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Abstract: Designing and engineering microresonator
dispersion are essential for generating microresona-
tor frequency comb. Microresonator frequency combs
(microcombs, Kerr frequency combs) offer the potential
for various attractive applications as a new type of coher-
ent light source that is power efficient and compact and
has a high repetition rate and a broad bandwidth. They
are easily driven with a continuous-wave pump laser with
adequate frequency tuning; however, the resonators must
have a high quality (Q) factor and suitable dispersion. The
emergence of cavity enhanced four-wave mixing, which is
based on third-order susceptibility in the host material,
results in the generation of broadband and coherent opti-
cal frequency combs in the frequency domain equivalent
to an optical pulse in the time domain. The platforms on
which Kerr frequency combs can be observed have been
developed, thanks to intensive efforts by many research-
ers over a few decades. Ultrahigh-Q whispering gallery
mode (WGM) microresonators are one of the major plat-
forms since they can be made of a wide range of material
including silica glass, fluoride crystals and semiconduc-
tors. In this review, we focus on the dispersion engineering
of WGM microresonators by designing the geometry of the
resonators based on numerical simulation. In addition,
we discuss experimental methods for measuring resona-
tor dispersion. Finally, we describe experimental results
for Kerr frequency combs where second- and higher-order
dispersions influence their optical spectra.
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1 Introduction

Optical frequency combs based on microresonators have
attracted considerable interest in the last few decades in
the micro-/nano-photonics research fields [1, 2]. Micro-
resonator frequency combs are generated in ultrahigh-Q
microresonators by a continuous-wave (CW) laser pump,
thanks to Kerr nonlinearity [3, 4], and therefore, they
are called Kerr frequency combs [5] or microcombs [6].
Microcombs allow us to fabricate micro or millimeter-
scale devices that are much smaller than conventional
frequency comb sources, and this enables us to achieve
compact monolithic comb devices with low noise, a broad
bandwidth, and a repetition rate in the microwave domain
[7-12]. Therefore, microresonators have the potential to
be desirable platforms for massively optical communi-
cation [13], astronomical calibration [14, 15], precision
spectroscopy [16, 17], light detection and ranging [18,
19], low-noise microwave generation [20], and integrated
optical-frequency synthesizer [21], as well as for various
nonlinear photonic applications [22-24].

In these high-Q monolithic resonators, equidistant
optical sidebands are generated via cavity enhanced four-
wave mixing processes based on the third-order nonlin-
ear effect. In order to enhance the light-matter interaction
inside the resonator, it is necessary to increase Q and
reduce the mode volume, which are related to the required
pump power [25]. The generated comb lines have an equi-
distant frequency spacing supported by the energy and
momentum conservation process (Figure 1). However, the
relative phase relation of these comb lines is not always
optimized in experiments [10, 26]. The mode-locked state
in which periodic optical pulses circulate inside the cir-
cumference of the resonator, which is called a dissipa-
tive Kerr soliton (DKS) [27], can be achieved by the proper
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Figure 1: Schematic of Kerr optical frequency comb generation in a
WGM microresonator with a tapered fiber coupling.

operation of the pump laser [28-32]. This discovery made
it possible to achieve a high-coherence, stable soliton
microcomb, as a result of the balance between paramet-
ric gain and loss and between dispersion and nonlinear-
ity [33]. DKSs have been successively demonstrated in a
wide variety of microresonators, ranging from silica [34],
silicon nitride [35, 36], silicon [37], aluminum nitride [38],
and lithium niobate [39], since the first observation of
DKSs in crystalline microresonators [28]. Different plat-
forms have different advantages (e.g. Q-factor, nonlin-
earity, chip-integration), and many groups have already
developed and proposed new materials and structures for
microresonator.

With regard to the generation of soliton microcombs,
considerable attention has been paid to the group-veloc-
ity dispersion (GVD) of the resonator. In general, bright
solitons characterized by sech?shaped optical spectrum
require a suitable anomalous GVD in order to maintain a
dissipative system [27]. Moreover, microresonator disper-
sion exhibits soliton dynamics with interesting features
such as dark pulses [40] and dispersive waves [35].

The purpose of this article is to present an overview
of microresonator dispersion engineering that is needed
to generat e Kerr frequency comb. As we will discuss later,
the strategy of dispersion engineering in a whispering
gallery mode (WGM) resonator is different from that of
wire-waveguide devices such as microrings.

The paper is organized as follows. First, in Section 2,
we introduce theoretical and analytical approaches that
enable us to understand microresonator dispersion, which
is determined by both material and geometry. Section 3
describes a useful calculation method based on a finite-
element simulation and shows the simulation results for
several WGM microresonators. Following the calculation,
we describe in Section 4 experimental dispersion meas-
urement methods and a comprehensive survey. Finally, in
Section 5, we report the effect of higher-order dispersion
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and avoided mode crossing in an optical spectrum and
highlight their application.

