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Abstract: Designing and engineering microresonator 
dispersion are essential for generating microresona-
tor frequency comb. Microresonator frequency combs 
(microcombs, Kerr frequency combs) offer the potential 
for various attractive applications as a new type of coher-
ent light source that is power efficient and compact and 
has a high repetition rate and a broad bandwidth. They 
are easily driven with a continuous-wave pump laser with 
adequate frequency tuning; however, the resonators must 
have a high quality (Q) factor and suitable dispersion. The 
emergence of cavity enhanced four-wave mixing, which is 
based on third-order susceptibility in the host material, 
results in the generation of broadband and coherent opti-
cal frequency combs in the frequency domain equivalent 
to an optical pulse in the time domain. The platforms on 
which Kerr frequency combs can be observed have been 
developed, thanks to intensive efforts by many research-
ers over a few decades. Ultrahigh-Q whispering gallery 
mode (WGM) microresonators are one of the major plat-
forms since they can be made of a wide range of material 
including silica glass, fluoride crystals and semiconduc-
tors. In this review, we focus on the dispersion engineering 
of WGM microresonators by designing the geometry of the 
resonators based on numerical simulation. In addition, 
we discuss experimental methods for measuring resona-
tor dispersion. Finally, we describe experimental results 
for Kerr frequency combs where second- and higher-order 
dispersions influence their optical spectra.

Keywords: nonlinear optics; frequency comb; whisper-
ing gallery mode microresonator; Kerr frequency comb; 
microcomb; dispersion engineering.

1  �Introduction
Optical frequency combs based on microresonators have 
attracted considerable interest in the last few decades in 
the micro-/nano-photonics research fields [1, 2]. Micro-
resonator frequency combs are generated in ultrahigh-Q 
microresonators by a continuous-wave (CW) laser pump, 
thanks to Kerr nonlinearity [3, 4], and therefore, they 
are called Kerr frequency combs [5] or microcombs [6]. 
Microcombs allow us to fabricate micro or millimeter-
scale devices that are much smaller than conventional 
frequency comb sources, and this enables us to achieve 
compact monolithic comb devices with low noise, a broad 
bandwidth, and a repetition rate in the microwave domain 
[7–12]. Therefore, microresonators have the potential to 
be desirable platforms for massively optical communi-
cation [13], astronomical calibration [14, 15], precision 
spectroscopy [16, 17], light detection and ranging [18, 
19], low-noise microwave generation [20], and integrated 
optical-frequency synthesizer [21], as well as for various 
nonlinear photonic applications [22–24].

In these high-Q monolithic resonators, equidistant 
optical sidebands are generated via cavity enhanced four-
wave mixing processes based on the third-order nonlin-
ear effect. In order to enhance the light-matter interaction 
inside the resonator, it is necessary to increase Q and 
reduce the mode volume, which are related to the required 
pump power [25]. The generated comb lines have an equi-
distant frequency spacing supported by the energy and 
momentum conservation process (Figure 1). However, the 
relative phase relation of these comb lines is not always 
optimized in experiments [10, 26]. The mode-locked state 
in which periodic optical pulses circulate inside the cir-
cumference of the resonator, which is called a dissipa-
tive Kerr soliton (DKS) [27], can be achieved by the proper 
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operation of the pump laser [28–32]. This discovery made 
it possible to achieve a high-coherence, stable soliton 
microcomb, as a result of the balance between paramet-
ric gain and loss and between dispersion and nonlinear-
ity [33]. DKSs have been successively demonstrated in a 
wide variety of microresonators, ranging from silica [34], 
silicon nitride [35, 36], silicon [37], aluminum nitride [38], 
and lithium niobate [39], since the first observation of 
DKSs in crystalline microresonators [28]. Different plat-
forms have different advantages (e.g. Q-factor, nonlin-
earity, chip-integration), and many groups have already 
developed and proposed new materials and structures for 
microresonator.

With regard to the generation of soliton microcombs, 
considerable attention has been paid to the group-veloc-
ity dispersion (GVD) of the resonator. In general, bright 
solitons characterized by sech2-shaped optical spectrum 
require a suitable anomalous GVD in order to maintain a 
dissipative system [27]. Moreover, microresonator disper-
sion exhibits soliton dynamics with interesting features 
such as dark pulses [40] and dispersive waves [35].

The purpose of this article is to present an overview 
of microresonator dispersion engineering that is needed 
to generat e Kerr frequency comb. As we will discuss later, 
the strategy of dispersion engineering in a whispering 
gallery mode (WGM) resonator is different from that of 
wire-waveguide devices such as microrings.

The paper is organized as follows. First, in Section 2, 
we introduce theoretical and analytical approaches that 
enable us to understand microresonator dispersion, which 
is determined by both material and geometry. Section 3 
describes a useful calculation method based on a finite-
element simulation and shows the simulation results for 
several WGM microresonators. Following the calculation, 
we describe in Section 4 experimental dispersion meas-
urement methods and a comprehensive survey. Finally, in 
Section 5, we report the effect of higher-order dispersion 

and avoided mode crossing in an optical spectrum and 
highlight their application.

