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Abstract: Thelarge cross sections and strong confinement pro-
vided by the plasmon resonances of metallic nanostructures
make these systems an ideal platform to implement nano-
antennas. Like their macroscopic counterparts, nanoanten-
nas enhance the coupling between deep subwavelength
emitters and free radiation, providing, at the same time, an
increased directionality. Here, inspired by the recent works
in parity-time symmetric plasmonics, we investigate how the
combination of conventional plasmonic nanostructures with
active materials, which display optical gain when externally
pumped, can serve to enhance the performance of metallic
nanoantennas. We find that the presence of gain, in addition
to mitigating the losses and therefore increasing the power
radiated or absorbed by an emitter, introduces a phase differ-
ence between the elements of the nanoantenna that makes
the optical response of the system directional, even in the
absence of geometrical asymmetry. Exploiting these proper-
ties, we analyse how a pair of nanoantennas with balanced
gain and loss can enhance the far-field interaction between
two dipole emitters. The results of this work provide valuable
insight into the optical response of nanoantennas made of
active and passive plasmonic nanostructures, with poten-
tial applications for the design of optical devices capable of
actively controlling light at the nanoscale.

Keywords: nanoantenna; PT symmetry; gain; active
materials; asymmetric response.

1 Introduction

The coherent oscillation of the conduction electrons of
metallic nanostructures, commonly known as surface
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plasmons, is capable of strongly interacting with light
and confining it into volumes with subwavelength dimen-
sions [1]. Thanks to these extraordinary properties,
metallic nanostructures have become an ideal platform
to implement nanoantennas, the nanoscale counterpart
of macroscopic antennas [2, 3]. These devices serve to
maximise the transfer of energy between free radiation
and subwavelength emitters, such as atoms, molecules,
or quantum dots, and to provide, simultaneously, an
increased directionality to the radiation-emitter coupling
[4-6]. For these reasons, nanoantennas are being
exploited for a variety of applications, including photode-
tection [7-9], light emission [10, 11], photovoltaics [12, 13],
sensing [14-17], and spectroscopy [18, 19].

Metallic nanoantennas can benefit from the incorpo-
ration of active materials displaying optical gain, which, in
addition to reducing the material losses inherent to metals
[20-22], can be exploited to achieve strongly asymmetric
optical responses [23]. Indeed, nanostructures composed
of elements with balanced gain and loss are the subject of
extensive research as platforms to implement parity-time
(PT) symmetric plasmonic systems [24, 25]. Thanks to the
interplay between gain and loss, these systems display
extraordinary properties, such as unidirectional cloaking
[26], switching [27], routing [28], and multiplexing [29],
nonreciprocal responses [30-35], transition from absorp-
tion to amplification in cavities [36] and waveguides [37,
38], anisotropic emission [39, 40] and scattering [41-45],
anomalous optical forces [46, 47], improved sensing capa-
bilities [48], polarisation control [49], and giant near-field
radiative heat transfer [50].

In this context, we have recently shown that a dimer
composed of two identical plasmonic nanospheres, one
with an active response and the other with a passive
behaviour, displays asymmetric scattering and absorption
cross sections, despite its perfectly symmetrical geometry
[41]. Here, inspired by this result, we investigate how the
combination of plasmonic nanostructures with balanced
gain and loss enables the implementation of directional
nanoantennas with tunable responses. Specifically, we
find that the presence of gain serves simultaneously
to enhance the emission and absorption of radiation
by an emitter placed at the centre of the dimer and to
introduce a phase difference between the elements of the
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nanoantenna that provides directionality to the emission
and absorption of the emitter. Using these results, we
analyse how nanoantennas with balanced gain and loss
can mediate the transfer of energy between pairs of emit-
ters separated by a distance much larger than their reso-
nant wavelengths. Our results show that the presence of
active materials can be used as a mechanism to actively
control the relative phase between plasmonic nanostruc-
tures, thus enabling the design of actively tunable nano-
antennas with directional responses.

2 Results and analysis

The system under study consists of a dimer composed of
two spherical nanoparticles of radius R=100 nm sepa-
rated by a centre-to-centre distance d=250 nm, as shown
in Figure 1A. One of the particles (blue) has a passive
metallic response that we describe using the Drude dielec-
tric function [1]
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Figure 1: Analysis of the absorbed and radiated power.

(A) Schematics of the system under study, consisting of two
spherical nanoparticles with a radius R=100 nm separated by

a centre-to-centre distance d=250 nm, which are excited by a
dipole source placed in the centre of their gap. One particle has a
conventional passive plasmonic response (blue), whereas the other
displays optical gain (red). (B, C) Total power radiated (red curve)
and absorbed (blue curve) by the dimer when excited by the dipole.
These quantities are normalised to the power radiated by a dipole p,
invacuum P =40*|p,|?/(3c?. In B, we assume a fully passive dimer
(i.e. F=0), whereas in C, the pumping parameter is set to F=0.71.
Notice that in B the red curve is multiplied by 15 to improve visibility.
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with ¢_=2, hwp=2 eV, and yp=0.05a)p, which are realis-
tic values for transparent conductive oxides at frequen-
cies below their band gap [51]. The other particle (red) is
made from the same metallic material but has an active
response arising from being doped with a gain material,
which we model by adding a Lorentzian gain term to the
dielectric function,