2 Microresonator dispersion

2.1 Fundamentals of dispersion

Dispersion is one of the most important physical quanti-
ties in microresonator frequency comb generation and in
ultrafast optics. When light travels the same physical path
length, dispersion originates from the frequency depend-
ence of the refractive index, which means that different
frequency components experience different phase veloci-
ties (equivalent to different optical path lengths). Here, we
start with a well-known fundamental dispersion relation,
which gives the frequency dependence of the propagation
constant 3 of traveling light as follows [41]:

(w-w,)"
=0 (1)

=ﬁ0+(w—w0)ﬁl+%(w—wo)2ﬁ2+%(w—w0)3/33+~~,
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where w and c are angular frequency and light speed in a
vacuum, respectively. The linear term § = O/vp is given by
the phase velocity of the center frequency v, which also
gives the effective index n_; as n = c/vp. The first-order
dispersion f3, is given by group velocity v, and group index
n as

1
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It is sometimes helpful to employ an expression in
function to wavelength A:

(1) 2 P

eff d }, (3)

n,=n

The group velocity is explained as the speed of the
envelope of the optical pulse (wave packet). When taking
the phase shift ¢ =L into account, the spectral phase after
the propagation through a dispersive medium of length L
is given by ®(w) =wt-(L. By substituting Eq. (1), we obtain

CI)(a))Ea)O[t—L]+(w—wo)[t—L]+m. @)
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Here, the spectral phases of all the frequency compo-
nents have constant values without being dependent on
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frequency at t= L/vg, which means that the pulse envelope
arrives with a velocity of v_. This first-order dispersion is
also used to describe group delay T,as

]‘ ::A‘igé ::széi ::4£L::/3 I”
¢ do do v, !

®)

which corresponds to the propagation time of a pulse
through an optical medium of length L. The second-order
derivative term of Eq. (1) represents the change rate in the
inverse group velocity (corresponding to the group delay)
in terms of frequency, namely, the group velocity disper-
sion (GVD) ..

_aB

 do?
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where 3, is responsible for broadening of the pulse band-
width. Moreover, the frequency dependency of the group
delay is known as group delay dispersion,
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In addition to the GVD parameter j3,, the parameter D
is a convenient expression in fiber optics, which is given
by the change of group delay T, per unit length in function
to wavelength (not frequency).

D:lﬂ:diﬁlzlﬂ:_&d%leff. (8)
Ldi di cdA c di?
D can be described with 8, using Eq. (5) as follows:
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Whether to use 8, or D to express the GVD depends
on different preferences in the research community. The
parameters 3, and D are usually given in units of (ps?/
km) and [ps/(km - nm)], respectively, showing the oppo-
site sign. As a result, the sign of the GVD parameters are
“B,>0, D<0” for normal dispersion and “3,<0, D>0” for
anomalous dispersion. Note that the above definition of
normal/anomalous dispersion gives the GVD for a particu-
lar wavelength. Sometimes the wavelength dependence of
the refractive index dn/dA is also referred to as normal dis-
persion (dn/dA < 0) and anomalous dispersion (dn/dA > 0),
whereas this definition does not coincide with GVD, and
it is confusing for readers. Accordingly, in this article, we
use the term “dispersion” to indicate GVD.

Optical resonators have the discrete resonance fre-
quencies given by
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where f, (=w, /27) is the frequency of the mth longitudinal
mode with the azimuthal mode number m. Here, it should
be noted that both the effective refractive index n_ and
the effective radius of the mode R’ are in function to the
azimuthal mode number (frequency), which is a unique
property of WGM resonators. Although R’ is usually a
constant in waveguide devices, the value is frequency
dependent for WGM resonators, as we will show later in
Figure 4C. And this makes the dispersion engineering
unique in WGM resonators. However, we usually redefine
the frequency-dependent effective refractive index n_,
and as such, it includes the effect of frequency depend-
ence of the R” because it is not easy to detect R" (or n_’
independently in an experiment. Hence, n_ is frequency
dependent, whereas R is now the actual radius of WGM
resonators, which is a constant.

We can derive the propagation constant of mth WGM

from the resonance condition,

n_ znneff _
p="T= (1)
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m

Consequently, the first-order dispersion Bl and GVD [32
are given by the free-spectral range (FSR) of the resonator
Af,
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From Eq. (9), dispersion parameter D is expressed
with resonance frequencies as

2nc 5 c )
27A°R- Af;

A(Af), (14)
where we can use a difference approximation for the mth
mode, suchas Af, =(f ~f )/2and A(Af)=f, 2f +f ).

The microresonator dispersion is expressed in func-
tion to the relative position of the resonance frequencies,
and it is often used for the sake of convenience. The rela-
tive mode number u is defined as the mode index in terms
of the center (pump) mode u = 0; hence, all the resonance
frequencies are given in with a Taylor expansion around
the center frequency:
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where D /27 is the equidistant resonator FSR, D,/27 is the
second-order dispersion related to 3,, and D3/27r, D 4/2:1,
represent the higher-order dispersion in units of (Hz) [D, is
given in (rad/s)]. Consequently, the integrated dispersion
D,  is given by the deviation of the resonance frequency
including all the above dispersion terms from the equi-
distant grid D /2z. The frequency distance between two
adjacent resonant modes is called an FSR, which is the
original definition. However, we see many papers defining
an equidistant grid with respect to the pump mode D, /27
as an FSR. The former includes the offset induced by the
dispersion, whereas the latter indicates only equal inter-
vals. Since both terms are used to stand for “FSR,” readers
need to consider this carefully in context. In this paper,
we distinguish the original definition of “FSR” (i.e. longi-
tudinal mode spacing with the effect of dispersion) from
“equidistant FSR” (i.e. D,/27).