2  �Microresonator dispersion

2.1  �Fundamentals of dispersion

Dispersion is one of the most important physical quanti-
ties in microresonator frequency comb generation and in 
ultrafast optics. When light travels the same physical path 
length, dispersion originates from the frequency depend-
ence of the refractive index, which means that different 
frequency components experience different phase veloci-
ties (equivalent to different optical path lengths). Here, we 
start with a well-known fundamental dispersion relation, 
which gives the frequency dependence of the propagation 
constant β of traveling light as follows [41]:
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where ω and c are angular frequency and light speed in a 
vacuum, respectively. The linear term β0 = ω0/νp is given by 
the phase velocity of the center frequency νp, which also 
gives the effective index neff as neff = c/νp. The first-order 
dispersion β1 is given by group velocity νg and group index 
ng as
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It is sometimes helpful to employ an expression in 
function to wavelength λ:
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The group velocity is explained as the speed of the 
envelope of the optical pulse (wave packet). When taking 
the phase shift φ = βL into account, the spectral phase after 
the propagation through a dispersive medium of length L 
is given by Φ(ω) = ωt–βL. By substituting Eq. (1), we obtain
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Here, the spectral phases of all the frequency compo-
nents have constant values without being dependent on 
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Figure 1: Schematic of Kerr optical frequency comb generation in a 
WGM microresonator with a tapered fiber coupling.

1088 S. Fujii and T. Tanabe: Dispersion engineering and measurement of whispering gallery mode



frequency at t = L/νg, which means that the pulse envelope 
arrives with a velocity of νg. This first-order dispersion is 
also used to describe group delay Tg as

	

φ β
β

ω ω
= = = = 1 ,g

g

d d LT L L
d d v

� (5)

which corresponds to the propagation time of a pulse 
through an optical medium of length L. The second-order 
derivative term of Eq. (1) represents the change rate in the 
inverse group velocity (corresponding to the group delay) 
in terms of frequency, namely, the group velocity disper-
sion (GVD) β2.
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where β2 is responsible for broadening of the pulse band-
width. Moreover, the frequency dependency of the group 
delay is known as group delay dispersion,
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In addition to the GVD parameter β2, the parameter D 
is a convenient expression in fiber optics, which is given 
by the change of group delay Tg per unit length in function 
to wavelength (not frequency).
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D can be described with β2 using Eq. (5) as follows:
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Whether to use β2 or D to express the GVD depends 
on different preferences in the research community. The 
parameters β2 and D are usually given in units of (ps2/
km) and [ps/(km · nm)], respectively, showing the oppo-
site sign. As a result, the sign of the GVD parameters are 
“β2 > 0, D < 0” for normal dispersion and “β2 < 0, D > 0” for 
anomalous dispersion. Note that the above definition of 
normal/anomalous dispersion gives the GVD for a particu-
lar wavelength. Sometimes the wavelength dependence of 
the refractive index dn/dλ is also referred to as normal dis-
persion (dn/dλ < 0) and anomalous dispersion (dn/dλ > 0), 
whereas this definition does not coincide with GVD, and 
it is confusing for readers. Accordingly, in this article, we 
use the term “dispersion” to indicate GVD.

Optical resonators have the discrete resonance fre-
quencies given by
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where fm (= ωm/2π) is the frequency of the mth longitudinal 
mode with the azimuthal mode number m. Here, it should 
be noted that both the effective refractive index neff′ and 
the effective radius of the mode R′ are in function to the 
azimuthal mode number (frequency), which is a unique 
property of WGM resonators. Although R′ is usually a 
constant in waveguide devices, the value is frequency 
dependent for WGM resonators, as we will show later in 
Figure  4C. And this makes the dispersion engineering 
unique in WGM resonators. However, we usually redefine 
the frequency-dependent effective refractive index neff, 
and as such, it includes the effect of frequency depend-
ence of the R′ because it is not easy to detect R′ (or neff′) 
independently in an experiment. Hence, neff is frequency 
dependent, whereas R is now the actual radius of WGM 
resonators, which is a constant.

We can derive the propagation constant of mth WGM 
from the resonance condition,
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Consequently, the first-order dispersion β 1
 and GVD β 2

 
are given by the free-spectral range (FSR) of the resonator 
Δfm,
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From Eq. (9), dispersion parameter D is expressed 
with resonance frequencies as
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where we can use a difference approximation for the mth 
mode, such as Δfm = (fm+1–fm−1)/2 and Δ(Δfm) = fm+1–2fm + fm−1).

The microresonator dispersion is expressed in func-
tion to the relative position of the resonance frequencies, 
and it is often used for the sake of convenience. The rela-
tive mode number μ is defined as the mode index in terms 
of the center (pump) mode μ = 0; hence, all the resonance 
frequencies are given in with a Taylor expansion around 
the center frequency:
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where D1/2π is the equidistant resonator FSR, D2/2π is the 
second-order dispersion related to β2, and D3/2π, D4/2π, … 
represent the higher-order dispersion in units of (Hz) [Di is 
given in (rad/s)]. Consequently, the integrated dispersion 
Dint is given by the deviation of the resonance frequency 
including all the above dispersion terms from the equi-
distant grid D1/2π. The frequency distance between two 
adjacent resonant modes is called an FSR, which is the 
original definition. However, we see many papers defining 
an equidistant grid with respect to the pump mode D1/2π 
as an FSR. The former includes the offset induced by the 
dispersion, whereas the latter indicates only equal inter-
vals. Since both terms are used to stand for “FSR,” readers 
need to consider this carefully in context. In this paper, 
we distinguish the original definition of “FSR” (i.e. longi-
tudinal mode spacing with the effect of dispersion) from 
“equidistant FSR” (i.e. D1/2π).

Figure 2 is a schematic illustration of microresona-
tor dispersion. Higher-order dispersions can be omitted 
depending on the case because of the relation given as 
D2  D3  D4…. Here, a positive (negative) D2 corresponds 
to an anomalous (normal) dispersion, and Di parameter 
has the relation to dispersion βi as
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2.2  �Material dispersion

Since the dispersion is derived from the deviation of the 
resonance frequencies of longitudinal modes, it is nec-
essary to consider several contributions that affect the 
refractive indices of the resonators. Material dispersion 
plays an important role in the total dispersion of a resona-
tor; hence, it can be taken into account by Sellmeier equa-
tions [42]:
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where Ai and Bi are the Sellmeier coefficients and λ is 
wavelength in units of μm (see Table 1). Figure 3 shows 
material dispersion D given by Eq. (18). Table 2 shows 
detailed parameter values for these resonator materials. 
Sellmeier coefficients for other materials can be found 
elsewhere [43, 44].

