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Abstract: Carbon nanotube (CNT) can work as excellent
saturable absorber (SA) due to its advantages of fast re-
covery, low saturation intensity, polarization insensitivity,
deep modulation depth, broad operation bandwidth,
outstanding environmental stability, and affordable
fabrication. Its successful application as SA has promoted
the development of scientific research and practical
application of mode-locked fiber lasers. Besides, mode-
locked fiber laser constitutes an ideal platform for inves-
tigating soliton dynamics which exhibit profound
nonlinear optical dynamics and excitation ubiquitous in
many fields. Up to now, a variety of soliton dynamics have
been observed. Among these researches, CNT-SA is a key
component that suppresses the environmental perturba-
tion and optimizes the laser system to reveal the true highly
stochastic and non-repetitive unstable phenomena of the
initial self-starting lasing process. This review is intended
to provide an up-to-date introduction to the development
of CNT-SA based ultrafast fiber lasers, with emphasis on
recent progress in real-time buildup dynamics of solitons
in CNT-SA mode-locked fiber lasers. It is anticipated that
study of dynamics of solitons can not only further reveal
the physical nature of solitons, but also optimize the per-
formance of ultrafast fiber lasers and eventually expand
their applications in different fields.
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1 Introduction

Ultrafast pulses maintain significant applications in
various fields, such as ultrafast imaging, optical commu-
nications, spectroscopy, biomedicine, and material pro-
cessing. Passively mode-locked fiber lasers, which have
been widely utilized to generate ultrashort pulses in the
femtosecond level, can be regarded as the next-generation
laser source that can replace the solid-state laser due to the
advantages of high beam quality, high efficiency, high
integration, high reliability, etc. [1]. For the passively
mode-locked fiber lasers, saturable absorber (SA) plays a
key role in generating ultrafast pulses. It works by
depressing the transmissivity of pulses with low intensity
while raising the transmissivity of pulses with high in-
tensity. At present, common passive mode-locker in fiber
lasers can be divided into effective and real SAs. The
effective SAs, i. e., the nonlinear polarization rotation
(NPR) [2] and nonlinear optical loop mirror (NOLM) [3], are
based on nonlinear effect with the properties of high
damage threshold and low cost, which provide a good
platform for the research of nonlinear phenomena. How-
ever, due to their drawbacks including high saturation
threshold, difficulty of self-starting and vulnerable to
environmental perturbation, it is limited for practical ap-
plications. The real SAs, such as semiconductor saturable
absorption mirror (SESAM) [4], are based saturation effect
of resonance transition of the material. In fact, most light-
absorbing materials can be used as the SA providing the
laser operating in the material resonant absorption wave-
length range. For the real SA, there are several parameters
that are crucial for the performance of SA, including
operating wavelength, saturable intensity, recovery time,
damage threshold and thermal stability, etc. In recent
years, SESAM is a leading passive mode-locked technology
in commercial applications. It is mainly due to its mature
fabrication process, which can control the process of
fabricating SESAM, realize mode-locked devices with
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different characteristics, and meet various requirement
[5, 6]. However, the SEASAM still faces several drawbacks,
such as the expensive and complex preparation process,
narrow operating wavelength range [5], slow recovery
time, and poor compatibility with fibers. Therefore, re-
searchers hope to find an ideal passive mode-locker with
the features of fast response time, strong nonlinear effect,
wide operating bandwidth, low unsaturated absorption
loss, high damage threshold power, appropriate modula-
tion depth, low cost, simple preparation method and
appropriate integrated structure [7].

In recent years, various kinds of nanomaterials, such
as carbon nanotubes (CNTs) [8-12], graphene [11, 13],
transition metal chalcogenide (TMD) [14], black phos-
phorus [15], and topological insulator [16], etc., show up
semiconductor characteristics of strong third-order
nonlinear effect, ultrafast response time and wide band
operating wavelength range, thereby can be applied as
competitive real SA. In particular, CNT-SA has been
widely studied and applied in mode-locked fiber lasers by
taking advantages of fast recovery, low saturation in-
tensity, polarization insensitivity, deep modulation
depth, broad operation bandwidth, outstanding envi-
ronmental stability, and affordable fabrication. Its suc-
cessful application as SA has promoted the development
scientific research of mode-locked fiber lasers and has
become the building block of the advances of mode-
locked fiber lasers.

On the other hand, ultrafast mode-locking fiber lasers
can provide an excellent platform for observing a variety of
nonlinear dynamics, such as modulation instability, Four-
wave mixing, cross-phase modulation and so on [17].
Although some steady state phenomena had been
observed theoretically and experimentally, many inter-
esting and important transient dynamics properties of
these nonlinear dynamics can only be theoretically pre-
dicted, and some are unpredictable. The main reason is
that these ultrafast nonlinear dynamics are unrepeatable
and have complex transformation in temporal and spectral
domain, which cannot be resolved by the current tech-
nologies. In recent years, researchers have proposed time-
stretched dispersive Fourier transform (TS-DFT) technique
to measure the transient, non-repeat events [18-20]. The
TS-DFT technique derives from the analogy between
spatial Fraunhofer diffraction and temporal dispersion, in
which the diffraction of a beam through a lens in the far-
field region is analogous to the propagation of a time pulse
in a dispersion element, also known as the space-time
duality [21]. Up to now, a variety of soliton dynamics have
been observed in ultrafast fiber lasers, such as evolution of
femtosecond soliton molecules, the internal motion of
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dissipative optical soliton molecules, and the dynamics of
soliton explosions.

Among these researches, CNT-SA is a key component
that suppresses the environmental perturbation and opti-
mizes the laser system to reveal the true highly stochastic
and non-repetitive unstable phenomena of the initial self-
starting lasing process. This review is intended to provide
an up-to-date introduction to the development of CNT-SA
ultrafast fiber lasers, with emphasis on recent progress in
real-time buildup dynamics of solitons in CNT-based
mode-locking fiber lasers. First of all, we briefly look into
the characteristics of CNT-SA. Secondly, we discuss the
application of CNT-SA for ultrafast fiber lasers and the
current development of CNT-SA fiber lasers. Next, with the
benefit of CNT-SA, we go to the details of experimental real-
time observation of buildup dynamics of solitons in ultra-
fast lasers. Finally, we provide in-sights into further
research directions and the current challenges.

2 Carbon nanotube-based
saturable absorber

CNT is a kind of one-dimensional nanomaterial with
remarkable electrical, thermal, mechanical, and optical
properties. It was firstly reported by lijima et al. in 1991,
which was a multi-walled CNT (MWCNT) [23]. The single-
walled CNT (SWCNT) was discovered simultaneously and
independently by lijima et al. from Japan and Bethune et al.
from America in 1993 [24, 25]. The morphology of SWCNT is
considered to be a single graphene sheet but rolled up into
seamless hollow cylinders. This unique structure, which
can enable SWCNT with remarkable physical (electrical
and optical), chemical, and mechanical properties, has
attracted tremendous attentions from physicists, chemists,
and material scientists, and has become a research hotspot
in science and engineering that continues to this day. The
roll direction of the graphene sheet determines the band
structure of SWCNT. Its electronic conduction shows
several properties from semiconductor to metal, which
depends on the diameter and chirality of the graphitic
arrangement of CNTs [26] as shown in Figure 1(A). For
semiconducting SWNT, the band gap width is inversely
proportional to the pipe diameter, which is known as
kataura plot as shown in Figure 1(D) [27]. The common
synthesis methods of CNT include arc discharge, CVD, laser
ablation, and high pressure carbon dioxide reduction
[12, 28]. Generally, the SWCNT obtained is a mixture with a
variety of pipe diameter, including both semiconducting
SWCNT and metallic SWCNT, of which the metallic one
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accounts for about 1/3 [29, 30]. At the same time, the
semiconducting SWCNT has a certain diameter distribu-
tion, so that it can correspond to a number of different
wavelengths.

Saturable absorption is the phenomenon that the ab-
sorption of light by matter decreases with the increase of
incident light intensity. Most materials maintain saturable
absorption characteristics, but they usually need very high
light intensity, even close to or higher than the damage
threshold. When the light incident on the semiconductor
material, the carrier of the valence band will be excited to
transition to the conduction band, which is the absorption
of light. When the incident light intensity increases, the
carrier of valence band is depleted (p-type doping) or the
conduction band is filled (n-type doping) according to the
different characteristics of materials. Due to the Pauli in-
compatibility principle, two electrons cannot have the
same electronic state, which hinders the continuous ab-
sorption of light by the material. At this time, the absorp-
tion of light by the semiconducting material reaches the
saturation state.

The semiconducting SWCNT has similar bandgap
structure compared with the semiconductor and has
excellent saturable absorption properties. In addition, CNT
has advantages of fast recovery, low saturation intensity,
polarization insensitivity, deep modulation depth, broad
operation bandwidth, outstanding environmental stabil-
ity, and affordable fabrication. These characters make CNT
ideal SA for ultrafast lasers. However, there are several
problems that hinder the practical application of CNT as
SA. In the process of SWCNT synthesis, the content of CNTs
is relatively low, which usually needs further enrichment
and purification. The wide distribution of pipe diameter
will lead to additional unsaturated absorption loss, and the
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repeatability of preparation is not good. Due to the high
surface energy of CNT, the nanotubes are easy to agglom-
erate into clusters. The particle size of CNTs is equal to the
order of light wavelength, which will produce a large loss.
The axial thermal conductivity of CNT is very good, but the
thermal conductivity between tubes is very poor, which
will lead to oxidation and combustion in the air at about
400 °C, seriously affecting the damage threshold charac-
teristics of CNTs mode-locker.