Figure 2 is a schematic illustration of microresona-
tor dispersion. Higher-order dispersions can be omitted
depending on the case because of the relation given as
D,>D,>D,.... Here, a positive (negative) D, corresponds
to an anomalous (normal) dispersion, and D, parameter
has the relation to dispersion 3, as

C
D2 :_EDlzﬁZ' (16)

_ C.3 c’ 3 C 3
l)3 ——;Dl ﬁ3 +3FD1 ﬁZ :_;Dl ﬁ3. (17)
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Di/2n Di/2n
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Figure 2: Resonance frequencies taking dispersion into account.
The mismatch between the equidistant comb grid (black

dashed line) and the resonance mode (blue) corresponds to the
microresonator dispersion.
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2.2 Material dispersion

Since the dispersion is derived from the deviation of the
resonance frequencies of longitudinal modes, it is nec-
essary to consider several contributions that affect the
refractive indices of the resonators. Material dispersion
plays an important role in the total dispersion of a resona-
tor; hence, it can be taken into account by Sellmeier equa-
tions [42]:

AR
nz(/l):1+27/12‘_32,

(18)
where A, and B, are the Sellmeier coefficients and 4 is
wavelength in units of um (see Table 1). Figure 3 shows
material dispersion D given by Eq. (18). Table 2 shows
detailed parameter values for these resonator materials.
Sellmeier coefficients for other materials can be found
elsewhere [43, 44].

2.3 Geometric dispersion

In addition to the large contribution made by material dis-
persion, geometric dispersion has a strong impact on total
dispersion. Geometrical dispersion can be interpreted
as follows: an optical mode with a different frequency

D (ps/(km nm))

00 | | | | | | | | |
1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
Wavelength (nm)

Figure 3: Material dispersion D of various platforms: silica (Si0,),
magnesium fluoride (MgF,), calcium fluoride (CaF,), and silicon
nitride (SiBNA).

Table 1: Coefficients of Sellmeier equations in microresonator material [43].

Material A A, A, B, (um) B, (um) B, (um)
SiO2 0.6961663 0.4079426 0.8974794 0.0684043 0.1162414 9.896161
MgFZ 0.48755108 0.39875031 2.3120353 0.04338408 0.09461442 23.793604
CaF2 0.5675888 0.4710914 3.8484723 0.050263605 0.1003909 34.649040
SisNa 3.0249 40314 0.1353406 1239.842
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Table 2: Comparison of resonator material properties at 1550 nm.

n n, (10-2° m?/W) D [ps/(km - nm)]
SiO2 1.44 2.2 21.9
MgF, 1.37 0.9 7.03
CaF, 1.43 1.9 0.057
SiN, 1.98 25 -6.57

experiences a different optical path in the waveguide;
therefore, various parameters of the resonator geometry
(i.e. resonator size, curvature size, disk thickness, and
disk angle) exhibit a dispersive effect as a function of
wavelength. Furthermore, it is known that different spatial
modes and different polarization modes can induce addi-
tional dispersion effects with regard to geometric disper-
sion because WGM resonators generally have a multimode
structure.

Currently, there are two calculation methods that
have been developed to obtain the geometric dispersion
of WGM resonators. One is an analytical approach via
an approximation of the eigenfrequency of resonators
[45-47]. Such an analytical expression provides an accu-
rate calculation of the mode frequencies and field distri-
bution for WGM resonators, and it has already been used
to calculate geometric dispersion. However, this method
has the geometrical limitation of resonators in which an
analytical estimation is valid only for simple and symmet-
ric geometries (i.e. spheroids and toroids). Accordingly,
an alternative numerical approach with a finite-element
method (FEM) simulation is widely used to derive the
eigenfrequencies [48]. The simulation can be performed
with commercially available software (e.g. COMSOL Mul-
tiphysics) as an eigenvalue solver of axisymmetric struc-
tures. A detailed calculation including both material and
geometric dispersion is described later.

Figure 4: Examples of mode profile simulation with FEM.
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An FEM simulation reveals not only the eigenmode
corresponding to the resonance frequency but also the
mode field distribution. In general, transverse electric
(TE) and transverse magnetic (TM) polarizations are
defined as electric (magnetic) field being perpendicular to
the direction of propagation. However, we employed TE
(TM) mode of WGM as the parallel (orthogonal) direction
of the dominant electrical field to the symmetric axis of
the WGM microresonator because they cannot imposed by
conventional transverse approximation [48, 49].

Figure 4 shows the meshing and the calculation result
for FEM analysis. Here, we clearly determine that the
optical mode approaches the inner region of the resonator
(symmetric axis of resonator) when the wavelength (fre-
quency) is increasing (decreasing). This trend corresponds
to the variation in the effective resonator radius, and so we
consider that the resonator FSR changes depending on the
effective radius and group index [50, 51]:

1 _ c
apg " 27R(w)- n, ()
dw

FSR(w) =

2nR(w)- (19)

The following expressions are useful if we are to
understand the relationship between FSR and dispersion
straightforwardly:

dFSR >0, dFSR <0:(anomalous dispersion) (20)
dw d
dFSR <0, dFSR >0:(normal dispersion) (21)
dw di

Here, we know that the reduction in mode radius with
longer wavelength (decreasing frequency) contributes
to the normal dispersion. Such reduction in the effective
radius at longer wavelengths can be interpreted as one
side of the geometric dispersion. On the other hand, the

(A) Created mesh cells for axisymmetric microdisk resonator with 40° wedge angle in FEM calculation. (B) Calculated mode profile of
fundamental TE and TM modes around 1550 nm. The TM mode slightly extends the outer boundary of the disk resonator. (C) Comparison of
mode profiles at three different wavelengths. At longer wavelengths, the center of the optical mode is shifted inside the resonator.
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change in n,, which is determined by the sum of n and
the frequency-dependent variation w(dn,_./dw) defined as
Eq. (2), is another side of the geometric dispersion. When
the optical mode extends to the lower index area, it induces
a reduction in n_; (promotes normal dispersion); in con-
trast, a sudden change in n_; leads to an overall increase in
n,, and it helps to contribute anomalous dispersion.