2.3  �Geometric dispersion

In addition to the large contribution made by material dis-
persion, geometric dispersion has a strong impact on total 
dispersion. Geometrical dispersion can be interpreted 
as follows: an optical mode with a different frequency 
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Figure 2: Resonance frequencies taking dispersion into account. 
The mismatch between the equidistant comb grid (black 
dashed line) and the resonance mode (blue) corresponds to the 
microresonator dispersion.

Table 1: Coefficients of Sellmeier equations in microresonator material [43].

Material A1 A2 A3 B1 (μm) B2 (μm) B3 (μm)

SiO2 0.6961663 0.4079426 0.8974794 0.0684043 0.1162414 9.896161
MgF2 0.48755108 0.39875031 2.3120353 0.04338408 0.09461442 23.793604
CaF2 0.5675888 0.4710914 3.8484723 0.050263605 0.1003909 34.649040
Si3N4 3.0249 40314 0.1353406 1239.842
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Figure 3: Material dispersion D of various platforms: silica (SiO2), 
magnesium fluoride (MgF2), calcium fluoride (CaF2), and silicon 
nitride (Si3N4).
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experiences a different optical path in the waveguide; 
therefore, various parameters of the resonator geometry 
(i.e. resonator size, curvature size, disk thickness, and 
disk angle) exhibit a dispersive effect as a function of 
wavelength. Furthermore, it is known that different spatial 
modes and different polarization modes can induce addi-
tional dispersion effects with regard to geometric disper-
sion because WGM resonators generally have a multimode 
structure.

Currently, there are two calculation methods that 
have been developed to obtain the geometric dispersion 
of WGM resonators. One is an analytical approach via 
an approximation of the eigenfrequency of resonators 
[45–47]. Such an analytical expression provides an accu-
rate calculation of the mode frequencies and field distri-
bution for WGM resonators, and it has already been used 
to calculate geometric dispersion. However, this method 
has the geometrical limitation of resonators in which an 
analytical estimation is valid only for simple and symmet-
ric geometries (i.e. spheroids and toroids). Accordingly, 
an alternative numerical approach with a finite-element 
method (FEM) simulation is widely used to derive the 
eigenfrequencies [48]. The simulation can be performed 
with commercially available software (e.g. COMSOL Mul-
tiphysics) as an eigenvalue solver of axisymmetric struc-
tures. A detailed calculation including both material and 
geometric dispersion is described later.

An FEM simulation reveals not only the eigenmode 
corresponding to the resonance frequency but also the 
mode field distribution. In general, transverse electric 
(TE) and transverse magnetic (TM) polarizations are 
defined as electric (magnetic) field being perpendicular to 
the direction of propagation. However, we employed TE 
(TM) mode of WGM as the parallel (orthogonal) direction 
of the dominant electrical field to the symmetric axis of 
the WGM microresonator because they cannot imposed by 
conventional transverse approximation [48, 49].

Figure 4 shows the meshing and the calculation result 
for FEM analysis. Here, we clearly determine that the 
optical mode approaches the inner region of the resonator 
(symmetric axis of resonator) when the wavelength (fre-
quency) is increasing (decreasing). This trend corresponds 
to the variation in the effective resonator radius, and so we 
consider that the resonator FSR changes depending on the 
effective radius and group index [50, 51]:
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The following expressions are useful if we are to 
understand the relationship between FSR and dispersion 
straightforwardly:
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Here, we know that the reduction in mode radius with 
longer wavelength (decreasing frequency) contributes 
to the normal dispersion. Such reduction in the effective 
radius at longer wavelengths can be interpreted as one 
side of the geometric dispersion. On the other hand, the 

Table 2: Comparison of resonator material properties at 1550 nm.

n n2 (10 − 20 m2/W) D [ps/(km · nm)]

SiO2 1.44 2.2 21.9
MgF2 1.37 0.9 7.03
CaF2 1.43 1.9 0.057
Si3N4 1.98 25 –6.57

5 m

= 1550 nm

TE

TM

TE

A

= 1550 nm

= 1550 nm

= 1400 nm

= 1700 nm

B

C

Figure 4: Examples of mode profile simulation with FEM.
(A) Created mesh cells for axisymmetric microdisk resonator with 40° wedge angle in FEM calculation. (B) Calculated mode profile of 
fundamental TE and TM modes around 1550 nm. The TM mode slightly extends the outer boundary of the disk resonator. (C) Comparison of 
mode profiles at three different wavelengths. At longer wavelengths, the center of the optical mode is shifted inside the resonator.
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change in ng, which is determined by the sum of neff and 
the frequency-dependent variation ω(dneff/dω) defined as 
Eq. (2), is another side of the geometric dispersion. When 
the optical mode extends to the lower index area, it induces 
a reduction in neff (promotes normal dispersion); in con-
trast, a sudden change in neff leads to an overall increase in 
ng, and it helps to contribute anomalous dispersion.

Certainly, the effective index is associated with the 
change in effective radius and the penetration of the 
optical mode field into the air cladding. The former effect 
is not present in wire-waveguide devices (i.e. microring) 
and is unique in WGM. This makes difference between 
WGM resonator and microring when trying to engineer 
the dispersion. In a WGM resonator, it is necessary to con-
sider these two simultaneously as mutual contributions. 
Nevertheless, it is possible to predict the overall microres-
onator dispersion by understanding the principle of the 
geometric dispersion of WGM microresonators. In the next 
section, we describe a strategy for engineering the WGM 
structure to realize an anomalous dispersion.

