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Abstract: The spectrum and energy dynamics for a sys-
tem that comprises a molecule interacting with a cavity 
photon is analyzed, taking into account the effect of both 
molecular vibrations and counter-rotating terms (CR) in 
the dipole Hamiltonian. The CR terms do not have a strong 
effect on the spectrum even for moderately large values of 
the exciton-photon interaction. However, it is shown that 
the polariton subspace is governed by an effective Quan-
tum-Rabi Hamiltonian, where polaritons act as a two-level 
system and the phonons play the role of cavity photons. 
The effect of the CR terms is amplified in the dynamics: 
as the vibrations reduce the effective photon-exciton cou-
pling, small Bloch-Siegert energy shifts can bring the sys-
tem out of resonance.
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1  �Introduction
Cavity quantum electrodynamics (CQED), that is, the 
behavior of matter with a discrete quantum level struc-
ture interacting with a confined electromagnetic field, has 
been a blooming topic of research in the last three decades 
[1]. One attractive possibility is to strongly couple the con-
stituents in order to create hybrid quasiparticles, which 

inherit both the intrinsic nonlinearities of a quantum 
system and the speed of photons. Different material plat-
forms have been considered as the discrete-level system 
(which can usually be described as an effective two-level 
system, 2LS), such as quantum dots [2], NV centers in 
diamond [3], and superconducting systems [4]. Recently, 
organic molecules have also been added to this list. 
Notably, placing a macroscopic set of molecules in an 
extended cavity has been shown to modify their chemi-
cal reaction rates [5], exciton transport [6, 7], and even the 
electronic conductivity [8]. The case of few-molecules in 
cavities has also been reached [9], even going down to a 
single molecule in the case of plasmonic cavities [10, 11]. 
Remarkably, these last cases reported coupling rates of 
the order of 1/10 of the excitation bare energies, indicat-
ing that ultrastrong effects may be relevant (see [12, 13] 
for recent reviews on the ultrastrong coupling regime). 
Molecules are also being considered as effective 2LS in 
open 1D waveguides, both in the optical [14] and micro-
wave [15] regimes, with potential applications in quantum 
information. It is clear that, despite the similarities with 
other 2LS, molecules also present peculiarities associated 
with their manifold of vibrational excitations, which need 
to be taken into consideration.

In this article we analyze the dynamics of the simplest 
system in molecular CQED: a single molecule interact-
ing with a single cavity mode. As a difference from other 
works, we concentrate on analyzing ultrastrong coupling 
effects that may arise in these systems.

2  �One molecule in one cavity

2.1  �The model

We consider one molecule inside a cavity (see Figure 1A 
for a schematic diagram). This system can be described 
as the single-molecule version of the Holstein-Tavis-Cum-
mings Hamiltonian, which has been analyzed in depth in 
the past for collections of molecules [16–19] (throughout 
this article, we denote this single-molecule case as the 
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Holstein-Jaynes-Cummings (HJC) case). However, this 
Hamiltonian is obtained after neglecting the counter-
rotating (CR) terms that arise when quantizing the dipole 
Hamiltonian [1, 13]. This is correct in the usual case where 
the molecule-photon interaction is weak, but as the cou-
pling increases when the photon modal volume decreases, 
the CR terms may be relevant when considering ultras-
mall plasmonic cavities. We thus retain the CR terms and 
propose the Holstein-Quantum-Rabi (HQR) Hamiltonian:
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where the operators a+, σ+, and b+ create one cavity photon 
(with energy ωc), one exciton in the molecule (with energy 
Δ), and one molecular vibrational quantum (with energy 
ωv), respectively, while their adjoint operators (a, σ−, and 
b) annihilate the corresponding excitations. The opera-
tors a and b are bosonic, while the σ’s are Pauli matrices 
operating in the molecular ground state-exciton two-level 
manifold.

The Holstein exciton-phonon interaction takes into 
account that the molecule vibrates differently in the 
ground and excited states, and it is characterized by the 
Huang-Rhys factor λ2. The coefficient g sets the exciton-
photon interaction strength and depends on both the 

molecular transition dipole moment and the photon 
modal volume. When g is small enough compared to both 
ωc and Δ, the CR term HCR = g(σ+a+ + σ−a−) can be safely 
neglected, arriving at the HJC model. On the contrary, for 
large enough g, the CR term is relevant to the dynamics 
of the system (situation termed as “ultrastrong coupling 
regime” or USC). In CQED, the rule of thumb is that reach-
ing the USC requires g  0.1 Δ [12, 13, 20]; here we will 
show that this condition is modified in molecular CQED.