Certainly, the effective index is associated with the
change in effective radius and the penetration of the
optical mode field into the air cladding. The former effect
is not present in wire-waveguide devices (i.e. microring)
and is unique in WGM. This makes difference between
WGM resonator and microring when trying to engineer
the dispersion. In a WGM resonator, it is necessary to con-
sider these two simultaneously as mutual contributions.
Nevertheless, it is possible to predict the overall microres-
onator dispersion by understanding the principle of the
geometric dispersion of WGM microresonators. In the next
section, we describe a strategy for engineering the WGM
structure to realize an anomalous dispersion.

2.4 Combination of material and geometry
dispersion

Both material and geometry dispersions should be taken
into account to obtain the total dispersion of WGM micro-
resonators. However, it is difficult to consider these two
dispersions separately because the optical mode distribu-
tion of a WGM resonator is closely related to the refractive
index of the material. Therefore, an iterative calculation
is an effective way to calculate resonance frequencies (i.e.
resonator dispersion) accurately. The calculation has three
steps. (1) The microresonator structure and the approxi-
mate refractive index of the material are input into an
FEM solver. (2) The solver gives the resonance frequency.
Then, a Sellmeier equation calculates the refractive index
at the frequency. These procedures are repeated several
times. (3) The exact resonance frequency, which takes
account of the geometrical and material dispersions, is
obtained. A detailed calculation flow is shown in Figure 5.
The setting of the starting value eigenfrequency of interest
is important if we are to avoid an undesired mode and a
failed result. Calculated results sometimes diverge due to
a calculation error with the solver, and so the calculation
should be repeated with a different starting frequency. A
judgment algorithm that can be used to check the values
is necessary for implementing a successful simulation and
reducing the redundant computation time. Furthermore,
the mesh size should be sufficiently fine to make it pos-
sible to obtain exact values (but there is a tradeoff against

DE GRUYTER

Iterative calculation flow to obtain resonator dispersion
(1) Set the resonator structure and the initial value of n

(2) Determine the mode number m for the calculation
(8) FEM solver gives the resonance frequency f,
(4) Input the value f into Sellmeier equation
(5) Set new refrative index for Step (3)

Repeat (3)—(5) sevaral times
(6) Obtain the result (m vs f,) including dispersion

2
3

(3) (4) Eigenvalue (resonance frequency f )

Repeat
equation

(5) Refractive index n

Result

Figure 5: lIterative calculation flow for resonator dispersion taking
account of material and geometry dispersion.

computation time). The obtained results are resonance
frequencies that include both material and geometry dis-
persions, and then we can easily calculate the exact FSR
and dispersion through proper data processing.

3 Dispersion engineering of WGM
microresonator

3.1 Principle

WGM microresonators have wide-ranging combinations of
material and geometry, in particular, various choices are
available (e.g. sphere, disk, toroid, and rod) and the selec-
tion is made based on the demands with regard to FSR or
integration possibility. The host material for resonators
determines the Q limitation, and the major trend with
regards to the dispersion. However, the total dispersion can
only be modified by changing the structural parameters
in the monolithic resonators, and thus, there are many
studies aimed at engineering the resonator dispersion uti-
lizing geometry tailoring [51-58], layer structure [59-62],
slot waveguide [63, 64], and multiresonator system [65,
66]. Moreover, micrometer order fabrication accuracy on
the resonator cross-sectional dimensions sometimes plays
an important role in the precise dispersion engineering.

In this section, we study the impact of geometry disper-
sion on the total dispersion for silica and magnesium fluo-
ride (MgF,) WGM resonators. MgF, has the potential for an
ultra-high Q up to 10" [67, 68] and a transmission window
covering from the visible to mid-infrared wavelength
range. Calcium fluoride (CaF,) [69, 70] and barium fluo-
ride (BaF,) [71] exhibit similar optical properties to MgF;
nevertheless, thermal instability increases the difficulty of
self-thermal locking [72] and results in a disadvantage in
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terms of frequency comb generation. Compared with MgF,,
fused silica exhibits strong anomalous dispersion at 1.55
um, but Q is likely limited to 108-10° due to OH-absorption
[73]. However, the Q can be compensated for by its small
mode area, because the threshold for parametric oscil-
lation scales as V/Q? which reduces the required pump
power [3]. Moreover, good compatibility with wafer-scale
fabrication and chip integration constitute major advan-
tages [50, 74] compared with fluoride crystalline materials.

We learned that the total dispersion including the
effects of material and geometry can be engineered via
the geometric condition where different resonators are
characterized by different structure parameters. To under-
stand the geometry dispersion well, we looked at some
example dispersion calculation results for several kinds
of WGM resonators. The resonator size (corresponding
to radius R) is directly related to the FSR, and thus, the
FSR can be approximated from the resonator radius while
other structural parameters affect both the FSR and dis-
persion. We mainly focus on presenting the dependence
of each parameter on microresonator dispersion using a
simulation. Here, we discuss the following WGM resona-
tors (see also Figure 6):

Spheroid (spherical) model: The spheroid (spherical)
structure is characterized by a resonator radius R and a
curvature radius r. We assume MgF, as the resonator mate-
rial in this article.

Microtoroid model: The toroidal structure is charac-
terized by the major radius R and minor diameter r. We
assume the use of a silica resonator.

A

Figure 6: Modeling of resonator structure.
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Single-disk model: The disk structure is characterized
by the resonator radius R, disk angle 6, and thickness ¢.
We assume the use of a silica resonator as with the toroid
model.

3.2 Spheroid (spherical) model

Spheroid and spherical resonators have a common cross-
sectional shape in crystalline [67] and silica rod resona-
tors [75]. Since the fabricated resonator size is of the order
of several hundred micrometers to several millimeters,
the typical curvature radius is several tens/hundreds of
micrometers. These features are determined by the fabri-
cation methods, which involve mechanical and hand pol-
ishing with a crystalline resonator, and a carbon dioxide
(COZ) laser cutting process with a silica rod resonator. It
should be noted that microsphere resonators have only
the resonator radius parameter, which is identical with
the curvature radius [76, 77].