2.4  �Combination of material and geometry 
dispersion

Both material and geometry dispersions should be taken 
into account to obtain the total dispersion of WGM micro-
resonators. However, it is difficult to consider these two 
dispersions separately because the optical mode distribu-
tion of a WGM resonator is closely related to the refractive 
index of the material. Therefore, an iterative calculation 
is an effective way to calculate resonance frequencies (i.e. 
resonator dispersion) accurately. The calculation has three 
steps. (1) The microresonator structure and the approxi-
mate refractive index of the material are input into an 
FEM solver. (2) The solver gives the resonance frequency. 
Then, a Sellmeier equation calculates the refractive index 
at the frequency. These procedures are repeated several 
times. (3) The exact resonance frequency, which takes 
account of the geometrical and material dispersions, is 
obtained. A detailed calculation flow is shown in Figure 5. 
The setting of the starting value eigenfrequency of interest 
is important if we are to avoid an undesired mode and a 
failed result. Calculated results sometimes diverge due to 
a calculation error with the solver, and so the calculation 
should be repeated with a different starting frequency. A 
judgment algorithm that can be used to check the values 
is necessary for implementing a successful simulation and 
reducing the redundant computation time. Furthermore, 
the mesh size should be sufficiently fine to make it pos-
sible to obtain exact values (but there is a tradeoff against 

computation time). The obtained results are resonance 
frequencies that include both material and geometry dis-
persions, and then we can easily calculate the exact FSR 
and dispersion through proper data processing.

3  �Dispersion engineering of WGM 
microresonator

3.1  �Principle

WGM microresonators have wide-ranging combinations of 
material and geometry, in particular, various choices are 
available (e.g. sphere, disk, toroid, and rod) and the selec-
tion is made based on the demands with regard to FSR or 
integration possibility. The host material for resonators 
determines the Q limitation, and the major trend with 
regards to the dispersion. However, the total dispersion can 
only be modified by changing the structural parameters 
in the monolithic resonators, and thus, there are many 
studies aimed at engineering the resonator dispersion uti-
lizing geometry tailoring [51–58], layer structure [59–62], 
slot waveguide [63, 64], and multiresonator system [65, 
66]. Moreover, micrometer order fabrication accuracy on 
the resonator cross-sectional dimensions sometimes plays 
an important role in the precise dispersion engineering.

In this section, we study the impact of geometry disper-
sion on the total dispersion for silica and magnesium fluo-
ride (MgF2) WGM resonators. MgF2 has the potential for an 
ultra-high Q up to 1010 [67, 68] and a transmission window 
covering from the visible to mid-infrared wavelength 
range. Calcium fluoride (CaF2) [69, 70] and barium fluo-
ride (BaF2) [71] exhibit similar optical properties to MgF2; 
nevertheless, thermal instability increases the difficulty of 
self-thermal locking [72] and results in a disadvantage in 

(2) Determine the mode number m for the calculation

Iterative calculation flow to obtain resonator dispersion
(1) Set the resonator structure and the initial value of n

(3) FEM solver gives the resonance frequency f
m

(4) Input the value  f
m
 into Sellmeier equation

(5) Set new refrative index for Step (3)

(6) Obtain the result (m vs f
m
) including dispersion

(3) (4) Eigenvalue (resonance frequency f
m
)

Repeat (3)–(5) sevaral times

FEM solver
(1) (2) (6)

Result

Repeat
Sellmeier
equation

(5) Refractive index n

Figure 5: Iterative calculation flow for resonator dispersion taking 
account of material and geometry dispersion.
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terms of frequency comb generation. Compared with MgF2, 
fused silica exhibits strong anomalous dispersion at 1.55 
μm, but Q is likely limited to 108–109 due to OH-absorption 
[73]. However, the Q can be compensated for by its small 
mode area, because the threshold for parametric oscil-
lation scales as V/Q2, which reduces the required pump 
power [3]. Moreover, good compatibility with wafer-scale 
fabrication and chip integration constitute major advan-
tages [50, 74] compared with fluoride crystalline materials.

We learned that the total dispersion including the 
effects of material and geometry can be engineered via 
the geometric condition where different resonators are 
characterized by different structure parameters. To under-
stand the geometry dispersion well, we looked at some 
example dispersion calculation results for several kinds 
of WGM resonators. The resonator size (corresponding 
to radius R) is directly related to the FSR, and thus, the 
FSR can be approximated from the resonator radius while 
other structural parameters affect both the FSR and dis-
persion. We mainly focus on presenting the dependence 
of each parameter on microresonator dispersion using a 
simulation. Here, we discuss the following WGM resona-
tors (see also Figure 6):

Spheroid (spherical) model: The spheroid (spherical) 
structure is characterized by a resonator radius R and a 
curvature radius r. We assume MgF2 as the resonator mate-
rial in this article.

Microtoroid model: The toroidal structure is charac-
terized by the major radius R and minor diameter r. We 
assume the use of a silica resonator.

Single-disk model: The disk structure is characterized 
by the resonator radius R, disk angle θ, and thickness t. 
We assume the use of a silica resonator as with the toroid 
model.

3.2  �Spheroid (spherical) model

Spheroid and spherical resonators have a common cross-
sectional shape in crystalline [67] and silica rod resona-
tors [75]. Since the fabricated resonator size is of the order 
of several hundred micrometers to several millimeters, 
the typical curvature radius is several tens/hundreds of 
micrometers. These features are determined by the fabri-
cation methods, which involve mechanical and hand pol-
ishing with a crystalline resonator, and a carbon dioxide 
(CO2) laser cutting process with a silica rod resonator. It 
should be noted that microsphere resonators have only 
the resonator radius parameter, which is identical with 
the curvature radius [76, 77].