In order to effectively utilize the nonlinear absorption
characteristics of CNT in fiber lasers, researchers have
designed a variety of SWCNT-based mode-locker, which
can be divided into two types: transmission-type and
evanescent field type. Transmission-type refers to the in-
tegrated way of passing light vertically through SWNT,
while the most commonly use one is the fiber ferrule in-
tegrated type [28, 36, 37] as shown in Figure 2(C). In this
way, it is usually necessary to mix the CNT with composite
film, which can prevent the agglomeration of SWNT in the
preparation process, and isolate SWNT from air and pre-
vent oxidation. The commonly used polymers are polyvinyl
alcohol (PVA), polystyrene, polymethylmethacrylate,
epoxy resin, and polycarbonate [10, 28]. The optical
deposition method can also be used to make SWNT evenly
coated on the end face of the optical fiber, which is easy to
be damaged since it is exposed to the air [38]. In addition,
Martinez et al. designed the microfluidic channel type on
the optical fiber and filled the CNT dispersion into it to
obtain an SWNT mode-locker with compact structure [31].
The fabrication of evanescent field type mode-locker is
usually based on the evanescent field interaction on the
surface of D-type fiber or micro/nano fiber [32, 33].
Compared with the transmission type, the damage
threshold power of evanescent field type mode-locker is

Figure 1: Fundamentals of CNTs: (A)
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of several concentric shells, Tilmaciu et al.
[22]. © Tilmaciu and Morris 2015; (D) Kataura
plot, each point represents a different
diameter and chirality of the graphitic
arrangement of SWCNTSs, the black and red
dots represent semiconducting and metallic
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significantly increased, and the interaction distance be-
tween optical field and SWNT is extended, which is
conducive to making full use of the nonlinear effect of
mode-locked materials. Moreover, other evanescent field
type mode-lockers have been constructed by using hollow
fiber [34] and holey fibers [35]. However, the evanescent
field type CNT-SA usually has higher saturation intensity.

There are numerous works that have discussed the
saturable absorption property in detail [7, 10, 12, 28, 39-41].
Here, we highlight the low saturation intensity of CNT-SA,
which is advantageous to achieve mode-locking while
prevent Q-switching instabilities [5] and also benefit to the
CNT-SA based fiber lasers to run with high stability, reli-
ability, and excellent self-starting performance. The satu-
ration intensity of SWCNT is typically in the level of
~10 MW/cm?’, which is comparable with SESAMs [37].
Compared with its counterparts, e. g., graphene, this value
is more than one orders lowers than that of graphene SA. It
is also advantageous compared with other emerging 2D
materials [42, 43]. The CNT-SA based mode-locked fiber
lasers have high stability and reliability, it can run
continuously for over 200 h without significant degrada-
tion of average power and spectral width [44]. Our home-
made CNT-SA mode-locked fiber laser shows ultrahigh
reliability, it can help to suppress the Q-switched lasing
induced by the environmental perturbation, restore the
entire buildup process of soliton buildup, and enable the
measurement of the entire buildup dynamics of soliton of
the laser, which is described in detail in Section 4. CNT-SA
mode-locked fiber laser is resistant to the environmental
perturbation, as shown in supplement 1-3, it is immune to
be shaking of the laser setup, it can also restore to the
stable state after press the intra-cavity fiber.
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3 CNT-based ultrafast fiber laser

Due to the excellent properties for saturation absorption,
CNT-SA has been widely used in Q-switched and mode-
locked lasers, including the solid-state lasers [45-49],
semiconductor lasers [50], waveguide lasers [51], and fiber
lasers. The excellent properties of CNT-SAs enable ultra-
stable, ultrashort, and compact fiber laser system working
from the visible to the mid-infrared spectral region [52-55],
with functionalized operations like gigahertz repetition
rate [56-58], multi-wavelength output [36, 59, 60], pulse
duration, and spectral bandwidth tunability [37, 61-65].
Various operation regimes, including Q-switching [52, 53,
66-71], Q-switched mode-locking [72], and mode-locking
[9, 37, 50, 73-76], were reported. Pulse evolution and
interaction dynamics, including various soliton types
[9, 37, 55, 77-79], soliton molecule [74, 80, 81], harmonic
mode-locking [58, 75, 82], vector solitons [83, 84], dark
soliton [85], and soliton rains [86, 87], were observed based
on SWCNT-SAs and MWCNT-SAs. Due to the technical
advantages of high beam quality, high efficiency, high
integration, high reliability, etc., of fiber lasers, in this
section, we mainly focus on the CNT-SA-based ultrafast
fiber lasers. A summary of the progress of CNT-SA mode-
locked fiber lasers is shown in Table 1.

3.1 CNT-based Q-switched fiber laser

Fiber lasers using Q-switching technique can produce pulses
with high energy, pulse duration ranging from micro- to
nano-seconds and repetition rates typically around kilo-
hertz. The mechanism of Q-switching is quality factor

G

F \ D-fiber

CNT

Fiber taper

Figure 2: Schematic diagram of the CNT mode-locking device: (A-D) Transmission type; (E)-(F) evanescent field type; (A) Reflection type;
(B) transmission type; (C) fiber ferrule integrated type; (D) microfluidic channeltype, Martinez et al. [31]. © Optical Society of America 2008. (E)
Based on D-type fiber, Song et al. [32]. © Optical Society of America 2006; (F) based on micro/nano fiber, Song et al. [33]. © American Institute
of Physics 2007; (G) Based on hollow fiber, Choi et al. [34]. © Optical Society of America 2009; (H) Based on holey fiber. Obraztsova et al. [35].
© John Wiley & Sons, Inc 2010.
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modulation to store and release the energy in the laser cavity.
The stability criterion of passively CW Q-switching is
determined by the cavity length, gain material, and the SA
[5, 88-90]. For the SA, the large modulation depth, satura-
tion intensity, mode area [5], and recovery time [88] are
preferred for Q-switched operation. The CNT-SAs, can be
designed with large modulation depth, have both a fast and
a slow response time, can be used for passively Q-switched
fiber lasers. Since the first report of CNT-SA in 2003 [8], many
works have been done to extend the wavelength, pulse en-
ergy, pulse width, repetition rate of Q-switched fiber lasers,
etc., and endowed them with tunability, multi-wavelength
output, by improving the cavity, and the CNT-SA fabrication
and implementation method.

The first demonstration of CNT-SA based Q-switched
fiber laser was reported by Set et al. in 2003 [91]. The results
reported a dual-regime laser operation, with mode-locking
operation at low pump power, while Q-switching operation
by improving the pump power from mode-locking regime.
By raising the pump power, the repetition rate of pulse
train varies from 34.55 to 37.45 kHz, and the pulse width
varies from 5.32to 4.04 ps. A similar dual-regime operation
was also reported by Li et al. in 2014 [67], the transitioning
from mode-locking to Q-switching at high pump power was
explained by the optical limiting effect of the CNT-SA due
to the variation of nonlinear transmission. Active control of
the operation regimes can also be achieved by employing a
fast Si-based variable optical attenuator [72] and by
adjusting polarization controller in front of the specially
fabricated polarization dependent CNT-SA, where the
CNT-SA is implemented by synthesizing well-aligned CNT
arrays using zeolite AIPO4-5 as a mask [68, 92].

Up to now, CNT-SA-based passively Q-switched fiber
lasers can produce pulse energies over 100 nJ [53, 71, 93-95]
and even up to 1.7 pJ in Tm-doped fiber laser using a
“Yin-Yang” all-fiber cavity [69], pulse durations from ps to
~300 ns [96, 97], and repetition rate up to 178 kHz [53].
Wavelength tunability can be endowed by using the tunable
band pass filters [98-100] or gratings [71] in the related
spectral regions.

The operating wavelength of the CNT-SA-based
Q-switched fiber lasers is mainly determined by the gain
medium and the absorption band of CNT-SA. The nonlinear
optical absorption region of CNT can be customized
through controlling the diameter and chirality of the
nanotubes. Generally, CNT-SAs are mainly fabricated to
work across 1.0~2.0 pm region. Hence, CNT-SA based
passively Q-switched fiber lasers are mainly demonstrated
in this region, including ~1060 nm using ytterbium (Yb)-
doped fiber [67, 94, 100-102], ~1300 nm using the pra-
seodymium (Pr)-doped fluoride fiber [98], ~1550 nm using
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the erbium (Er)-doped fiber [92-96, 99, 102-110], ~1900 nm
using the thulium (Tm)-doped fiber [66, 69, 93, 111-113],
2097 nm using the holmium (Ho)-doped fiber [97]. In 2016,
Xu et al. reported that nonlinear absorption wavelength of
SWCNT could extend into the visible region [114].
Following this work, Li et al. successfully demonstrated red
light Q-switched all-fiber Pr:ZBLAN fiber laser using an
SWCNT/PVA as the SA, based on the linear fiber cavity and
bidirectional ring cavity configurations, and pumping with
445 nm laser diode, they achieved the output at wave-
length of 716 [70], 635.4 nm (Figure 3 (A)) [52], respectively.
Recently, spectral region of CNT-SA based passively
Q-switched fiber lasers has been extended to mid-infrared.
By using the SWCNT-SA with nanotube diameters around
1.5 nm, Lyu and coworkers successfully demonstrated
CNT-SA based Q-switching in a Ho/Pr-codoped ZBLAN fi-
ber operating in the wavelength of ~2.8 pm with wideband
tunability [53, 71].