Figure 7A and B show calculated dispersion D as a func-
tion of wavelength for the fundamental TE mode of a MgF,
resonator with a different resonator radius and curvature
radius. Figure 7C and D are the corresponding integrated
dispersions D, , which express the deviation between each
resonance frequency and the estimated equidistant FSR
Dl/Zn. By changing the resonator radius to 350 um, 700
um, 1400 um, and 2800 um, the dispersion curves gradu-
ally get close to the material dispersion with a larger size,
exhibiting an overall anomalous dispersion. On the other
hand, the curvature radii from 25 um to 100 um are less
important with regard to dispersion, whereas a smaller

Cc

(A) Spheroid (spherical) model, representing a mm-sized microresonator with a resonator radius R and a curvature radius r. (B) Microtoroid
model, whose two structural parameters are major radius R and minor radius r. (C) Single-disk model with resonator radius R, thickness t,
and wedge angle 6. (D-F) Scanning electron micrograph (SEM) images of WGM microresonators, (D) MgF, crystalline resonator, (E) silica

microtoroid resonator, and (F) Silica microdisk resonator.
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Figure 7: Simulated dispersion of MgF, spheroid resonator for different resonator radii R and curvature radii rin um.

(A) Dispersion parameter D for different resonator radii. (B) Dispersion parameter D for different curvature radii. (C) Integrated dispersion
D, ., which is defined as the deviation of the resonance frequency from an equidistant FSR, for different resonator radii. The positive
parabolic function corresponds to anomalous dispersion, and the cubic function curves of the dispersion originate from the effect of third-
order dispersion. (D) Integrated dispersion D,  for different curvature radii.

radius contributes slightly to a strong anomalous disper-
sion (see inset of Figure 7B). These results reveal important
guidelines: (1) the overall dispersion mainly depends on
the resonator size and (2) the curvature size plays a less
important role in a mm-size spheroid/spherical resonator.
The first guideline can be simply understood as a reduc-
tion in the geometric dispersion in a larger resonator. The

second guideline indicates that the optical mode is not
influenced, thanks to a relatively large curvature radius
compared with the resonance wavelength. Although we
calculate only the fundamental mode here, the radial and
polar higher-order modes enable us to change the disper-
sion. In particular, the radial higher-order mode contrib-
utes significantly to normal dispersion. [78].
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3.3 Microtoroid model

A microtoroid is characterized by a major (resonator)
radius and a minor radius of several tens/hundreds of
micrometers and several micrometers, respectively. A
toroidal structure is formed by a (CO,) laser reflow process
after silica disk fabrication using photolithography and
chemical etching and thus achieves efficient light confine-
ment via the boundary between silica and the surround-
ing air [74].

The simulated dispersion is shown in Figure 8. As with
the spheroid model, a choice of major radii strongly affects
the dispersion. Particularly, the difference between radii
of 40 um and 60 um is more important in terms of realiz-
ing an anomalous dispersion. From Figure 8B, we can see
that, in contrast to the spheroid model, the smaller minor
radius contributes to a strong anomalous dispersion. This
trend indicates that the inner boundary of toroid structures
influences the optical mode, which strongly affects the
geometry dispersion due to the pum-size minor radius. The
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change toward an anomalous dispersion with a smaller
minor radius is interpreted as follows: geometry disper-
sion generally contributes to normal dispersion since a
mode radius reduction corresponds to an increasing FSR
with a longer wavelength. On the other hand, a change in
n, can compensate for the normal dispersion, and the total
dispersion becomes anomalous as a result of the strong
mode confinement (see Section 2.4 for a detailed explana-
tion). Thus, the geometry dispersion is anomalous overall
as the resonator waveguide dimensions are compressed.
We find that the dispersion for r=5 and r=6 shows little
change compared with that for r=3 and r=4 as shown in
Figure 8B and D. This can be explained by analogy with
relatively loose mode confinement, namely, mode relaxa-
tion, has less influence on dispersion.

3.4 Single-disk model

A single-disk resonator has three parameters, namely a
resonator radius, a wedge angle, and thickness [50, 79].
Our aim was to check the effect of disk angle and thickness
on the dispersion with fixed resonator radius R=300 pm.
Figure 9A and C show the dispersion with different thick-
nesses of 4 um, 6 um, 8 um, and 10 um. The disk angle was
kept at 40°. We can clearly see that the dispersion curves
increase significantly with a decrease in disk thickness
and do not show any clear change with thicknesses of 8
um and 10 um. The reason for former observation can be
explained with the analogy of “mode compression,” and
the latter observation can be understood with the analogy
of “mode relaxation” as with the microtoroid model. Next,
we changed the disk angle of 20°, 30°, 40°, and 50° with
a fixed thickness of 6 um as shown in Figure 9B and D.
The simulation result shows that the small disk angle con-
tributes greatly to the normal dispersion. We can conclude
that this effect is mainly because of the faster mode radius
reduction with a smaller disk angle, which is a major
feature of geometric dispersion as described in Section 2.3.