Notice that the diamagnetic term (A2 ~ (a + a+)2)) has 
not been included in the Hamiltonian (1), as we assume 
that its effect has already been taken into account in the 
values of ωc and g [17].

Hamiltonian (1) is expressed in the base of vibrational 
levels of the electronic ground state {n}. It is possible to 
go into a representation where vibrations in the electronic 
ground state are expressed in the base {n} while the vibra-
tions in the exciton sector are expressed in their own 
eigenfunctions: the displaced oscillators �{ }.n  In this case, 
the base vectors are ↓ 〉 ↑ 〉�{| , , ,| , , },i n i n  where ↓, ↑ refers to 
the electronic degree of freedom and i is the number of 
photons. This basis change is implemented by a polaron 
transformation, which takes b→b–λσ+σ− via the unitary 
transformation → † ,P PH U HU  with UP = exp(–λσ+σ−(b+–b)). 
After standard manipulations, we obtain a Hamiltonian 
that is exactly equivalent to Hamiltonian (1):

	
ω ∆σ σ ω λ σ λ σ+ + − + + − += + + + + +†( ( ) ( ) )( ).c vH a a b b g D D a a

� (2)

In this representation, the vibrations “dress” the exci-
ton-photon coupling through the Frank-Condon factors 

λλ
+ −≡� �( )| ( ) | | e |b bn D m n m  [21].

Although the motivation behind the presentation 
of the HQR Hamiltonian is the application to molecular 
CQED, note that it could more generally apply to cases 
where a 2LS is coupled both to a cavity photon and to 
another bosonic degree of freedom, a situation that may 
occur in circuit QED [22]. With this in mind, in what 
follows we present results over a wide range of Huang-
Rhys factors (which in molecules typically range from 0 
to ~2 [23, 24]).

2.2  �The spectrum

In this article we focus on the modification of the dynam-
ics of a 2LS in a cavity due to the presence of vibrational 
modes. We thus consider the cavity to be in resonance 
with the zero-phonon excitonic transition (ωc = Δ, which 
is taken as the energy unit). Figure 1B renders the 
numerically computed spectrum for the case g = 0.05 

Figure 1: Energy levels in molecular cavity QED.
(A) Schematic representation of the energy scales in the problem of 
a molecule in a cavity. (B) Lower eigen energies as a function of the 
Huang-Rhys factor. Red lines correspond to the vibrational ladder 
of the photon-exciton ground-state, while black lines correspond 
to the 1 excitation light-matter (polariton) sector. The parameters 
used are ωc = Δ = 1, ωv = 0.075, and g = 0.05. (C) Zoom of panel (B) 
in the polariton sector. Solid lines were obtained with the HQR 
model, data points marked with crosses were obtained with the HJC 
Hamiltonian (neglecting the CR terms), and the discontinuous lines 
are obtained with the effective QR model described by Eq. (3).
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(the chosen values for ωc and g representative for vibra-
tions in organic molecules [25] and ultrasmall plas-
monic cavities [10, 11], respectively). Results for both 
HQR and HJC models are shown, demonstrating that the 
CR terms have only a minimal impact in the eigen ener-
gies for that value of g. The spectrum shows a series of 
vibrational modes associated with the exciton-photon 
ground state (with energies virtually independent of λ) 
and another set associated with the vibrational dressed 
polaritonic states. At λ = 0, when 〉 = 〉�| | ,m m  this set com-
prises m–phonon replicas of the polaritonic states 

−
± 〉 = ±〉 ⊗ 〉 = ↓ 〉 ± ↑ 〉 ⊗ 〉1/2| | | 2 {| , 1 | , 0 } |mP m m  (in the Rabi 

model, polaritons may have a more complex structure, but 
for the considered values of g, this “Jaynes-Cummings” 
expression is an excellent approximation). For finite λ, 
these vibrational states couple and the eigenstates do not 
have a well-defined number of phonons. Notably, as shown 
in Figure 1C, some eigenstates trend toward degeneracy at 
large λ (e.g. the two lowest polaritonic states in Figure 1C, 
arising from |P0− and |P1−). In order to understand this 
feature, which as we will show has consequences on the 
Rabi oscillation, we assume that ωc = Δ, and (i) neglect the 
CR terms in the HQR Hamiltonian in Eq. (2), (ii) project 
the Hamiltonian on the polariton basis on the Jaynes-
Cummings light-matter interaction |± , and (iii) perform 
a polaron transformation with UP = exp(–λ(b+–b)/2). After 
this, we obtain that the polaritonic sector is governed by 
an effective Quantum-Rabi (QR) Hamiltonian