3.2 CNT-based passively mode-locked fiber
laser

3.2.1 CNT-SA based soliton fiber laser

In mode-locked fiber lasers, ultrashort pulses have high
peak power and thus generate high nonlinear phase shift.
If the accumulated nonlinear phase shift cannot be
controlled or compensated by dispersion, it will cause
wave breaking, that is to say, the pulse splits or collapses
into noise like pulse [115]. In order to get high-energy
pulses, it is necessary to control the nonlinear effect in the
laser reasonably. One way to control the nonlinear phase
shift is to increase the area of the fiber mode field and
reduce the energy density. The other is to control the
nonlinearity and dispersion in the laser cavity. The
dispersion in the cavity varies with the position, which is
called dispersion map. According to the dispersion distri-
bution characteristics of the fiber laser, the CNT-based
mode-locked fiber laser can produce conventional soliton
(CS), stretched pulse (StP), self-similar pulse (SsP), and
dissipative soliton (DS). The net cavity dispersions are
Buet<0 DS’y Bret=0 DS’ Bret=0.01 ps’, Bre>>0.01 ps’, respec-
tively. The temporal profiles of these four kinds of solitons
are sech’, Gaussian, parabolic, super-gaussian, while pulse
energies usually are in the level of ~0.1 nJ, ~1 nJ, ~10 nJ,
~50 nJ, respectively.

3.2.1.1 Conventional soliton
In most conditions, the CNT-SA based mode-locked fiber
lasers are operating in anomalous dispersion regime with
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Figure3: CNT-SAbased Q-switched fiber laser covering the spectral region from visible to mid-infrared. (A) 635 nm based on Pr:ZBLAN fiber, Li
etal. [52]. © IEEE 2018; (B) ~1060 nm based on Yb-doped fiber, Li et al. [67]. © Optical Society of America 2014; (C) 1300 nm based on Pr-doped
fluoride fiber, Ahmad et al. [98]. © Chinese Physical Society and IOP Publishing Ltd 2019; (D) ~1560 nm based on Er-doped fiber, Xu et al. [68].
© Elsevier Ltd 2015; (E) ~1900 nm based on Tm-doped fiber, Chernysheva et al. [69]. © Springer Nature 2016; (F) ~2800 nm based on Ho /Pr co-

doped ZBLAN fiber, Wei et al. [53]. © IEEE 2019.

the balance between dispersion and Kerr nonlinearity, in
addition to the gain and loss in the cavity, and thereby can
form soliton-like pulses, which are also named as CSs. The
CSs are close to transform limit, with clear Kelly sidebands
in the spectral domain and sech’ profile in the temporal
domain. Most of the research on pulses operating in CS
regime focuses on testing the characteristics of CNT-SAs in
various parameters and implementations, revealing the
pulse evolution dynamics, improving the output perfor-
mance of lasers (repetition rate, pulse duration, pulse en-
ergy, wavelength), and endowing them with various
functions.

The first demonstration of CS generated by CNT-SA
based mode-locked fiber lasers was reported by Set et al.
[8], extended from the application of noise suppressing
[116], and studied in detail later in [117]. From then on,
conventional solitons based on CNT-SA fiber laser are
widely explored. The typical pulse durations of CS are be-
tween 200 fs and 1 ps, spectral width <5 nm, pulse energy in
the level of 100 p], average output power in the level of
1 mW at repetition rate of several to tens of megahertz
(MHz). Up to now, the pulse duration of CSs in CNT-SA
based mode-locked fiber lasers have been shortened to
sub-200 fs at ~1550 nm in Er-doped fiber [9, 118, 119]. At the
operation wavelength of ~1 pm, it has been shortened to
137 fs [38]. While most attentions were focused on the ul-
trafast CNT-SA mode-locked fiber lasers, several works
focused on producing solitons with pulse duration on the

nanosecond scale [120, 121] using the long cavity configu-
ration, as it has advantages of high pulse energy and
average power for applications like mid-infrared pulse
generation. The single pulse energy has been improved to
11 nJ with pulse duration of ~3.37 ps [122], the average
power and peak power have been improved to 250 mW and
5.6 kKW at repetition rate of 38.9 MHz [44].

The operation wavelengths of fiber lasers have covered
~1000 nm using Yb-doped fiber [128],1177 nm using bis-
muth (Bi)-doped fiber [124] ~1300 nm using Pr-doped fiber
[125], ~1550 nm using Er-doped fiber [9, 117, 129, 130],
~1900 nm using Tm-doped fiber [65, 131, 132], ~2100 nm
using Ho-doped fiber laser [133]. Recently, Ho-doped
mode-locked fiber laser based on metallic CNT-SA has
been demonstrated [127]. In this work, the authors used
complex band structure of individual bundled nanotube in
thin films to open the bandgap and enable optical ab-
sorption in near-infrared spectral range in metallic CNTs.
Finally, transform limited CSs with spectral bandwidth of
6.6 nm, pulse duration of 683 fs at wavelength of ~2080 nm
were obtained.

In these reports, nonlinear absorption performances of
the CNT-SAs are tailored by controlling the structure and
the diameters of nanotubes. Interestingly, by using a dis-
tribution of different nanotube diameters of SWCNT in a
single SA, wideband ultrafast optical pulse generation that
potentially covers 1-2 pm spectral region can be achieved.
As shown in Figure 4(A)—(D), Kivisto et al. have fabricated
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a novel polymer-free SWCNT-SA with diameter of tubes
ranging from 1.2 to 1.8 nm [54]. The same SWCNT-SA was
assembled in the linear fiber cavity to achieve mode-
locking using Yb, Er, and Tm: Ho-doped fiber laser,
respectively. In the three mode-locked lasers using the
same SWCNT-SA, sub-picosecond pulses operating at 1.05,
1.56, and 1.99 pm were demonstrated, respectively. By
properly designing the outer and inner wall electronic
types and controlling the nanotube diameters of
DWCNT-SA, Hasan and the coworkers have also reported
another wide-band mode-locked fiber laser operating at
1066, 1559, and 1883 nm [55], as shown in Figure 4(E)—(H).

In recent years, mid-infrared laser, especially oper-
ating at 3~5 pm band, has been widely concerned and
studied due to its characteristics of molecular fingerprint
area, atmospheric window area, human eye safety area. It
has important application value in biomedical, laser
detection, spectral analysis, laser communication, na-
tional defense security, and other fields. However, CNT-SA
mode-locked fiber lasers are limited to the near-infrared
region. Recently, Wei et al. demonstrated that the CNT-SAs
can be promising for mid-infrared pulsed lasers [53, 134].
The fabricated CNT-SA showed strong nonlinear trans-
mission at 2850 nm, the measured modulation depth is
16.5%, saturation intensity is 1.66 MW/cm’, and the non-
saturable loss 71.8%. Using Ho/Pr-codoped ZBLAN fiber,
the laser shown both Q-switching and mode-locking op-
erations, the mode-locked pulses had spectral bandwidth
of 1.4 nm at 2865.2 nm.

DE GRUYTER

3.2.1.2 Stretched pulse
The CS has become one of the most important topics in the
research of mode-locked fiber laser in the past few decades.
However, it has serious inherent disadvantages: pulse
energy cannot be scaled up, while the maximum single
pulse energy is usually less than 0.1 nJ. When the pulse
energy is higher, the pulse will split and thereby form
multi-pulse or pulse collapse. Moreover, the pulse duration
of CS is usually between 0.2 and 1 ps, further reducing the
pulse duration is difficult. One effective method to simul-
taneously increase the pulse energy and reduce pulse
duration is using dispersion management in the cavity. In
the dispersion managed fiber cavity, the net dispersion is
very close to zero. With alternating anomalous and normal
dispersion using different type of fibers, the mode-locked
pulse can be periodically broadened and compressed. This
method can effectively reduce the peak power of the pulse
in the cavity, thus inhibiting pulse splitting caused by
nonlinear effect, and obtaining much high energy pulse
[137, 138]. In addition, the pulse width and spectrum at
different positions in the resonant cavity would change
dramatically. The maximum and minimum pulse width
could differ by tens of times. After compression, pulse
duration can be less than 100 fs. This kind of dispersion
managed pulses is also known as the StPs, with no Kelly
sidebands in the spectral domain and Gaussian-like profile
in the temporal domain.

There are a few works that report the CNT-SA StP
generation [77, 127, 135, 136, 139, 140-149], showing that
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Figure 4: CNT-SA mode-locked fiber laser covering the spectral region from near-infrared to mid-infrared: (A) typical schematic diagram of
CNT-SA mode-locked fiber laser. Yao et al. [123]. © I0P Publishing 2014; (B) ~1000 nm using Yb-doped fiber laser. Nicholson et al. [38]. ©
Optical Society of America 2007; (C) 1177 nm using Bi-doped fiber laser. Kelleher et al. [124]. © IOP Publishing 2010; (D) ~1300 nm using Pr-
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using Tm-doped fiber laser. Sobon et al. [126]. © Springer Nature Limited 2017; (G) ~2100 nm using Ho-doped fiber laser. PAWLISZEWSKA et al.
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the common pulse durations are <200 fs, spectral
width >20 nm. The first demonstration of CNT-SA StP
generation was presented in 2009 [144], and the detailed
demonstration was shown in [146]. The laser generated StP
at 1.56 pm with pulse duration of 113 fs and spectral width
of 33.5 nm. To achieve narrower pulse duration or wider
spectral width, it is useful to adopt highly doped broad-
band gain medium and a short cavity. In this way, Popa
et al. demonstrated the generation of StP with spectral
width of 63 nm and pulse duration of 74 fs, however, pulse
energy of only 36 pJ [135] as shown in Figure 5(A)—(B). To
obtain higher pulse energy and to increase the CNT-SA
optical damage threshold, Yu et al. adopted the SWCNT-SA
using the evanescent field interaction in a microfiber in a
shorter length Er-doped laser cavity (1.2 m) [136] as shown
in Figure 5 (C)—(D). The produced StPs energy was raised to
0.18 nJ with average output power of 26 mW at 1555 nm. The
pulse duration is 66 fs with spectral width of 54 nm, which
is to data, the shortest pulse in CNT-SA mode-locked fiber
lasers. In addition, StPs has been obtained in Yb-doped
fiber laser at 1025.5 nm [142] and Tm-doped fiber laser at
~2 pm [77, 143]. In the metallic CNT-SA for Ho-doped fiber
lasers, the StPs were produced with 31.4 nm spectral width,
212 fs pulse duration, and 3.79 n] pulse energy at ~2080 nm
[127].

