantumwell, ∼10−7[cm/V] [33], and three orders
of magnitude larger than in graphene, ∼10−6[cm/V] [21]. It
is also considerably stronger than the nonlinear response
of noncentrosymmetric topological insulators [34, 35],
10−6[cm/V]. These structures are however two dimensional
in contrast to our one-dimensional structure, and thus, the
coupling efficiency of the far-field radiation should be
accounted for. The efficiency of coupling of the field of
fundamental harmonic to the EPP mode is of the order of
10−2. The coupling efficiency can be improved by using not a
point source, but a diffraction grating with a period much
less than the wavelength and with the reciprocal grating
vector is equal to the EPP wavelength. There are now many
other routes of efficient coupling of the bulk field to the
deeply subwavelength plasmonic terahertz modes [36]. This
suggests that the chiral currents may be regarded as an
extremely efficient source of SHG in the terahertz range.

We stress that the aforementioned response is
broadband and does not require any additional photonic
resonant structure, while it is evident that the latter
would further increase the SHG signal. In the estimation
of the effective nonlinear response, we did not account
for the efficiency of coupling of the fundamental har-
monic signal to the EPP mode, which is usually weak
owing to the strong localization of the EPP. It is also
noteworthy that the broadband response is achieved
owing to the almost linear dispersion of EPPs in the
structure providing the lift of the strict phase-matching
conditions.

To conclude, we have considered the SHG in the chiral
current localized at the domainwall of theMTI. Assisted by
the excitation of the edge plasmon-polariton both at
fundamental harmonic and second-harmonic frequency,
the SHG process can be several orders more efficient than
in graphene, in two-dimensional and bulk GaAs φT. The
effect is broadband due to the linear dispersion of both
the current and plasmon-polariton mode, and owing to
the absence of the backscattering in the chiral current,
its magnitude is virtually limited only by the domain
wall length. Thus, we anticipate that the nanostructures
comprising domain walls in the MTI can become a
building block for the efficient sources of SHG in the ter-
ahertz range.
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Appendix A
Derivation of the expression for the
nonlinear conductivity
The average current is given by (4), where the time
evolution operator:

Û(t, t0) � e−i/ℏ∫
t
dt′V(t′) � 1 + 1

i
∫
t

t0

dt1V̂(t1)

+1
i2
∫
t

t0

dt1V̂(t1)∫
t1

t0

dt2V̂(t2)
(A.1)

The interaction term is represented in a form
V̂(t, r) � V̂0(t, r) + V̂

†
0(t, r). Specifically,

V(t, r) � −ev[σ × A(t, r)], (A.2)

where A(t) is the vector potential of the perturbing field
and equal to:

A(t, r) � Ae−iωt+iqr + A*eiωt−iqr (A.3)

In the second order, there are two contributions to the
nonlinear current:

〈 J2 〉 ≈ 〈n|J2(t)|n〉 + 〈n1(t)|J(t)|n1(t)〉, (A.4)

Here, the first one comes from the averaging of the second-
order perturbation of the current operator over the equi-
librium distribution. From the Baker-Campbell-Hausdorff
formula, J2 ∼ [J,V(t1),V(t2)]+. The second one comes from
the averaging over the equilibrium current operator over
the first-order correction to the eigenstates.

Besides, the SHG, the second-order response allows for
the generation of the dc current. These terms would be
proportional to AA∗,A∗A.

The first term in Eq. (A.4) results in the zero dc current
(for the case of linear dispersion of the electron
eigenstates), and the contribution to the second
harmonic is given by

〈J〉(1)2ω, 2q(x, x′) � ∑
n
[fn + fn+2q]

× −e3v3FF2(x)F2(x1)F2(x2)A2

(E(kn + q) − E(kn) − ω)(E(kn + 2q) − E(kn) − 2ω)
(A.5)

The analogous term comes for J−2ω,−2q.
The contribution from the second term in Eq. (A.4) is

given by

〈J〉(2)2ω, 2q(x, x′) � e3v3F∑
n
fn

× F2(x1)F2(x)F2(x′1)A2

(E(kn) − E(kn − q) − ω)(E(kn + q) − E(kn) − ω)
(A.6)

We then sum the contributions in Eqs. (A.5) and (A.6) and
assume the low temperature limit, when fn � Θ( −kn), the
Heaviside function. In this limit, the summation over n is
readily yielding the final answer presented in the main
manuscript

σSHG
yyy (ω0, q) � 1

ω2
0

e3v3F
c2ℏ2

F2(x)F2(x1)F2(x2)
( − vFq/c + k0)2

q
2π

� c
e
q̃
α2ṽ3F
2π

k−30 F2(x)F2(x1)F2(x2)
(1 − ṽq̃)2  ,

(A.7)

where k0 � ω0/c, q̃ � q/k0,
v&doublehyphen; 3pt&doublehyphen; 5.5pt∼F � vF/c,
α � e2/cℏ.

The contribution to the dc current from the second term
in Eq. (A.4) is given by

σ2, dc(ω, q) � −∑
m
[ f(km + q) + f(km − q)]

×e
3v3FF

2(x1)F2(x)F2(x′1)
ℏ2(vFq − ω)2

(A.8)
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