	 ∆σ σ ω σ σ+ − + + − += + + + + +ˆ ˆ ( )( ) ,P P v P PH b b g b b ε � (3)

where the σP operators work in the two-level subspace 
spanned by the exciton-photon polaritons, ∆ =ˆ 2 ,g  

λω=ˆ /2,vg  and ε =  ωc + ωvλ
2/4–g is just an energy shift of all 

eigen energies. We emphasize that Eq. (3) has been derived 
assuming the resonant condition ωc = Δ, as we wanted to 
stress that in the Jaynes-Cummings polariton sector the 
system behaves according to the QR Hamiltonian (or, in 
other words, it could be used as a “quantum simulator” 
for this Hamiltonian). The validity of this effective Hamil-
tonian can be seen in Figure 1C: the approximate spectrum 
is very close to those obtained with both HQR and HJC 
models. Thus, the dynamics in the polaritonic subspace 
mimic that of CQED, with the polaritons playing the part 
of the 2LS and the phonons the part of the cavity photons! 
The effective description also unveils another feature that 
was not evident in the HJC one: at photon-exciton reso-
nance, the number of excitations in Hamiltonian (3) is not 
conserved, but they uncouple in sectors with odd and even 
numbers of excitations. The only exception is near degen-
eracies, for instance, the crossing between P0+ and P2− at 

λ ≈ 0.74. While both HJC and effective Rabi models predict 
a crossing of levels (notice that those levels have differ-
ent parity), the full HQR model produces an anti-crossing 
with a small gap (not shown). This gap originates from the 
CR terms, which in the effective Rabi model induce addi-
tional parity-breaking terms. This ultrastrong coupling 
effect is small in the spectrum but, as will be shown later, 
affects the dynamics.

Thus, away from these degeneracy points, the dynam-
ics in the polariton subspace is governed by an effective 
QR Hamiltonian, which can even reach the deep-ultras-
trong coupling regime ∆̂ĝ  (a parameter regime that has 
proven difficult to access experimentally), even when g 
is small enough for the CR terms in the original Hamilto-
nian to be negligible. The analogy also explains why the 
evolution of the energy levels with λ strongly resembles 
that in the QR model with coupling strength g. It must be 
stressed nonetheless that the effective QR Hamiltonian 
applies to the dynamics of excited states but, additionally, 
the system presents a manifold of energy states associated 
with the molecular ground state. Obviously, this manifold 
should be taken into account in the presence of decay 
channels for the polaritons.

2.3  �Dynamics: ultrastrong effects

We consider the situation where one photon enters the 
system, in resonance with the zero-phonon exciton, 
and study the subsequent dynamics. In this work we 
assume that the decay rates are small enough to be 
safely neglected in the timescales we examine; the effect 
of losses will be analyzed in a subsequent publication. 
It can be anticipated, nevertheless, that the high losses 
present in today’s room-temperature plasmonic cavities 
would have to be drastically reduced in order to observe 
any ultrastrong coupling effects. This can perhaps be 
achieved by lowering the temperature, considering met-
allodielectric cavities with high dielectric index, or using 
quantum circuits [22].

Figure 2 renders, for different values of λ and g, the 
time evolution of the photon number P(t) ≡ a+a(t) (the 
exciton number E(t) = σ+σ−(t) is complementary to P(t), 
as their sum is 1). Each panel shows the comparison 
between the calculations using the full HQR and the 
HJC models. In the λ = 0 case, the vibrational degrees of 
freedom decouple and, for the considered initial condi-
tion, the system is always in the zero-vibration state. Thus, 
the molecule behaves as a 2LS and the system maps into 
traditional CQED, where ultrastrong coupling effects are 
negligible for g = 0.05 (Figure 2B) and very small even for 
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g = 0.2 (Figure 2C). As shown in the figure, the frequency 
of the Rabi oscillations ΩR strongly decreases with λ. This 
occurs because the oscillations mainly involve the two 
lowest polaritonic states, whose energy decreases with λ 
(as shown in Figure 1C). But, notably, the influence of the 
CR terms on the dynamics is strongly enhanced for larger 
values of λ, as shown by the incompleteness of Rabi oscil-
lations in the lower panels of Figure 2. This is highlighted 
in Figure 3, which renders the comparison between the 
time-averaged values for P(t), E(t), and V(t) ≡ b+b(t) when 
the CR terms have been either considered or neglected, 
as a function of λ. In the last (“Jaynes-Cummings”) case, 