3.2.1.3 Self-similar pulse and dissipative soliton

In recent year, similariton (self-similar) mode locking [152]
and dissipative mode locking [17] have been developed to
obtain higher pulse energy directly from the mode-locked
fiber laser. In general, self-similar pulse (SsP) has
parabolic-like profile and can be generated in slightly
normal dispersion regime. During the intracavity evolution
of SsP, the spectral width will be greatly broadened and
spectral filtering or spectral compression mechanisms
must be introduced to realize the mode-locked output of
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SsP. DSs have super-gaussian profile and can be generated
in large normal dispersion regime, under combined effects
of gain medium spectral filtering effect, Kerr nonlinear ef-
fect, dispersion, SA, gain, and loss. Compared with CS and
StP, SsP and DS can tolerate much stronger nonlinearity,
thus can effectively avoid the pulse splitting, break
through the energy limitation of the traditional fiber lasers,
and achieve higher energy pulse output.

There are only a very few researches on CNT-SA based
SsP generation [78, 150, 153], mainly due to the difficulties
of dispersion control and the requirement of extra spectral
filter. Here, we highlight the SsP generation in the Er-doped
fiber laser mode-locked by NPE mechanism in conjunction
with CNT-SA, as shown in Figure 6(A)-(C) [150]. In the
cavity, the NPE was completed by locating two polarization
controllers at both ends of the birefringent “PANDA”-type
silica-glass fiber (PZ-fiber). The net cavity dispersion is
controlled to be ~0.01 ps® at 1560 nm, which is important
for SsP generation. The laser generated stable SsP at
1560 nm with 44 nm spectral width and 127 fs pulse dura-
tion, the pulse energy was 0.2 nJ, maximum peak power of
1.5 kW and average output power of 7.14 mW. Moreover, it
showed very low repetition rate deviation.

DS in CNT-SA based mode-locked fiber laser was first
demonstrated by Kieu et al. in 2008 [79], the all-fiber
normal-dispersion Yb-doped fiber laser using CNT-SA that
implemented by fiber taper embedded in a CNT/polymer
composite can generate DS with pulse duration of 1.5 ps,
pulse energy of 3 nJ and can be dechirped to 250 fs outside
the cavity. Wavelength switchable and tunable DS Yb-
doped fiber laser has also been proposed [154]. To produce
DS in Er-doped fiber laser, dispersion compensating de-
vices, such as chirped fiber brag grating (CFBG), dispersion
compensating fiber (DCF), are necessary to manage the
cavity dispersion [151, 155-159]. DS in CNT-SA based mode-
locked fiber lasers operating at 1.32 pm using Bi-doped fiber
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Figure 6: Laser output of the SsPs and DSs at ~1.55 um from the CNT-SA based mode-locked fiber laser. (A)—(C) Optical spectrum, autocor-
relation and radio frequency spectrum of SsPs, Lazarev et al. [150]. © IEEE 2016; (D)—(F) Optical spectrum, radio frequency spectrum and
autocorrelation of DSs, Jeong et al. [151]. © Optical Society of America 2014.

[160], 1.9 pm using Tm-doped fiber [77, 161], and 2.08 pm
using Ho-doped fiber [127] have also been reported. To
further extend the working wavelength, CNT-SA based
Raman lasers have been proposed, which can cover the
wavelength of 1.12 and 1.666 pm [162, 163]. For high energy
DS generation, CNT-SA based on evanescent field interac-
tion is preferred, since it can sustain higher optical damage
threshold. By depositing the CNT-SA on D-shaped fibers,
energy of DS in Yb-doped fiber laser has been raised to 29 nJ
with stable operation at 1085 nm using the large modula-
tion depth (51%) CNT-SA [164], while in Er-doped fiber la-
sers, pulse energy as high as 34 nJ at 1563 nm can be
obtained [151] as shown in Figure 6. However, it is still
challenging for achieving higher energy self-similar pulse
and dissipative solitons in CNT-SA mode-locked fibers due
to the relatively low optical damage threshold of the pre-
sent CNT-SA.

3.2.2 High repetition rate CNT-SA mode-locked fiber
lasers

Ultrafast lasers with high repetition rate have many po-
tential applications in fields of optical telecommunica-
tions, frequency metrology, high-speed optical sampling,
and data storage [165-167]. However, as mentioned above,
fiber lasers usually have a fundamental repetition rate of
several to tens of MHz. There are two effective methods to
increase the pulse repetition rates: one is shortening the
laser cavity length; the other less technically challenging
and more convenient way is the harmonic mode-locking

(HML) [57, 58, 75, 82, 168, 169]. By shorten the fiber laser
cavity length, Martinez et al. have increased pulse repeti-
tion rate to GHz and even up to 10 GHz [170] and 19.45 GHz
[56], the laser setup and optical spectrum are shown in
Figure 7(A)—(B). By shortening the Fabry—Pérot laser cavity
length to 5 mm, the fundamental repetition rate was
increased to 19.45 GHz.

Compared with shortening the cavity length, passive
HML has the intrinsic advantage of repetition-rate self-
stabilization. The formation of HML is mainly due to the
soliton interactions in the cavity. Recently, we have
revealed the buildup dynamics of HML in CNT-SA mode-
locked fiber laser based on the TS-DFT technique. By
means of the optoacoustic effect that induces a trapping
potential, the acoustic resonance can stabilize the mode-
locking of laser at different harmonics (from the first to
sixth order at the appropriate pumping strength) with
perfect long-term stability [75]. Up to now, the repetition
rate using HML has been increases to 2.415 GHz at
1594.97 nm with 40 dB side mode suppression ratio
(SMSR), which corresponds to 213 harmonic of the
fundamental cavity repetition rate [58] as shown in
Figure 7(C)-(H).

3.2.3 Tunable and multiwavelength CNT-SA mode-
locked fiber lasers

For various applications like fiber telecommunication,
optical sensing, metrology, and microscopy, ultrafast la-
sers with controllable flexible pulses, such as wavelength
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Figure 7: High repetition rate CNT-SA mode-locked fiber lasers: (A) CNT-SA based high repetition rate laser using short Fabry—Pérot cavity; (B)
Optical spectrum of the laser using short Fabry—Pérot cavity at repetition rates of ~4.24 and ~19.45 GHz with cavity length of 25, 10, and 5 mm,
respectively, Martinez et al. [56]. © Optical Society of America 2011. (C) SWCNT-SA based Harmonic mode-locking laser; (D) nonlinear
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and pulse width tunable, multiwavelength output, wave-
length switching, and bidirectional output are desired. A
variety of technologies have been proposed to achieve
wavelength or/and pulse width tunability in CNT-SA mode-
locked fiber lasers, including tunable band pass filter
(TBPF) [37, 64, 171, 172], fiber Bragg grating [61], CFBG [62],
45°tilted fiber grating [173], diffraction grating mirror [63,
65], and tunable Lyot filter [154, 174]. Wavelength tunable
range is related to the SA operating bandwidth, gain
bandwidth of gain medium, and also the performance of
the tuning devices. Due to the advantage of broad oper-
ating wavelength of CNT, wavelength tunable CNT-SA
mode-locked fiber lasers have covered the 1~2 pm spectral
region with up to 40 nm tuning range in Er-doped fiber
lasers while 300 nm in Tm-doped fiber laser, tuning range
of pulse duration has covered the 360 fs to 150 ps [61, 64,
65, 174] with typical results shown in Figure 8.
Multiwavelength operation in CNT-SA mode-locked
fiber lasers is mainly focused on Er-doped fiber laser, using
the 1530 and 1560 nm dual-wavelength band by tuning the
cavity loss [59, 60, 175, 176]. We have proposed versatile

multi-wavelength CNT-SA mode-locked fiber laser by using
the CFBGs [36]. The laser adopted three CFBGs with
different central wavelength. The output central wave-
lengths are 1539.5, 1549.5, and 1559.5 nm, respectively,
which can be accurately selected by CFBGs. Output wave-
lengths are tunable by stretching CFBGs. Pulse durations of
three wavelengths are 6.3, 6.7, and 5.9 ps, respectively.