Figure 7A and B show calculated dispersion D as a func-
tion of wavelength for the fundamental TE mode of a MgF2 
resonator with a different resonator radius and curvature 
radius. Figure 7C and D are the corresponding integrated 
dispersions Dint, which express the deviation between each 
resonance frequency and the estimated equidistant FSR 
D1/2π. By changing the resonator radius to 350 μm, 700 
μm, 1400 μm, and 2800 μm, the dispersion curves gradu-
ally get close to the material dispersion with a larger size, 
exhibiting an overall anomalous dispersion. On the other 
hand, the curvature radii from 25 μm to 100 μm are less 
important with regard to dispersion, whereas a smaller 

R R R

r
r t

200 µm 25 µm 100 µm

A B C

D E F

Figure 6: Modeling of resonator structure.
(A) Spheroid (spherical) model, representing a mm-sized microresonator with a resonator radius R and a curvature radius r. (B) Microtoroid 
model, whose two structural parameters are major radius R and minor radius r. (C) Single-disk model with resonator radius R, thickness t, 
and wedge angle θ. (D–F) Scanning electron micrograph (SEM) images of WGM microresonators, (D) MgF2 crystalline resonator, (E) silica 
microtoroid resonator, and (F) Silica microdisk resonator.
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radius contributes slightly to a strong anomalous disper-
sion (see inset of Figure 7B). These results reveal important 
guidelines: (1) the overall dispersion mainly depends on 
the resonator size and (2) the curvature size plays a less 
important role in a mm-size spheroid/spherical resonator. 
The first guideline can be simply understood as a reduc-
tion in the geometric dispersion in a larger resonator. The 

second guideline indicates that the optical mode is not 
influenced, thanks to a relatively large curvature radius 
compared with the resonance wavelength. Although we 
calculate only the fundamental mode here, the radial and 
polar higher-order modes enable us to change the disper-
sion. In particular, the radial higher-order mode contrib-
utes significantly to normal dispersion. [78].
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Figure 7: Simulated dispersion of MgF2 spheroid resonator for different resonator radii R and curvature radii r in μm.
(A) Dispersion parameter D for different resonator radii. (B) Dispersion parameter D for different curvature radii. (C) Integrated dispersion 
Dint, which is defined as the deviation of the resonance frequency from an equidistant FSR, for different resonator radii. The positive 
parabolic function corresponds to anomalous dispersion, and the cubic function curves of the dispersion originate from the effect of third-
order dispersion. (D) Integrated dispersion Dint for different curvature radii.
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3.3  �Microtoroid model

A microtoroid is characterized by a major (resonator) 
radius and a minor radius of several tens/hundreds of 
micrometers and several micrometers, respectively. A 
toroidal structure is formed by a (CO2) laser reflow process 
after silica disk fabrication using photolithography and 
chemical etching and thus achieves efficient light confine-
ment via the boundary between silica and the surround-
ing air [74].

The simulated dispersion is shown in Figure 8. As with 
the spheroid model, a choice of major radii strongly affects 
the dispersion. Particularly, the difference between radii 
of 40 μm and 60 μm is more important in terms of realiz-
ing an anomalous dispersion. From Figure 8B, we can see 
that, in contrast to the spheroid model, the smaller minor 
radius contributes to a strong anomalous dispersion. This 
trend indicates that the inner boundary of toroid structures 
influences the optical mode, which strongly affects the 
geometry dispersion due to the μm-size minor radius. The 
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change toward an anomalous dispersion with a smaller 
minor radius is interpreted as follows: geometry disper-
sion generally contributes to normal dispersion since a 
mode radius reduction corresponds to an increasing FSR 
with a longer wavelength. On the other hand, a change in 
ng can compensate for the normal dispersion, and the total 
dispersion becomes anomalous as a result of the strong 
mode confinement (see Section 2.4 for a detailed explana-
tion). Thus, the geometry dispersion is anomalous overall 
as the resonator waveguide dimensions are compressed. 
We find that the dispersion for r = 5 and r = 6 shows little 
change compared with that for r = 3 and r = 4 as shown in 
Figure 8B and D. This can be explained by analogy with 
relatively loose mode confinement, namely, mode relaxa-
tion, has less influence on dispersion.

3.4  �Single-disk model

A single-disk resonator has three parameters, namely a 
resonator radius, a wedge angle, and thickness [50, 79]. 
Our aim was to check the effect of disk angle and thickness 
on the dispersion with fixed resonator radius R = 300 μm. 
Figure 9A and C show the dispersion with different thick-
nesses of 4 μm, 6 μm, 8 μm, and 10 μm. The disk angle was 
kept at 40°. We can clearly see that the dispersion curves 
increase significantly with a decrease in disk thickness 
and do not show any clear change with thicknesses of 8 
μm and 10 μm. The reason for former observation can be 
explained with the analogy of “mode compression,” and 
the latter observation can be understood with the analogy 
of “mode relaxation” as with the microtoroid model. Next, 
we changed the disk angle of 20°, 30°, 40°, and 50° with 
a fixed thickness of 6 μm as shown in Figure  9B and D. 
The simulation result shows that the small disk angle con-
tributes greatly to the normal dispersion. We can conclude 
that this effect is mainly because of the faster mode radius 
reduction with a smaller disk angle, which is a major 
feature of geometric dispersion as described in Section 2.3.