3.5 Strategy of dispersion engineering

Here, we review the obtained simulation results and
plan a dispersion engineering strategy. First, the choice
of material and resonator size is essential with respect to
deciding the overall dispersion. Since a smaller-radius
resonator is strongly influenced by geometric disper-
sion, it generally exhibits a normal dispersion. However,
the resonator size determines the FSR of a comb, and so
it is not easy to achieve both a large FSR and a proper
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anomalous dispersion for Kerr comb generation. To over-
come this limitation, the compression of smaller resona-
tor cross-section dimension is an effective way to change
the dispersion from normal to anomalous in small-radius
resonators [57, 79, 80]. A criterion for such mode compres-
sion is several times the wavelength of the optical mode
(i.e. a cross-section dimension of A ~41). In addition, the
disk angle critically affects the dispersion, which is not
observed with spheroid/spherical and toroid models. We
can understand this case as a rapidly decreasing mode
radius with a smaller disk angle than with a larger angle
(i.e. contribution to normal dispersion) [51, 81].

We believe that these trends apply to every type of
WGM microresonator, and it will be an important strategy
for designing the structure of a microresonator. In fact,
both the GVD value and the higher-order dispersion play
interesting roles with regard to the optical spectrum of a
Kerr comb. D,  provides important information for pre-
dicting the optical spectrum, and dispersion engineering,
which takes higher-order dispersion into account, enables
more flexible control of a Kerr frequency comb.

4 Dispersion measurement technique

4.1 Principle

The measurement of microresonator dispersion is an
essential technique for the evaluation of fabricated
microresonators in addition to numerical simulation, as
described in the previous section. Obtained resonance fre-
quency information provides the resonator FSR, second-
and higher-order dispersions, and the mode interaction
between different transverse modes. However, resonator
dispersion measurements have to be performed carefully
and accurately because the resonator linewidths and
deviation of the mode spacing are typically of the orders
of kHz or MHz, which means that high spectral resolution
is needed over the measurement bandwidth. In general,
guaranteeing wavelength accuracy will not be easy
work because of frequency uncertainty, which cannot be
neglected in this case, during laser sweeping. Therefore,
the wavelength axis of the measurement data must be
calibrated with reliable methods to provide precise wave-
length references. The dispersion measurement require-
ments are as follows: (1) measurement bandwidth, (2)
accuracy and resolution, and (3) system simplicity. There is
often a tradeoff, and thus, we have to carefully choose the
best method. In this section, we review several dispersion
measurement methods and compare the measurement
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for different disk thicknesses. (D) Integrated dispersion D, for different disk angles.

results. Figure 10A shows a schematic of the experimental
setup we used for the dispersion measurement, where we
employed a crystalline MgF, microresonator as a sample.

4.2 Laser wavelength-meter-based
measurement

The simplest way involves using a wavelength meter to
determine the actual wavelength of the sweeping laser.

The wavelength meter is synchronized with the scanning
laser, and the resonance transmission and output signal
from the wavelength meter are obtained simultaneously
with a long-memory oscilloscope or other data acquisition
system. We assumed that the wavelength meter can be syn-
chronized with the sweeping laser in this measurement.
Accordingly, wavelength resolution and accuracy would
be limited by the performance of the wavelength meter,
which is at best of a tens of MHz order in commercially
available devices. This lacks wavelength accuracy even
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(A) Schematic of the setup used for the microresonator dispersion measurement. Both the resonator transmittance and calibration marker
are recorded simultaneously with a multi-channel oscilloscope. The paths of 4.2, 4.3, and 4.4 can be independently used for dispersion
measurements, but all the signals in the experiment were observed for comparison. ECDL, external cavity diode laser; MZI, Mach-Zehnder
interferometer. (B) Operating principle of the mode-locked frequency comb-based method. The scanning laser generates beat notes with
stabilized fiber comb lines, and the beat signals filtered with a band-pass filter calibrate the time axis to frequency axis.
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Figure 11: Comparison of dispersion measurement results obtained with three different methods.

(A) Measured resonator transmission spectrum (blue) and frequency marker signal with wavelength meter (orange). Several different mode
families are recorded. (B) 10 x enlarged view of (A). The frequency axis is calibrated by the peaks at a 100 MHz distance. (C) Measured
dispersion plot of D, (blue dots) versus relative mode number . The red line shows a parabolic fitting curve yielding D,/ 27 = 4.5 kHz
(FSR~21.6 GHz). The deviations from the fitting are limited by the accuracy of the wavelength meter. Strong mode perturbations around
1=100 and =150 are caused by anti-mode crossing between different mode families. (D) Measured resonator transmission spectrum
(blue) and beat signal (red) with fiber comb lines, which work as calibration peaks. (E) 10 x enlarged view of (D). The frequency axis is
calibrated by the peaks at 40 MHz and 60 MHz with respect to the fiber comb lines with a 100 MHz mode spacing. (F) Measured dispersion
plot of D, (blue dots) and fitting curve (solid red line). The measurement accuracy is greatly improved compared with the wavelength meter
method. (G) Measured resonator transmission spectrum (blue) and interferometric signal (green) with a fiber MZI. (H) 10 x enlarged view

of (G). The frequency axis is calibrated by the sinusoidal peaks at 20 MHz of FSR of the MZI. (I) Measured dispersion plot of D, , (blue dots)
and fitting curve (solid red line). With proper dispersion calibration of the fiber MZI, the measured dispersion agrees well with the results
obtained with other methods. The inset shows the result without MZI calibration, which reflects the inherent dispersion of silica optical

fiber, and it hinders the resonator dispersion.

though it is critical for the dispersion measurement. The maximum performance of memory length). Figure 11A-C
advantage of this method is experimental simplicity, and show the experimental dispersion result obtained with a
it requires only a two-channel oscilloscope (available for ~wavelength-meter-based measurement.
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4.3 Mode-locked frequency-comb-based
measurement

This method was first proposed as frequency-comb-
assisted diode laser spectroscopy [82] and used in many
studies [35, 40, 83, 84]. A scanning laser over resonances
is partially split and combined with a stabilized frequency
comb source, which generates a laser beat signal with
equidistant comb lines. The generated beat signals are
filtered with a narrow-band electrical bandpass filter to
make calibration markers only when the scanning laser
passes through the comb lines. Consequently, the calibra-
tion markers are detected when the laser frequency (f)
matches the difference between a neighboring comb line
(f=f+nf, ep) and the center of the bandpass filter (f,) with
0<f,<f, ep/2: f=f.+nf .- f,- This provides reliable infor-
mation about the scanning laser frequency and the trans-
mission resonance simultaneously within a few seconds
(see Figure 10B). Resonance dips and marker peaks can be
processed with a local peak finding algorithm. The meas-
ured results are shown in Figure 11D-F.