PJC = EJC = 1/2 for all λ. The presence of CR terms change 
the occupations in two ways. First, they “dress” the bare 
energies of the states (“Bloch-Siegert” effect). This can 
be taken into account considering HCR as a perturbation 
to the HJC Hamiltonian. Within second order, the Bloch-
Siegert corrections to the bare eigen energies are
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where, in the approximation to ΔEBS(| ↓, 1, 0), we have 
used the following properties of the Frank-Condon factors: 
(i) 〈 〉� |0n  is peaked at λ=� 2n  and (ii) 〈 〉 =∑ �

� 2| | | 1.
n

n m  The 
important point is that the Bloch-Siegert corrections dress 
the exciton and photon states differently. This “ultras-
trong” mechanism can be incorporated into an effective 
Jaynes-Cummings model by “renormalizing” the photon 
frequency ωc→ ωc + ΔEBS(|↓, 1, 0), which clearly affects 
whether the photon is in resonance with the exciton or 
not. This shift, combined with the strong renormalization 
of the effective coupling that occurs at large λ, brings the 
exciton and photon out of resonance. This is illustrated 
in the inset to Figure 3. Assuming the bare resonant con-
dition ωc = Δ, the system essentially remains at resonance 
for values of λ such that |ΔEBS(|↓, 1, 0)| < geff, thus develop-
ing complete Rabi oscillations. But these cease to happen 
when |ΔEBS(|↓, 1, 0)| and geff are comparable (for λ 2.5  
in the inset to Figure 3, computed for g = 0.05). As geff ~ g, 
while ΔEBS ~ g2, the BS corrections are more relevant for 
larger exciton-photon interactions but, admittedly, this 
effect plays a role only for large values of λ. It is worth 
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Figure 3: Time-averaged number of excitons (E), photons (P), and 
molecular vibrations (V) as a function of λ.
Continuous lines are computed using the Holstein-Quantum-Rabi 
model, while dashed lines were computed by neglecting the 
counter-rotating terms (HJC model). The inset shows the Bloch-
Siegert correction to the photon energy, ΔEBS(|↓, 1, 0), and the 
effective value of g (i.e. half their energy difference between the two 
lowest polaritons). The parameters used are ωc = Δ = 1, ωv = 0.075, 
and g = 0.05.

Figure 2: Time evolution of the average number of photons, P(t), for different values of λ and g.
The photon and the zero-phonon exciton are considered to be in resonance, ωc = Δ, and ωv = 0.075. Each panel shows the comparison 
between the full HQR model (red curves) and the one without the CR terms (Holstein-Jaynes-Cummings model, black curves). Top panels 
(A–C) are for λ = 0, and bottom ones (D–F) are for λ = 2.5. The case g = 0.05 is rendered for both values of λ, while the other panels are 
representative of the values g needed for ultrastrong coupling effects to appear for each λ.
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noting that the CR parity-breaking terms we mentioned 
when discussing the effective Hamiltonian (3) cancel 
when the “renormalized” cavity is in resonance with the 
2LS, i.e. when ωc + ΔEBS = Δ. In that case, Hamiltonian (3) 
is virtually exact in the polariton subspace, for all values 
of g, ωv, and λ.

The second way in which the CR terms modify the occu-
pations occurs at smaller values of λ. It works via mixing 
states which would be orthogonal within the HJC Hamil-
tonian but anti-cross when the CR terms are considered 
(which, as mentioned before and shown in Figure 1, occurs 
for the states P0+ and P2− at λ ≈ 0.74). This mixing allows P0+ 
to couple to P2−, thus enhancing the average number of 
phonons P (see the peak in P in Figure 3, at λ ≈ 0.74).

3  �Conclusions and outlook
We have analyzed the CQED setup where a molecule plays 
the role of a 2LS, in the case where the bare photon and 
exciton are in resonance. We have shown that, due to the 
presence of molecular vibrations, the CR terms in the pho-
ton-exciton coupling may influence the Rabi oscillations at 
much smaller coupling strengths that usually are required 
in other CQED setups. We have also shown that even when 
the CR terms are negligible, the polariton energy sector is 
described by an effective QR Hamiltonian where the two 
polariton states play the role of the 2LS and molecular vibra-
tions play the role of photons. Future work should analyze 
how these effects are affected by the presence of different 
decay channels, how these ultrastrong coupling effects 
scale with the number of molecules, and what their pos-
sible influence would be on the properties of dark modes.
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