3.5  �Strategy of dispersion engineering

Here, we review the obtained simulation results and 
plan a dispersion engineering strategy. First, the choice 
of material and resonator size is essential with respect to 
deciding the overall dispersion. Since a smaller-radius 
resonator is strongly influenced by geometric disper-
sion, it generally exhibits a normal dispersion. However, 
the resonator size determines the FSR of a comb, and so 
it is not easy to achieve both a large FSR and a proper 

anomalous dispersion for Kerr comb generation. To over-
come this limitation, the compression of smaller resona-
tor cross-section dimension is an effective way to change 
the dispersion from normal to anomalous in small-radius 
resonators [57, 79, 80]. A criterion for such mode compres-
sion is several times the wavelength of the optical mode 
(i.e. a cross-section dimension of λ ~ 4λ). In addition, the 
disk angle critically affects the dispersion, which is not 
observed with spheroid/spherical and toroid models. We 
can understand this case as a rapidly decreasing mode 
radius with a smaller disk angle than with a larger angle 
(i.e. contribution to normal dispersion) [51, 81].

We believe that these trends apply to every type of 
WGM microresonator, and it will be an important strategy 
for designing the structure of a microresonator. In fact, 
both the GVD value and the higher-order dispersion play 
interesting roles with regard to the optical spectrum of a 
Kerr comb. Dint provides important information for pre-
dicting the optical spectrum, and dispersion engineering, 
which takes higher-order dispersion into account, enables 
more flexible control of a Kerr frequency comb.

4  �Dispersion measurement technique

4.1  �Principle

The measurement of microresonator dispersion is an 
essential technique for the evaluation of fabricated 
microresonators in addition to numerical simulation, as 
described in the previous section. Obtained resonance fre-
quency information provides the resonator FSR, second- 
and higher-order dispersions, and the mode interaction 
between different transverse modes. However, resonator 
dispersion measurements have to be performed carefully 
and accurately because the resonator linewidths and 
deviation of the mode spacing are typically of the orders 
of kHz or MHz, which means that high spectral resolution 
is needed over the measurement bandwidth. In general, 
guaranteeing wavelength accuracy will not be easy 
work because of frequency uncertainty, which cannot be 
neglected in this case, during laser sweeping. Therefore, 
the wavelength axis of the measurement data must be 
calibrated with reliable methods to provide precise wave-
length references. The dispersion measurement require-
ments are as follows: (1) measurement bandwidth, (2) 
accuracy and resolution, and (3) system simplicity. There is 
often a tradeoff, and thus, we have to carefully choose the 
best method. In this section, we review several dispersion 
measurement methods and compare the measurement 
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results. Figure 10A shows a schematic of the experimental 
setup we used for the dispersion measurement, where we 
employed a crystalline MgF2 microresonator as a sample.

4.2  �Laser wavelength-meter-based 
measurement

The simplest way involves using a wavelength meter to 
determine the actual wavelength of the sweeping laser. 

The wavelength meter is synchronized with the scanning 
laser, and the resonance transmission and output signal 
from the wavelength meter are obtained simultaneously 
with a long-memory oscilloscope or other data acquisition 
system. We assumed that the wavelength meter can be syn-
chronized with the sweeping laser in this measurement. 
Accordingly, wavelength resolution and accuracy would 
be limited by the performance of the wavelength meter, 
which is at best of a tens of MHz order in commercially 
available devices. This lacks wavelength accuracy even 
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though it is critical for the dispersion measurement. The 
advantage of this method is experimental simplicity, and 
it requires only a two-channel oscilloscope (available for 

maximum performance of memory length). Figure 11A–C 
show the experimental dispersion result obtained with a 
wavelength-meter-based measurement.
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Figure 11: Comparison of dispersion measurement results obtained with three different methods.
(A) Measured resonator transmission spectrum (blue) and frequency marker signal with wavelength meter (orange). Several different mode 
families are recorded. (B) 10 ×  enlarged view of (A). The frequency axis is calibrated by the peaks at a 100 MHz distance. (C) Measured 
dispersion plot of Dint (blue dots) versus relative mode number μ. The red line shows a parabolic fitting curve yielding D2/2π = 4.5 kHz 
(FSR ~ 21.6 GHz). The deviations from the fitting are limited by the accuracy of the wavelength meter. Strong mode perturbations around 
μ = 100 and μ = 150 are caused by anti-mode crossing between different mode families. (D) Measured resonator transmission spectrum 
(blue) and beat signal (red) with fiber comb lines, which work as calibration peaks. (E) 10 ×  enlarged view of (D). The frequency axis is 
calibrated by the peaks at 40 MHz and 60 MHz with respect to the fiber comb lines with a 100 MHz mode spacing. (F) Measured dispersion 
plot of Dint (blue dots) and fitting curve (solid red line). The measurement accuracy is greatly improved compared with the wavelength meter 
method. (G) Measured resonator transmission spectrum (blue) and interferometric signal (green) with a fiber MZI. (H) 10 ×  enlarged view 
of (G). The frequency axis is calibrated by the sinusoidal peaks at 20 MHz of FSR of the MZI. (I) Measured dispersion plot of Dint (blue dots) 
and fitting curve (solid red line). With proper dispersion calibration of the fiber MZI, the measured dispersion agrees well with the results 
obtained with other methods. The inset shows the result without MZI calibration, which reflects the inherent dispersion of silica optical 
fiber, and it hinders the resonator dispersion.
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4.3  �Mode-locked frequency-comb-based 
measurement

This method was first proposed as frequency-comb-
assisted diode laser spectroscopy [82] and used in many 
studies [35, 40, 83, 84]. A scanning laser over resonances 
is partially split and combined with a stabilized frequency 
comb source, which generates a laser beat signal with 
equidistant comb lines. The generated beat signals are 
filtered with a narrow-band electrical bandpass filter to 
make calibration markers only when the scanning laser 
passes through the comb lines. Consequently, the calibra-
tion markers are detected when the laser frequency (fs) 
matches the difference between a neighboring comb line 
(fc = fceo + nfrep) and the center of the bandpass filter (fb) with 
0 < fb < frep/2: fs = fceo + nfrep ± fb. This provides reliable infor-
mation about the scanning laser frequency and the trans-
mission resonance simultaneously within a few seconds 
(see Figure 10B). Resonance dips and marker peaks can be 
processed with a local peak finding algorithm. The meas-
ured results are shown in Figure 11D–F.