The spectral resolution is simply determined from
the scan bandwidth and the memory length of the oscil-
loscope, and the sweeping speed of the laser should
be sufficiently fast to avoid unnecessary measurement
error (e.g. the frequency fluctuation of the comb source).
However, the maximum sweep speed v_is limited by the
bandwidth of radio frequency filters, which have response
times (estimated from the inverse of the filter band-
width I, yielding vg:l/l“z. The laser frequency between
neighboring calibration markers can be interpolated so
that the use of multiple bandpass filters can increase
the measurement accuracy. It should be noted that this
method uses a multichannel oscilloscope with a suffi-
ciently long memory because the spectral resolution (scan
bandwidth divided by memory length) must be sufficiently
finer than the resonance linewidth y=Q/f. For instance,
the detection of a high Q resonance of 10° over a 40-nm
range needs a memory length of at least ~25M point per
channel. It should also be noted that this measurement
requires a mode-hope-free tunable laser over the scanning
range, and the measurement bandwidth is limited by both
the laser and the reference frequency comb.

In addition, we can also use a wavelength meter and
frequency-stabilized reference laser, which generate a
reference marker signal to calibrate the absolute wave-
length. The uncertainty of the wavelength meter intro-
duces an absolute wavelength offset for the measurement
data; however, it is less important for microresonator
“dispersion” measurements. This indicates that measure-
ment accuracy does not depend on absolute frequency
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calibration, but on relative frequency calibration. The
bandwidth limitation of the measurement can be over-
come by utilizing two widely tunable lasers with differ-
ent wavelength bands if the reference comb has a broad
enough bandwidth over the full measurement range [85].

4.4 Calibrated fiber interferometer based
measurement

With this method, a fiber interferometer or fiber-loop cavity
is used as a calibration marker [34, 50, 86-88] instead of
beat signals generated with a frequency comb. This method
offers simple implementation, high accuracy, and a broad
bandwidth, but the fiber interferometer itself inherently
exhibits dispersion. Thus, the FSR and dispersion of a fiber
Mach-Zehnder interferometer (MZI) have to be carefully
measured and calibrated in advance of the resonator dis-
persion measurement. A fiber MZI is easy to prepare by con-
necting two 50/50 fiber couplers where one path is several
meters longer than the other. The length difference between
the two paths AL, corresponds to the frequency period of
a sinusoidal interferometer signal Af, ,=c/(nAL_ ). If we
use a 10 m length of delay line (e.g. commercial single-
mode silica optical fiber), the interferometric period will
be around 20 MHz. When the laser is slowly scanned, the
period of the MZI becomes longer on the time axis, on the
other hand, the MZI will respond as a short period against
faster scanning. This gives frequency calibration infor-
mation, and the number of MZI periods is counted with a
similar algorithm to that used with the frequency comb-
based method. Measured results are shown in Figure 11G-1.
The MZI dispersion can be expressed by a Taylor expanded
equation, which has a similar form to Eq. (15);

1
AfMZI ('uMZI) = AfMZI,O + dl'uMZI + 5d2'u§AZI (22)

where Af, ., is the FSR of the center mode u,, =0, u,,, is
the relative mode number of the MZI period with respect
to the center mode, d, and d, are the first- and second-
order dispersion, respectively. The calibration of the fiber
MZI must be accomplished by the precise measurement
of the FSR both near and far from the center mode, and
polynomial fitting according to Eq. (22). If the dispersion
of the fiber MZI, namely, d, and d,, is not considered, the
resonator dispersion can be no longer measured (see inset
in Figure 11I). When used for microresonator dispersion
measurement, the calibrated fiber MZI should be operated
in a stable condition with respect to temperature, pres-
sure, and bending, to avoid any deviation of the calibra-
tion data.
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4.5 Electro-optic modulator comb-based
measurement

An electro-optic modulator (EOM) generates the side-
bands of the scanning laser, and the result is multiple
resonances on both sides with a modulation frequency
f. .o The sideband modulation technique can be used for
various applications in microresonator research such as
the Pound-Drever-Hall technique [89], linewidth estima-
tion [90], electro-optic (EO) frequency comb generation
[91], and the dispersion measurement described here [51,
81]. If the modulation frequency f_, nearly matches the
resonator FSR, three resonance dips can overlap each
other in the spectral domain, and then f,_, itself gives the
FSR to be investigated. This method can be adopted for
broadband dispersion measurement and is not limited by
tunable range of the mode-hope free laser, from 1400 to
1700 nm, and even around the 2100 nm wavelength region
via difference frequency generation [51]. The CW laser sent
to the EOM with f,_ outputs a narrow band EO comb, and
the bandwidth is broadened through multiple amplifiers
and highly nonlinear fibers. When the broadened comb
lines sweep over the multiple resonances simultaneously,
precisely adjusted f__ will provide the average FSR of the
extracted resonances. The uncertainty of this measure-
ment is estimated to be about 100 kHz [81]. Here it should
be noted that there is a limitation in terms of resonator
FSR because f, , must reach at least 1-FSR from the pump
laser. Since the bandwidth of a commercially available EO
modulator is several tens of GHz, this method can only be
applied to mm-meter scale microresonators.