3.2.4 Dynamics of solitons in CNT-SA mode-locked fiber
lasers

In addition, mode-locked fiber lasers can work as excellent
platform to investigate a variety of soliton dynamics. These
soliton dynamics could reveal the underlying mechanism
of soliton operation, interaction of solitons and soliton
evolution. These findings could provide guidance to the
design of desired mode-locked fiber lasers. In the other
way, the fundamental soliton in mode-locked fiber lasers
becomes unstable when increasing the pump power,
complex soliton operation regimes can be observed. In
CNT-SA mode-locked fiber lasers, soliton operation and
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dynamics, such as the HML, soliton molecule [74, 80, 81,
177], vector solitons [83, 84], dark soliton [85], soliton ex-
plosion [178, 179], pulsation [180, 181], and soliton rains
[86, 87] have been revealed. Here, we emphasis the dark
soliton and soliton rains in CNT-SA mode-locked fiber la-
sers, others will be discussed in combination with the real-
time observations in detail in Section 4. In contrast to the
traditional solitons, which are the bright solitons, the dark
solitons are a train of pulses with intensity dips inside the
continuous wave background [182, 183]. The generation of
dark soliton can be explained by the domain wall theory
[184, 185]. Generally, large optical nonlinearity is preferred
to reduce the pump threshold. Using CNT deposited on the
side-polished fiber as the SA, relatively low pump
threshold dark pulse and HML dark pulse have been
demonstrated. The CNT deposited side-polished fiber
could provide saturable absorption and also the large
nonlinearity in a short length to reduce the pump threshold
[186]. Soliton rains were first reported in 2009 [187], it
arouses the researchers’ interest due to its unique pulse
dynamics that the solitons in the cavity arise from noise
background and drift at a constant speed toward a

0
Delay time (ps)

trum; (G) Autocorrelation results, Liu et al.
[62]. © Springer Nature 2015.

50 100 150

condensed phase like the raindrops generated from the
cloud and fall to the sea [188, 189]. The mechanism can be
explained by the noise-mediated soliton interaction [190].
Using the advantage of wide working bandwidth of
CNT-SA, soliton rains with tunable wavelength (58 nm)
have been reported in Tm-doped fiber laser. Vector soliton
rains have also been demonstrated [87], and it has an
important role in generation of vector bright and dark
rouge waves [191].

4 Real-time dynamics of solitons in
CNT-based fiber lasers

4.1 Operation principle of TS-DFT technique

The generation of mode-locked pulse is one of the most
basic and common nonlinear phenomena in ultrafast fiber
lasers. Generally speaking, the mode-locked pulses pro-
duced by ultrafast fiber lasers can be called as “optical
solitons” due to the balance between dispersion and
nonlinear, gain and loss [115]. Although Hasegawa and
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Tappert have theoretically predicted that optical fibers
could support the transmission of optical solitons as early
as 1973 [192], and Mollenauer et al. have firstly confirmed
the existence of optical solitons in 1980 [193], the research
on solitons in fiber lasers began in the 1990s [194]. Unlike
soliton transmission in optical fibers, fiber laser is actually
a non-conserved dissipative physical system with periodic
gain amplification and output loss. Because of this dissi-
pative characteristic, conventional soliton pulses in fiber
lasers will evolve into new soliton states or exhibit complex
nonlinear dynamics process under certain conditions.
Indeed, a variety of soliton dynamics process has been
observed in ultrafast fiber lasers, such as optical rogue
waves [195], optical turbulence [196], dissipative soliton
resonances [197-201], bound states [202], and a series of
other soliton nonlinear phenomena in large dispersion
cavity [203, 204]. These results not only further confirm that
the ultrafast fiber laser is an ideal platform to explore
nonlinear dissipation dynamics, but also deepen the un-
derstanding of optical soliton properties.

Nevertheless, these ultrafast nonlinear dissipation
dynamics are unrepeatable and have complex trans-
formation in temporal and spectral domain. Due to the
limited bandwidth or response speed, the conventional
technologies cannot generally measure these rapid non-
repetitive processes. Therefore, many steady state phe-
nomena had been observed theoretically and experimen-
tally, the buildup processes are still unknown. Besides,
many interesting and important transient dynamics prop-
erties of optical solitons have been theoretically predicted,
they are still difficult to be observed and verified experi-
mentally. How to measure these dynamics in real time is a
major issue in the field of ultrafast optics. In recent years,
the emerging TS-DFT technique has been widely used for
real-time, single-shot measurement of the transient, non-
repetitive events [18-20], especially the ultrafast nonlinear
optical phenomena. This technique, as a data collection
method which can overcome the speed limit of traditional
spectrometer, can carry on continuously with billions of
frames per second rate and record for trillions of frames.
The sampling rate is about 10 orders of magnitude higher
than the conventional spectrometer. This technique opens
up the way for experimental measurement and under-
standing the behavior of ultrafast non-stationary and rare
phenomena in complex nonlinear system. So far, TS-DFT
technique has gained intense attentions from optical
sensing [205], spectroscopy [206], optical imaging [207],
biomedicine [208], and other fields [209]. Using TS-DFT
technique, lots of transient dynamics of soliton in the
mode-locking fiber laser have been revealed and
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demonstrated experimentally, including entire buildup
dynamics of solitons, soliton molecules, soliton explosion
and so on.

The TS-DFT technique derives from the analogy between
spatial Fraunhofer diffraction and temporal dispersion, in
which the diffraction of a beam through a lens in the far-field
region is analogous to the propagation of a time pulse in a
dispersion medium, also known as the space-time duality
[21]. As shown in Figure 9, when a soliton is propagating
along the dispersive element with enough dispersion to
satisfy the time far-field condition, it is stretched due to the
group velocity dispersion (GVD), different wavelengths in
the spectrum are mapped into temporal domain, and the
stretched light pulse has the same intensity envelope as the
spectrum shape, thus realizing spectrum detection of tar-
geting pulses in temporal domain. Ultimately, single-shot
spectrum information can be detected by using high-speed
analog digital converter (ADC). It should be noted that this
technique is usually viable for shorter pulses measurement
(e. g., less than 10 ps), continuous wave and longer pulses
measurement (e. g., more than 20 ps) that corresponds to a
narrow spectral width are usually unviable [74]. Compared
with traditional spectrometers, TS-DFT technique has
another advantage: its dispersion medium can also be used
as an incremental medium for optical amplification [18, 210].
By conducting distributed amplification of light pulses in
dispersion fiber, the trade-off between sensitivity, speed, and
resolution in spectral measurement can be overcome [20].

There are several kinds of dispersive elements for
implementing time-stretch system, such as single-mode
fiber (SMF), dispersion compensated fiber (DCF), CFBG,
multimode waveguide and so on [211-214]. These disper-
sive elements can generate both linear dispersion for
conventional time stretch and nonlinear dispersion for
warped (foveated) stretch. The latter has been used for
optical data compression via non-uniform Fourier domain
sampling, whereby information-rich portions of the
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Figure 9: Schematic diagram of TS-DFT technique. The ultrashort
pulses are stretched and mapped into the temporal domain through
enough dispersion.
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spectrum are sampled at a higher density than sparse re-
gions, leading to the concept of the analog information
gearbox. For Tm-doped fiber laser with operating wave-
length around 2 pm, the CFBG is usually adopted to sur-
mount the high transmission loss of general fiber [215].
Using TS-DFT technique, lots of transient dynamics of
soliton in the mode-locking fiber laser have been revealed
and demonstrated experimentally, including entire
buildup dynamics of solitons, soliton molecules, soliton
explosion and so on.

4.2 Entire formation dynamics of solitons
4.2.1 Buildup dynamics of mode-locking soliton

Mode-locking, as a complex nonlinear phenomenon in
lasers, can lock a large number of laser longitudinal modes
together in the cavity to form ultrashort pulses. Despite the
stable pulse train formed through mode-locking, the initial
buildup process of pulses is highly random and non-
repetitive [5, 220]. Since the 1990s, the nonlinear dynamics
of mode-locked lasers has been reported by researchers
through a large number of experiments and theories, with
the emphasis being on self-starting [221-226]. In the sta-
tionary state, the soliton train generated from mode-locked
lasers can be described theoretically by means of the
generalized nonlinear Schrodinger equation (GNLSE) or
the Ginzburg-Landau equation (GLE) [17], many inter-
esting phenomena and soliton operation had been re-
ported in a variety of laser configurations. However, due to
the limitations of instrument scanning rate and bandwidth,
the experimental study on the transient process estab-
lished by mode-locking mainly relies on high-speed oscil-
loscopes to observe the pulse dynamics in temporal
domain, the corresponding real-time spectral evolution
characteristics have not been experimentally studied.
Recently, with the rapid development of real-time
measurement technique, researchers have used TS-DFT
technique to reveal many dynamics processes in mode-
locked ultrafast lasers. As an important nonlinear phe-
nomenon, the study of the soliton transient dynamics has
naturally aroused the interests of relevant researchers.
Therefore, both the transient spectral and temporal dy-
namics were observed with the assistance of the TS-DFT
technique. In 2016, Herink et al. used the TS-DFT technique
to firstly study and analyze the transient process of solitons
in Kerr-lens mode-locking Ti:sapphire laser, they observed
the interesting phenomenon of spectral transient interfer-
ence pattern prior to the stable soliton train, which is also
known as beating dynamics [219]. As shown in
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Figure 10(D), the long-recording-length consecutive shot-
to-shot spectrum evolution dynamics revealed the birth of
mode-locking pulse from the initial fluctuations, together
with wavelength shifts. However, the formation process of
mode-locking pulse in fiber lasers is still unknown. By
combing with the TS-DFT and time lens techniques, Dudley
et al. completely unveiled the spectral and temporal evo-
lution of dissipative solitons in a passively mode-locking
fiber laser based on SA mirror, showing that solitons will
pass through a transient unstable regime with complex
break-up and collisions before stabilization [217]. More
recently, Zeng et al. unveiled the buildup dynamics of
dissipative solitons in NPR based mode-locked fiber lasers
by means of the TS-DFT technique, showing that the role of
initial noise background is to stimulate modulation insta-
bility [218]. They observed two paths of dissipative soliton
buildup dynamics, depending on the length of the laser
cavity. In a long cavity, multiple processes are involved in
the buildup phase, including modulation instability
(Benjamin-Feir instability), mode locking, self-phase
modulation (SPM)-induced instability, dissipative soliton
splitting, and partial annihilation. In a short cavity, only
modulation instability and mode locking are responsible
for dissipative soliton formation. A long-standing issue in
the buildup of mode locking refers to the role of noise
involved: a randomly strong noise spike was assumed to
evolve into mode-locked pulse [5].