The spectral resolution is simply determined from 
the scan bandwidth and the memory length of the oscil-
loscope, and the sweeping speed of the laser should 
be sufficiently fast to avoid unnecessary measurement 
error (e.g. the frequency fluctuation of the comb source). 
However, the maximum sweep speed νs is limited by the 
bandwidth of radio frequency filters, which have response 
times (estimated from the inverse of the filter band-
width Γ), yielding νg = 1/Γ2. The laser frequency between 
neighboring calibration markers can be interpolated so 
that the use of multiple bandpass filters can increase 
the measurement accuracy. It should be noted that this 
method uses a multichannel oscilloscope with a suffi-
ciently long memory because the spectral resolution (scan 
bandwidth divided by memory length) must be sufficiently 
finer than the resonance linewidth γ = Q/f. For instance, 
the detection of a high Q resonance of 109 over a 40-nm 
range needs a memory length of at least ~25M point per 
channel. It should also be noted that this measurement 
requires a mode-hope-free tunable laser over the scanning 
range, and the measurement bandwidth is limited by both 
the laser and the reference frequency comb.

In addition, we can also use a wavelength meter and 
frequency-stabilized reference laser, which generate a 
reference marker signal to calibrate the absolute wave-
length. The uncertainty of the wavelength meter intro-
duces an absolute wavelength offset for the measurement 
data; however, it is less important for microresonator 
“dispersion” measurements. This indicates that measure-
ment accuracy does not depend on absolute frequency 

calibration, but on relative frequency calibration. The 
bandwidth limitation of the measurement can be over-
come by utilizing two widely tunable lasers with differ-
ent wavelength bands if the reference comb has a broad 
enough bandwidth over the full measurement range [85].

4.4  �Calibrated fiber interferometer based 
measurement

With this method, a fiber interferometer or fiber-loop cavity 
is used as a calibration marker [34, 50, 86–88] instead of 
beat signals generated with a frequency comb. This method 
offers simple implementation, high accuracy, and a broad 
bandwidth, but the fiber interferometer itself inherently 
exhibits dispersion. Thus, the FSR and dispersion of a fiber 
Mach-Zehnder interferometer (MZI) have to be carefully 
measured and calibrated in advance of the resonator dis-
persion measurement. A fiber MZI is easy to prepare by con-
necting two 50/50 fiber couplers where one path is several 
meters longer than the other. The length difference between 
the two paths ΔLfiber corresponds to the frequency period of 
a sinusoidal interferometer signal ΔfMZI = c/(nΔLfiber). If we 
use a 10  m length of delay line (e.g. commercial single-
mode silica optical fiber), the interferometric period will 
be around 20 MHz. When the laser is slowly scanned, the 
period of the MZI becomes longer on the time axis, on the 
other hand, the MZI will respond as a short period against 
faster scanning. This gives frequency calibration infor-
mation, and the number of MZI periods is counted with a 
similar algorithm to that used with the frequency comb-
based method. Measured results are shown in Figure 11G–I. 
The MZI dispersion can be expressed by a Taylor expanded 
equation, which has a similar form to Eq. (15);

	
∆ μ ∆ μ μ= + + 2

MZI MZI MZI,0 1 MZI 2 MZI
1( )
2

f f d d � (22)

where ΔfMZI,0 is the FSR of the center mode μMZI = 0, μMZI is 
the relative mode number of the MZI period with respect 
to the center mode, d1 and d2 are the first- and second-
order dispersion, respectively. The calibration of the fiber 
MZI must be accomplished by the precise measurement 
of the FSR both near and far from the center mode, and 
polynomial fitting according to Eq. (22). If the dispersion 
of the fiber MZI, namely, d1 and d2, is not considered, the 
resonator dispersion can be no longer measured (see inset 
in Figure 11I). When used for microresonator dispersion 
measurement, the calibrated fiber MZI should be operated 
in a stable condition with respect to temperature, pres-
sure, and bending, to avoid any deviation of the calibra-
tion data.
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4.5  �Electro-optic modulator comb-based 
measurement

An electro-optic modulator (EOM) generates the side-
bands of the scanning laser, and the result is multiple 
resonances on both sides with a modulation frequency 
fmod. The sideband modulation technique can be used for 
various applications in microresonator research such as 
the Pound-Drever-Hall technique [89], linewidth estima-
tion [90], electro-optic (EO) frequency comb generation 
[91], and the dispersion measurement described here [51, 
81]. If the modulation frequency fmod nearly matches the 
resonator FSR, three resonance dips can overlap each 
other in the spectral domain, and then fmod itself gives the 
FSR to be investigated. This method can be adopted for 
broadband dispersion measurement and is not limited by 
tunable range of the mode-hope free laser, from 1400 to 
1700 nm, and even around the 2100 nm wavelength region 
via difference frequency generation [51]. The CW laser sent 
to the EOM with fmod outputs a narrow band EO comb, and 
the bandwidth is broadened through multiple amplifiers 
and highly nonlinear fibers. When the broadened comb 
lines sweep over the multiple resonances simultaneously, 
precisely adjusted fmod will provide the average FSR of the 
extracted resonances. The uncertainty of this measure-
ment is estimated to be about 100 kHz [81]. Here it should 
be noted that there is a limitation in terms of resonator 
FSR because fmod must reach at least 1-FSR from the pump 
laser. Since the bandwidth of a commercially available EO 
modulator is several tens of GHz, this method can only be 
applied to mm-meter scale microresonators.