5 Role of dispersion in Kerr
frequency comb spectrum

Microresonator dispersion plays a critical role in the Kerr
frequency comb spectrum, and thus, dispersion engineer-
ing is currently a hot topic in microresonator frequency
comb research. By tailoring the resonator geometry, it
becomes possible to overcome the inherent material dis-
persion as shown in Section 3. Since a requirement for
microresonator soliton formation, particularly bright
soliton, is to accomplish anomalous dispersion, parabolic
positive dispersion D, should ideally be achieved around
the pump laser wavelength (see Figure 12A). Nevertheless,
higher-order dispersions contribute to the spectral broad-
ening of Kerr combs [92-95], and this effect is attracting
great interest in terms of overcoming the spectral limita-
tion imposed by second-order dispersion.
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Figure 12: Spectra of Kerr frequency comb and corresponding
dispersion D,  (solid red line).

Dissipative Kerr solitons dominated by D, (A), with a single peak
dispersive wave (B) and double peaks (C) affected by D, and D,,
respectively. (D) Clustered comb formed in a normal dispersion
regime via D,. Phase-matching points are indicated by the solid
green line.

Higher-order dispersion makes it possible to expand
the comb into a wavelength region in which the sign of
the dispersion D, changes from positive (negative) to
negative (positive). For instance, third-order dispersion
induces Cherenkov radiation [96], which can be under-
stood in terms of the dispersive wave emission in the fre-
quency domain in Figure 12B [35, 97], and fourth-order
dispersion permits the formation of a dispersive wave
with double peaks on both sides with respect to the pump
in Figure 12C [98-100]. Fourth-order dispersion also
makes it possible to achieve spectral broadening in both
anomalous and normal dispersion and is called clustered
comb formation [84, 101-103]. A clustered comb is shown
in Figure 12D, where the sign of D, is negative and that
of D, is positive (odd orders of dispersion have no effect
in this case). This phase-matching scheme enables us to
realize a frequency-tunable parametric oscillator and a
localized comb generator from 1 um to mid-infrared wave-
lengths [84, 104].

Figure 13 shows the observed Kerr comb spectrum
influenced by microresonator dispersion. DKS forma-
tion is observed when the resonator dispersion is domi-
nated by the positive parabolic curve D, (anomalous
dispersion) as shown in Figure 13A. The comb spectrum
becomes distorted under local dispersion perturbation,
which is induced by avoided mode crossing between dif-
ferent transverse modes [105, 106]. Such local mode cou-
pling occurring at the vicinity of the pump mode disturbs
soliton formation [107], and therefore, the suppression
of mode coupling between coexisting transverse modes
is needed if one wants to generate DKSs in WGM micro-
resonators efficiently [51, 108, 109]. On the other hand,
a mode-coupling-induced local dispersion shift leads to
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Figure 13: Experimentally observed optical spectra of Kerr
frequency comb.

(A) Soliton comb formation in a MgF, crystalline microresonator
with an FSR of 16.6 GHz. The solid red line (~sech?) shows a

single soliton state with smooth spectrum envelope. (B) Optical
spectrum with dispersive wave emission around 1450 nm in a silica
toroid microresonator. (C) Clustered comb formation in a normal
dispersion operated silica toroid microresonator.

many applications such as deterministic single soliton
generation [110], an understanding of soliton properties
[111, 112], and Kerr comb generation in normal dispersion
system [86, 113, 114]. In particular, dark pulse (flat-topped
pulse, platicon) formation can be directly achieved in a
normal dispersion resonator via the local avoided mode
crossing [40, 65, 115, 116]. The normal dispersion micro-
resonator comb formation is expected to expand the comb
bandwidth in the visible wavelength range, where the
strong material dispersion dominates the total dispersion,
via tailoring of dispersion. Moreover, the higher conver-
sion efficiency [117] and FSR controllability [65, 118, 119]
are unique features of the normal dispersion microcomb.
Dispersive waves realized via higher-order dispersion
constitute a key technology for expanding the microcomb
spectrum to the normal dispersion regime, and thus sus-
taining a robust soliton waveform. This improves the con-
version efficiency of the comb spectral and enables one
to generate an octave-wide soliton comb [98]. Recently,
multicolor soliton microcombs have been proposed by uti-
lizing advance dispersion engineering such as a complex
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structure tailoring [120], and it paves the way for devel-
oping of broadband, arbitrary spectrum engineering
techniques.

6 Summary

We have reviewed microresonator dispersion engineering
and described a calculation method and a measurement
method with the aim of Kerr frequency comb generation.
WGM microresonators have several kinds of resonator
structures and candidate materials, and their choice and
dispersion tailoring are the key steps to generating a Kerr
soliton comb and expanding the comb bandwidth assisted
by dispersive wave emission. Dispersion simulation based
on FEM computation provides a useful method for obtain-
ing reliable resonance frequency results as well as the
optical mode distribution. In addition, a comparison of
experimental dispersion measurements offers a wide
range of choices suited to the requirement. We believe that
much is still to be explored with regard to microresona-
tor dispersion engineering, and problems remain, includ-
ing comb generation in different wavelength regions (i.e.
visible and mid-infrared), where material dispersion is
more dominant. The dispersion engineering technique
will evolve concurrently with the development of fabrica-
tion techniques with a view to plotting a new landscape
for the microresonator frequency comb.
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