However, in all previous works, the mode-locking
technique is quite sensitive to environmental perturbations
(e. g., the polarization changes in laser cavity and the
fluctuation of pumping strength). Therefore, pulses
generated from these fiber lasers will sustain extra unsta-
ble stages, such as Q-switched lasing [228—230]. Moreover,
relaxation oscillations (ROs), which have been predicted in
fiber laser [231], were excluded from their reports. To reveal
the entire buildup process of solitons, we must mitigate the
environmental perturbation as far as possible. CNTs have
the advantages of high stability and polarization inde-
pendence. Using CNTs as SA can greatly reduce the
sensitivity of buildup process to environmental perturba-
tions, inhibit Q-switched lasing, make the buildup of soli-
tons return to the real process and shorten the starting
time.

In 2018, Luo et al. experimentally observed the buildup
dynamics of dissipative soliton in an ultrafast fiber laser in
the net-normal dispersion regime [232] and conventional
soliton booting dynamics of an ultrafast fiber laser oper-
ating in an anomalous dispersion regime [233]. They firstly
revealed that the appearance of the spectral sharp peaks
with oscillation structures during the mode-locking tran-
sition is caused by the formation of structural dissipative
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Figure 10: Experimental real-time measure-
ment of the buildup dynamics of solitons
based on various mode-locking techniques:
(A) A typical schematic diagram of con-
ducting ultrafast measurement of mode-
locked lasers based on TS-DFT, Liu et al. [74]
© American Physical Society 2018; (B)
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soliton. In 2019, Liu et al. demonstrate the first observation
of the entire buildup process of conventional solitons in a
mode-locked laser in the net-anomalous dispersion
regime, revealing two possible pathways to generate the
temporal solitons by optimizing the laser system to
improve its stability, which suppresses the Q-switched
lasing induced by environmental perturbation [216]. One
pathway includes the dynamics of raised RO, quasi mode-
locking stage, spectral beating behavior, and finally the
stable single-soliton mode-locking, as shown in
Figure 11(A). The other pathway contains, however, an
extra transient bound-state stage before the final single-
pulse mode- locking operation, as shown in Figure 11(C).
Moreover, the complete evolution dynamics (from birth to
extinction) of the CS, StP, and DS are also investigated by
using the DFT technique [227]. CS, StP, and DS fiber lasers
mode locked by SWCNT-SA are implemented via engi-
neering the intracavity dispersion map. The RO can always
be observed prior to the formation of stable soliton oper-
ation due to the inherent advantage of SWCNT, but it ex-
hibits distinct evolution dynamics in the starting and
shutting processes. The shutting processes are dependent
on the dispersion condition and turn-off time, which is
against common sense. Some critical phenomena are also
observed, including transient complex spectrum broad-
ening and frequency-shift interaction of SPs and

60
Time (ms)

CNT-based saturable absorber, Liu et al.
[216]. © SPIE 2019; (C) Saturable absorber
mirror (SA-M), Ryczkowski et al. [217]. ©
Macmillan Publishers Limited 2018; (D)
Nonlinear polarization rotation (NPR), Peng
etal. [218]. © Springer Nature Limited 2018;
(E) Kerr-lens Ti:sapphire, Herink et al. [219].
© Macmillan Publishers Limited 2016. In
(D) and (E), the two-dimensional represen-
tations are achieved through segmenting
the time series into intervals of roundtrip
time, the vertical and horizontal axes depict
the information within a single roundtrip
and the dynamics across consecutive
roundtrips, respectively.
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picosecond pulses. More recently, Kudelin et al. experi-
mentally demonstrated that bidirectional soliton fiber laser
experience independent buildup dynamics from modula-
tion instability, undergoing breathing dynamics and
diverging sub-ordinate pulse structures formation and
annihilation [234]. In the same way, the similar behaviors
dissipative soliton in a net-normal-dispersion bidirectional
ultrafast fiber laser were also observed by Luo et al. [235].

In addition, Q-switching (QS) is also another way used
for pulse generation which is based on the modulation of
the quality factor (Q) of a laser cavity. This method enables
the formation of pulses with durations ranging from micro-
to nanoseconds and repetition rates, typically around
kilohertz, related to the lifetime of the gain medium [95].
Recently, we reported the first observation of pulse evolu-
tion and dynamics in the QS-ML transition stage, as shown
in Figure 12, where the ML soliton formation evolves from
the QS pulses instead of ROs (or quasi-continuous-wave
oscillations) reported in previous studies [73]. We discov-
ered a new way of soliton buildup in an ultrafast laser,
passing through four stages: initial spontaneous noise, QS,
beating dynamics, and final stable ML. The research on the
entire buildup of mode-locking soliton can provide guid-
ance to design and optimization of highly performance
mode-locked fiber lasers, as well as promote the applica-
tion of ultrafast fiber lasers.
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4.2.2 Buildup dynamics of soliton molecules

As we know, when the pump power is high in the cavity, it
often leads to the generation of multiple pulses. However,
the interaction between solitons will cause multiple soli-
tons to be rearranged, thus forming a variety of “multiple
soliton patterns”, such as soliton molecules (SMs), soliton
beams, and soliton rains [238, 239]. SMs, as one of the most
fascinating nonlinear phenomena, have been a hot topic in
the field of nonlinear optics in recent years. SMs can form or
dissociate in various isomers, considering the relative
temporal separation and phase difference between adja-
cent pulses as internal dynamical degrees of freedom [240].
In 2017, Herink et al. firstly resolved the evolution of
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Figure 11: Entire buildup dynamics of
conventional soliton and dissipative
soliton. (A, B) Formation dynamics of single
soliton with beating dynamics; (C, D)
Buildup dynamics of single soliton with
transient bound state. Liu et al. [216]. ©
SPIE 2019; (E) Formation and extinction
dynamics of dissipative soliton. Cui et al.
[227]. © Chinese Laser Press 2019.
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femtosecond soliton molecules in the cavity of a few-cycle
mode-locked laser [236]. They have tracked two- and three-
soliton bound states over hundreds of thousands of
consecutive cavity roundtrips, identifying fixed points, and
periodic and aperiodic molecular orbits. In 2018, Grelu
et al. presented the first direct experimental evidence of the
internal motion of a dissipative optical SM generated in a
passively mode-locked fiber laser. They map the internal
motion of a soliton pair molecule by using a dispersive
Fourier-transform imaging technique, revealing different
categories of internal pulsations, including vibration like
and phase drifting dynamics [241]. Later on, Liu et al.
experimentally observed several types of evolving SMs
with monotonically or chaotically evolving phase, flipping

245 1575

Figure 12: Spectral evolution dynamics of
soliton in the QS-ML transition stage. (A, B)
Real-time observation results by TS-DFT
technique. (C, D) Numerical simulation re-
sults with beating dynamics. Liu et al. [73].
© American Physical Society 2019.
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and hopping phase in an ultrafast fiber laser by using the
TS-DFT technique [242]. Moreover, a shaking SM has also
been experimentally observed [243]. Beyond the simplex
vibrating soliton pairs, multiple oscillatory motions can
jointly involve during the internal dynamics, reminiscent
of the shaking soliton pairs. In addition, the shaking soli-
ton pair combined with sliding phase dynamics was also
observed, it was interpreted as the superposition of two
different internal motions. Furthermore, Peng et al.
described the formation of another three types of SMs:
ground- and excited-state SMs (corresponding to the close-
and wide-separation solitons, respectively), as well as a
newly termed intermittent-vibration SM [237]. They found
that the formations of all these SMs consist of three
nonlinear stages: mode locking, soliton splitting, and sol-
iton interactions. Moreover, they have reported on the
direct experimental observation of breathing dissipative
SMs in a passively mode-locked fiber laser [244]. By using
CFBGs, the similar internal motions within dissipative
optical SMs in the 2 pm wavelength range have also been
reported [215].

Nevertheless, due to the environmental perturbations
of these mode-locking mechanisms, the entire buildup
process of stable long-lived SMs, which is similar with that
of single soliton, has not been reported. By decreasing
external perturbations, optimizing the laser system and
using the SWCNT as mode-locker, we successfully tracked
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the formation and evolution of SMs, showing that the birth
dynamics of a stable SM experiences five different stages,
i. e, the raised RO stage, beating dynamics stage, transient
single pulse stage, transient bound state, and finally the
stable bound state [74], as shown in Figure 13(A). We
discovered that the evolution of pulses in the raised RO
stage follows a law that only the strongest one can ulti-
mately survive. Meanwhile, the pulses periodically appear
at the same temporal positions for all lasing spikes during
the same RO stage (named as memory ability) but they lose
such ability between different RO stages. The existence of
an RO stage is a typical characteristic of the transient
behavior of lasers [231, 245]. The experimental observation
demonstrated that multiple sub-nanosecond pulses
appear in the RO stage but only one dominant pulse
gradually evolved into the stationary mode-locking
soliton.