5  �Role of dispersion in Kerr 
frequency comb spectrum

Microresonator dispersion plays a critical role in the Kerr 
frequency comb spectrum, and thus, dispersion engineer-
ing is currently a hot topic in microresonator frequency 
comb research. By tailoring the resonator geometry, it 
becomes possible to overcome the inherent material dis-
persion as shown in Section 3. Since a requirement for 
microresonator soliton formation, particularly bright 
soliton, is to accomplish anomalous dispersion, parabolic 
positive dispersion D2 should ideally be achieved around 
the pump laser wavelength (see Figure 12A). Nevertheless, 
higher-order dispersions contribute to the spectral broad-
ening of Kerr combs [92–95], and this effect is attracting 
great interest in terms of overcoming the spectral limita-
tion imposed by second-order dispersion.

Higher-order dispersion makes it possible to expand 
the comb into a wavelength region in which the sign of 
the dispersion Dint changes from positive (negative) to 
negative (positive). For instance, third-order dispersion 
induces Cherenkov radiation [96], which can be under-
stood in terms of the dispersive wave emission in the fre-
quency domain in Figure 12B [35, 97], and fourth-order 
dispersion permits the formation of a dispersive wave 
with double peaks on both sides with respect to the pump 
in Figure  12C [98–100]. Fourth-order dispersion also 
makes it possible to achieve spectral broadening in both 
anomalous and normal dispersion and is called clustered 
comb formation [84, 101–103]. A clustered comb is shown 
in Figure 12D, where the sign of D2 is negative and that 
of D4 is positive (odd orders of dispersion have no effect 
in this case). This phase-matching scheme enables us to 
realize a frequency-tunable parametric oscillator and a 
localized comb generator from 1 μm to mid-infrared wave-
lengths [84, 104].

Figure 13 shows the observed Kerr comb spectrum 
influenced by microresonator dispersion. DKS forma-
tion is observed when the resonator dispersion is domi-
nated by the positive parabolic curve D2 (anomalous 
dispersion) as shown in Figure 13A. The comb spectrum 
becomes distorted under local dispersion perturbation, 
which is induced by avoided mode crossing between dif-
ferent transverse modes [105, 106]. Such local mode cou-
pling occurring at the vicinity of the pump mode disturbs 
soliton formation [107], and therefore, the suppression 
of mode coupling between coexisting transverse modes 
is needed if one wants to generate DKSs in WGM micro-
resonators efficiently [51, 108, 109]. On the other hand, 
a mode-coupling-induced local dispersion shift leads to 

Dint/2

( 0+ 0– 2 0)/2

Frequency

BA

DC

Figure 12: Spectra of Kerr frequency comb and corresponding 
dispersion Dint (solid red line).
Dissipative Kerr solitons dominated by D2 (A), with a single peak 
dispersive wave (B) and double peaks (C) affected by D3 and D4, 
respectively. (D) Clustered comb formed in a normal dispersion 
regime via D4. Phase-matching points are indicated by the solid 
green line.
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many applications such as deterministic single soliton 
generation [110], an understanding of soliton properties 
[111, 112], and Kerr comb generation in normal dispersion 
system [86, 113, 114]. In particular, dark pulse (flat-topped 
pulse, platicon) formation can be directly achieved in a 
normal dispersion resonator via the local avoided mode 
crossing [40, 65, 115, 116]. The normal dispersion micro-
resonator comb formation is expected to expand the comb 
bandwidth in the visible wavelength range, where the 
strong material dispersion dominates the total dispersion, 
via tailoring of dispersion. Moreover, the higher conver-
sion efficiency [117] and FSR controllability [65, 118, 119] 
are unique features of the normal dispersion microcomb. 
Dispersive waves realized via higher-order dispersion 
constitute a key technology for expanding the microcomb 
spectrum to the normal dispersion regime, and thus sus-
taining a robust soliton waveform. This improves the con-
version efficiency of the comb spectral and enables one 
to generate an octave-wide soliton comb [98]. Recently, 
multicolor soliton microcombs have been proposed by uti-
lizing advance dispersion engineering such as a complex 

structure tailoring [120], and it paves the way for devel-
oping of broadband, arbitrary spectrum engineering 
techniques.

6  �Summary
We have reviewed microresonator dispersion engineering 
and described a calculation method and a measurement 
method with the aim of Kerr frequency comb generation. 
WGM microresonators have several kinds of resonator 
structures and candidate materials, and their choice and 
dispersion tailoring are the key steps to generating a Kerr 
soliton comb and expanding the comb bandwidth assisted 
by dispersive wave emission. Dispersion simulation based 
on FEM computation provides a useful method for obtain-
ing reliable resonance frequency results as well as the 
optical mode distribution. In addition, a comparison of 
experimental dispersion measurements offers a wide 
range of choices suited to the requirement. We believe that 
much is still to be explored with regard to microresona-
tor dispersion engineering, and problems remain, includ-
ing comb generation in different wavelength regions (i.e. 
visible and mid-infrared), where material dispersion is 
more dominant. The dispersion engineering technique 
will evolve concurrently with the development of fabrica-
tion techniques with a view to plotting a new landscape 
for the microresonator frequency comb.
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