Soliton self-organization is another dynamic process
in which many solitons interact to form soliton molecules.
According to the different mechanism of action, these
bound states have different intensity, phase, and spacing.
It is important to observe the soliton interaction process in
real-time to understand the dissipative soliton self-
organization process. In 2018, Wang et al. observed the
dynamics soliton self-organization and pulsation in
passively mode-locked fiber laser. Due to the acousto-optic
effect, the solitons can mix and form evenly spaced soliton
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Figure 13: Various formation and evolution
dynamics of soliton molecules. (A-C) Entire
formation dynamics of soliton molecules in
CNT-based fiber laser. Liu et al. [74]. ©
American Physical Society 2018; (D, E) For-
mation of a soliton molecule from transient
bound state. Herink et al. [236]. © American
Association for the Advancement of Science
2017; (F) Formation dynamics of ground-
state soliton molecule; (G) Buildup dy-
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bunches. By using the TS-DFT technique, they found the
spacing of solitons in one bunch is different, while their
phase relation is fixed. Soliton pulsation was also
observed, and Kelly sideband appeared with the pulsating
period [246]. The study on the dynamics of soliton molecule
brings new perspectives for ultrafast transient dynamics
and opens new pathways of pulses evolution and interac-
tion that will reveal the physics of solitons dynamics in
nonlinear system.

4.2.3 Buildup dynamics of harmonic mode-locking
soliton

As mentioned in Section 3, passive HML is an effective
method to increase the pulse repetition rates of fiber lasers,
it has the intrinsic advantage of repetition-rate self-stabi-
lization. Harmonically mode-locked fiber laser can be
realized through active mode-locking [247, 248], passive
mode-locking [249, 250], and hybrid mode-locking [251,
252]. However, the problem of how harmonics are gener-
ated and the mechanism by which self-stability is achieved
has plagued researchers for many years. The solution to
these problems can provide great guidance value for the
design and implementation of harmonic lasers. Generally,
the spacing between multiple pulses operated in HML
undergoes a random change due to the presence of tem-
perature variations and mechanical vibrations. As a result,
the HML operation in the ordinary non-polarization-
maintaining (non-PM) fiber lasers can only remain stable
in a short time-scale, and even such operation is dis-
continued by these perturbations. The controllable HML
operation of passively mode-locked fiber lasers, on the
other hand, has been proved quite hard to be achieved.
Coupling between cavity modes and the acoustic reso-
nance in a fiber provides strong and optomechanical in-
teractions, resulting in “control elements” that enable
controllable and stable HML operation of lasers. More
recently, passive harmonic mode-locking of fiber laser
using CNT-SA was also reported for environmentally stable
and self-starting operation compared to the NPE method
[82, 168, 253].

Based on the TS-DFT technique, combined with the
specially designed full polarization-maintaining optical
cavity, we conducted a detailed experimental study on the
formation dynamics in SWCNT-SA passive HML laser [75],
as shown in Figure 14(C). The results demonstrated that the
buildup process of HML includes such stages as the raised
RO, beating dynamics, birth of a giant pulse, self-phase
modulation (SPM)-induced instability, pulse splitting,
repulsion and separation of multiple pulses, and the stable
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HML state. It was observed that the multiple HML pulses
originate from a single-pulse splitting phenomenon and a
remarkable breathing behavior occurs at an early stage of
the HML buildup process. Furthermore, the HML pulses are
found originating from a giant pulse whose temporal
evolution trajectory shows a turning point (or a big corner)
as a consequence of intensity reduction induced pulse
group velocity change. While for a short-cavity laser
configuration involving a SESAM [254], HML soliton were
observed to be generated from a transient multi-pulse state
rather than a giant pulse as shown in Figure 14(A). Our
numerical results confirm that the effects of dispersive
wave [255], gain depletion and recovery [256, 257], and
acoustic wave [258, 259] play key roles in the earlier, mid-
dle, and later stages of this HML buildup process, respec-
tively; as well, the acoustic resonance in the single-mode
fiber stabilizes the final HML state of lasers. By means of the
optoacoustic effect that induces a trapping potential, the
acoustic resonance can stabilize the mode-locking of laser
at different harmonics (from the first to sixth order at the
appropriate pumping strength) with perfect long-term
stability. The study of the entire buildup dynamics of
HML can bring insight into the complex nonlinear system
and provide guidance to the design of ultrahigh repetition
rate fiber lasers. These results can also bring new per-
spectives into the transient dynamics of ultrafast phe-
nomena and helps to understand the dynamics of
nonlinear system.

4.2.4 Buildup dynamics of multi-solitons

In addition to stable pulse generation, passively mode-
locked fiber lasers can easily run into an unstable regime of
multi-pulse mode-locking [261, 262]. Several theoretical
attempts have been made to interpret the mechanism
behind multi-pulse mode-locking, e. g., peak power
clamping [263], gain bandwidth limited pulse splitting
[264], and nonlinear cavity feedback [265]. In terms of
experimental investigations, however, it is seriously
limited by the poor temporal resolution of conventional
spectroscopic techniques, which thus hinders the spectral-
temporal study of individual pulses. Therefore, tracking
the behavior of a single pulse within the multi-pulse cluster
has been mostly conducted by numerical simulations and
temporal observation [266]. The birth and dynamic be-
haviors of multi-pulse mode-locking so far have rarely
been experimentally explored, particularly in the spectral
domain. In 2017, Yu et al. reported several kinds of multi-
pulse spectral-temporal dynamics of a passively mode-
locked fiber laser observed in a single-shot manner, e. g.,
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energy quantization, self-phase modulation spectral
broadening, wavelength shifting, spectral interfering, and
ultraweak pulse interaction [260], as shown in Figure 15(A)
and (B). In addition, they also studied the intracavity
collision process induced by dual-color in a mode-locked
fiber laser [267]. In 2018, Wang et al. studied the double
pulse evolution process of the transient loss of lock [268],
they found that the double pulse can disappear at the same
time or one by one. It is worth noting that the decline rate of
pump power has a significant impact on the lose process of
the bound state. These findings contribute to a better un-
derstanding of soliton dynamics characteristics of the
mode-locked fiber laser. However, the multi-soliton states
mentioned above are generated synchronously in the laser
cavity. Recently, we report the real-time experimental
observation of asynchronous multi-soliton buildup dy-
namics in all-polarization-maintaining mode-locked fiber
laser [269], as shown in Figure 15(C)—(D). The solitons are
generated one by one from soliton shaping of distant
background pulses under independent processes; each is
the result of a separate beating dynamics. Resonant energy
transfer between dispersive waves and background pulses
is observed. With the birth of the last soliton, the solitons
are stable and exhibit energy quantization properties. More
recently, Zeng et al. also demonstrated that an additional
soliton is formed through shaping of a narrow-band pulse
arising from a dispersive wave (DW), thus differing from
pulse splitting processes that originated from a single
pulse [270]. These results can provide novel prospective
into the multi-soliton buildup dynamics, interaction and
regulation in mode-locked lasers.
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Figure 14: Entire formation dynamics of HML
in a passively mode-locked laser with (A, B)
short-cavity based on semiconductor SA
mirror. Wang et al. [254]. © Optical Society
of America 2019; (C) long-cavity based on
CNT-SA. Liu et al. [75]. © WILEY-VCH Verlag
GmbH & Co. KGaA, Weinheim 2019.

4.3 Localized transient dynamics of solitons
4.3.1 Soliton pulsation dynamics

Generally speaking, when the pulses output from a certain
point of the laser cavity, they would have the same char-
acteristic and do not change with time, that is the stable
operating state of the laser. However, in some conditions,
the soliton pulsation can be observed, in which the profile,
width and amplitude of the output pulses change period-
ically by altering the nonlinear gain absorption or spectral
filtering effect of the laser [271-273]. In 2018, Wei et al.
demonstrated the chaotic soliton pulsation and the stable
molecular state of the soliton in a passively mode-locking
fiber laser by using the TS-DFT technology [274]. In the
chaotic soliton pulsation, the periodic soliton would un-
dergo a sudden collapse and recovery process similar to the
soliton explosion. Although most research on motion of
solitons is conducted in anomalous dispersion region, this
phenomenon can also occur in the normal dispersion re-
gion. In 2018, Du et al. observed the dissipative soliton
pulsation process in the normal dispersion mode-locked
fiber laser and studied the spectral respiration effect in the
pulsation process based on the TS-DFT technology [275].
Recently, Luo et al. reported a new type of soliton pulsation
in the context of ultrafast fiber lasers and visualized it by
the DFT technique. This type of soliton pulsation features
that shot-to-shot spectra evolve with roundtrips, but the
pulse energy remains almost unchanged, which is termed
as “invisible soliton pulsation”. Different pulsating periods
were also obtained by properly adjusting of cavity
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Figure 15: Multi-soliton buildup dynamics with different ways. (A, B) Synchronous generation. Yu et al. [260]. © American Institute of Physics

2017; (C, D) Asynchronous formation.

parameters, i. e., pump power and polarization controller
(PC), demonstrating that the invisible soliton pulsation
could exist in a range of cavity parameters, rather than a
rare phenomenon [276].

More recently, Xu et al. revealed the distinct dynamical
diversity of pulsating solitons in a fiber laser by using
hybrid mode-locking based on NPR and CNT-SA [180], as
shown in Figure 16(A)—(B). In particular, the weak to strong
explosive behaviors of pulsating solitons, as well as the
rogue wave generation during explosions were observed.
Moreover, the concept of soliton pulsation is extended to
the multi-soliton regime. It was found that the simulta-
neous pulsations of energy, separation and relative phase
difference could be observed for solitons inside the mole-
cule, while the pulsations of each individual soliton in a
multi-soliton bunch could be regular or irregular. These
studies can provide new insights into the complex
nonlinear system and contribute to the design of fiber la-
sers for practical applications.

4.3.2 Vector soliton dynamics

During the forming of the soliton in fiber laser, since single-
mode fiber has weak birefringence due to the non-perfect
cylindrical symmetry of the fiber or externally applied
random stress to the fiber, the laser can support vector

soliton [277-279]. Vector soliton can be formed in mode-
locked fiber laser that is insensitive to polarization [280,
281]. The phase and intensity of two orthogonal compo-
nents depend on the net cavity birefringence and coupling
strength, which can be classified as polarization locked
vector solitons (PLVS), polarization rotation vector solitons
(PRVS), group-velocity locked vector solitons (GVLVS) and
so on [83, 84, 181, 279-281]. Among them, the intensity of
the two orthogonally polarized components of the PRVS
will change alternately, so the corresponding spectrum will
also change with it. However, due to the limited perfor-
mance of spectrometer, this change was not observed in
the experiment. In 2017, Krupa et al. studied coherent
vector spectrum evolution dynamics characteristics of
dissipative soliton in SESAM mode-locked fiber laser by
using the TS-DFT technique [282]. They observed the po-
larization locking and polarization switching effects of the
incoherent soliton, found the vector soliton can be locked
in one polarization or jump between the two-polarization
cycles. Recently, Luo et al. experimentally observed the
real-time spectral characteristics of the polarization com-
ponents of the GLVS and PLVS by using TS-DFT technique,
they revealed the dynamical capturing characteristics of
the soliton for the first time [181], as shown in
Figure 16(C)—(D). For the GLVS, the central wavelength of
its two-polarization components remains unchanged,
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Figure 16: Various steady-state dynamics of soliton. (A) Single-shot spectra and corresponding energy evolution dynamics of single-soliton
pulsation; (B) Single-shot spectra evolution of single-soliton pulsation; Xu et al. [180]. © Optical Society of America 2019. (C) Single-shot
spectra evolution dynamics of GLVS. (D) Single-shot spectra evolution dynamics of PRVS. Liu et al. [181]. © Optical Society of America 2017. (E)
Shot-to-shot spectra in “successive soliton explosions” regime. Liu et al. [178]. © Optical Society of America 2016. (F) Spectral evolution
dynamics of four typical single-shot pulse-trains in soliton explosion regime. Liu et al. [179]. © Optical Society of America 2016.

while the PLVS’s two polarization components are trapped  dynamics of soliton dynamics and promote the research of

by changing the central wavelength dynamically.
Recently, Cui et al. reported on the observation of a cross-
phase-modulation-forced frequency-oscillating soliton
whose wavelength exhibits redshift and blueshift periodi-
cally like dancing in a mode-locked fiber laser under
moderate birefringence [283]. Cao et al. demonstrate a
novel polarization-dependent pulse dynamic in a fiber
laser cavity mode-locked by single-wall CNTs. By man-
aging the net dispersion and polarization state, they ob-
tained two noise-like pulsing procedures with distinctive
polarization characteristics together with coherent energy
coupling between pulses during the switching process
[284]. These results can reveal the complex nonlinear

complex transient phenomena in nonlinear system.
4.3.3 Soliton explosion and optical rogue wave

Because of the self-organizing effect of the dissipative
system, the laser can operate in stable, quasi-stable and
non-stable states. Soliton explosion, as one of the most
interesting nonlinear phenomena in quasi-steady state,
has also recently attracted extensive attention from rele-
vant researchers [271, 272, 285]. A typical feature of a soliton
explosion is that a quasi-stationary pulse suddenly expe-
riences a structural collapse as it travels back and forth
through the cavity, but after a sustained period of
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operation, the collapsed pulse returns to its original intact
state. As early as 2002, Cundiff et al. demonstrated the
existence of the soliton explosion [286] in a mode-locked
Kerr-lens Ti:sapphire laser. However due to the lack of
high-resolution real-time measurement tools, more details
of this transient phenomenon remain to be revealed. In
2015, Runge et al. first observed the transient spectral
characteristics of soliton explosion in a fiber laser by using
TS-DFT technique [287, 288]. In 2019, Zeng et al. reported
on experimental observation of breathing DS explosions in
mode-locked fiber lasers. A bifurcation diagram clearly
showed how the different laser regimes, including
breathing DS explosions, breathing DSs, and continuous-
wave mode locking, can be switched by varying the pump
power. While soliton explosions are found above the pump
power for generating stable solitons, breathing DS explo-
sions occur under the pump power for generating stable
breathing DSs [289].

The evolution of the optical spectrum in the stage of
soliton explosion can be studied by using TS-DFT tech-
nique, which is of great significance for the analysis of the
underlying mechanism. In 2016, Liu et al. studied the
dissipated rogue wave phenomenon caused by the soliton
explosion [179], as shown in Figure 16(F). By statistically
analyzing of the pulse energy recorded by TS-DFT tech-
nique during the soliton explosion, they found that the
phenomenon was accompanied by rogue waves during the
explosion. In 2018, Luo et al. reported on the soliton dy-
namics of an ultrafast fiber laser from steady state to soliton
explosions and to huge explosions by simply adjusting the
pump power level. In particular, the huge soliton explo-
sions show that the exploding behavior could operate in a
sustained, but periodic, mode from one explosion to
another, which they termed as “successive soliton explo-
sions” [178], as shown in Figure 16(E). In 2018, Yu et al.
observed the soliton explosion in a mode-locked multi-
soliton laser and found that the explosion of a soliton
would cause the explosion of other solitons through the
interaction of gain. This phenomenon is known as mutu-
ally ignited soliton explosions [290]. As one of the most
striking nonlinear dissipative phenomena in ultrafast la-
sers, these studies can bring new insight into the dynamics
of soliton explosion and rouge waves and promote the
deep understanding of the ultrafast lasers.

5 Conclusion and outlook

In summary, we have reviewed the recent progress in the
dynamics of CNT-SA ultrafast fiber lasers, with emphasis
on recent progress in real-time buildup dynamics of
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solitons in CNT-SA mode-locking fiber lasers. The suc-
cessful application of CNT as SA has promoted the devel-
opment of scientific research of ultrafast fiber lasers. Its
excellent properties have enabled ultra-stable and
compact fiber laser system with ultrashort and high energy
pulse output covering the visible to the mid-infrared
spectral region. Various pulse evolution and interaction
dynamics were revealed based on CNT-SA mode-locked
fiber lasers, and various functions were achieved to meet
practical application requirement of multiple fields. Be-
sides, the CNT-SA mode-locked fiber laser can provide an
excellent platform for investigating the entire formation
and steady-state dynamics of solitons and other nonlinear
phenomena. By using the emerging TS-DFT technique,
many kinds of soliton dynamics phenomenon including
mode-locking soliton, soliton molecules, multi-soliton,
and soliton explosions were unveiled based on the CNT-SA
mode-locked fiber laser, the results provided a variety of
dissipative dynamics process evolution details. These
studies will promote the development of ultrafast lasers,
help to understand the physical nature of solitons and also
provide references for the interpretation of dissipative
soliton phenomena in other fields.

At present, the real-time observation of time-domain
characteristics of ultrafast dynamics mainly depends on
high-speed oscilloscope. For the existing oscilloscopes,
time resolution and record length have irreconcilable
contradictions. Real-time measurements of pulse intensity
with sub-picosecond time resolution and long recorded
lengths are essential for a comprehensive understanding
and further study of the various slowly evolving ultrafast
dynamics. Recently, researchers have proposed the use of
time-lens based on the duality of space-time to study the
real-time waveform evolution characteristics of ultrafast
nonlinear phenomena [291, 292]. This time-lens technique
has been applied to the study of incoherent soliton trans-
mission in optical turbulence [293, 294] and the occurrence
of random breathing in modulation instability. In the study
of transient dynamics of solitons in ultra-fast fiber lasers,
researchers combined TS-DFT technique with time lens
technology to observe the spectra and time characteristics
of transient processes established by solitons in real time
[228] and other nonlinear phenomena, such as Turing and
Faraday instabilities [295]. Moreover, together with
emerging intelligent algorithm, the TS-DFT technique can
make mode-locking fiber laser more portable and
spectrum-programmable [296]. We believe that this multi-
scale real-time measurement technique will contribute to a
more comprehensive understanding of soliton transient
dynamics in ultrafast fiber lasers, such as mode-locking
startup, soliton explosion, and rogue waves. The study on
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transient dynamics of soliton in ultrafast fiber lasers by
using TS-DFT technology breaks the limitation of experi-
mental observation of ultrafast phenomena by traditional
electronic measuring instruments and greatly inspires re-
searchers to continue to explore new nonlinear phenom-
ena of soliton. We believe that the study of transient
dynamics of solitons can not only further reveal the phys-
ical nature of solitons, but also optimize the performance of
ultrafast fiber lasers and eventually expand their applica-
tions in different fields. Meanwhile, as a typical nonlinear
system, the performance improvement of fiber laser can
also provide a better test platform for the exploration of
soliton nonlinear phenomena.
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