Yo

e,(w)=¢ (w)+F7
w-w,+iy,

This Lorentzian gain term represents the optical gain
provided by optically pumped quantum emitters, such as
dye molecules or rare earth ions [39, 41, 50]. This approach
is justified for systems in which quantum effects are not
expected to be relevant [52] and provides a good approxi-
mation to the steady-state solution of a time-dependent
semiclassical description of a gain medium [53, 54].
Here, we assume hw =0.94 eV for the gain frequency
and y,=0.0lw, for the gain bandwidth, while F, which
describes the population inversion of the gain material,
is left as the parameter that controls the level of gain in
the system and is determined by the level of external
pumping. These values are compatible with experimental
measurements (see [39, 50, 55]) and references therein).

We begin our study by analysing the response of a
fully passive dimer, i.e. with no external pumping, F=0.
We calculate the total power radiated and absorbed by
the dimer when excited by a dipole placed at the centre
of the gap between the two nanoparticles, as shown in
Figure 1A. We neglect any possible back-action of the
dipole source on the material response of the particles.
The corresponding results, obtained from the rigorous
solution of Maxwell’s equations using a finite element
method, are shown in Figure 1B. We assume that the
exciting dipole, which oscillates at frequency w, is ori-
ented perpendicular to the axis of the dimer and nor-
malise the results to the power radiated by a dipole of
amplitude p, in vacuum P =4w"|p,|?/(3¢?). Examin-
ing the results, we observe that, for F=0, the power
absorbed by the dimer (blue curve) is more than 15
times larger than the radiated power (red curve, notice
the scaling factor), and therefore the system behaves as
a poor nanoantenna. However, this behaviour is dra-
matically changed when the pumping parameter is set
to F=0.71, a value chosen to ensure that the absorption
of the system still remains positive, and therefore the
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system does not reach a lasing threshold. In this case, as
shown in Figure 1C, the radiated power increases, and
simultaneously, the absorbed power is reduced, almost
vanishing near w . This results in a frequency range
around o, in which the radiated power dominates over
the absorbed power, and hence, the dimer acts as an
efficient nanoantenna. Interestingly, both the radiated
power and absorbed power display a monotonic behav-
iour with the increase in the gain, as shown in Figure 2.
Furthermore, it is worth noting that the normalised
radiated and absorbed power shown in Figures 1 and
2 are, respectively, equal to the radiative and nonradia-
tive components of the local density of optical states
(LDOS) when normalised to the LDOS of vacuum.

The increase in F, in addition to mitigating the
absorption losses of the system and therefore enhanc-
ing the power radiated, also serves to introduce a phase
difference in the optical response of the nanoparticles.
This phase difference, which ultimately arises from the
negative imaginary part of the dielectric function of the
gain material, can be exploited to achieve directionality
in the radiated power [56]. From the perspective of PT
symmetric systems, the increase in the gain brings the
system closer to the point in which the gain compensates
the losses and therefore is expected to produce an asym-
metric response [30, 57, 58]. To analyse this possibility,
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Figure 2: Detailed analysis of the absorbed and radiated power.
Total power radiated (A) and absorbed (B) by the active—passive
dimer when excited by a dipole source, calculated for increasing
values of F. Both quantities are normalised to P,.
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in Figure 3A, we calculate the power radiated by the
dimer along its axis, both in the direction of the gain side
(0=0°) and in the direction of the loss side (§=180°), as
depicted in the inset. The corresponding results, normal-
ised to P, are plotted using red and blue curves, respec-
tively. We perform this calculation for increasing values
of the pumping parameter F below F=0.71, for which, as
discussed before, the absorbed power remains positive,
thus ensuring we are far from any lasing threshold, and
for a frequency detuning o -w,=-0.19y,. As expected,
for F=0, the radiated power is completely symmetric;
however, as this parameter grows, the power radiated
becomes increasingly asymmetric. This is illustrated
by the black dashed curve, which represents the ratio
between the power radiated along the two directions.
Clearly, this quantity grows monotonically from 1, for the
completely passive dimer (i.e. F=0), to almost 3 when the
pumping parameter is increased to F=0.71. The lack of a

P(O)/PO
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Figure 3: Analysis of the directionality of the power radiated.

(A) Power radiated by the dimer along its axis in the direction of the
gain side, 6=0° (red solid curve), and the loss side, =180° (blue
solid curve), normalised to P, (left axis). This quantity is plotted as a
function of the pumping parameter Ffor a detuning w - w,=-0.19y,.
The black dashed curve (right axis) shows the ratio between the
power radiated along the two aforementioned directions. (B)
Angular distribution of the power radiated by the system for F=0.71
(red curve) compared with that of the passive dimer, F=0 (black
curve). Note that the latter is multiplied by 5 to improve the visibility.
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threshold behaviour indicates that the asymmetry does
not directly result from an exceptional point [59]. For
F=0.71, the power radiated by the dimer displays a strong
imbalance toward the direction of the gain particle, as
can be seen from the analysis of the full angular distribu-
tion plotted in Figure 3B. In this plot, the red curve rep-
resents the angular distribution of the power radiated by
the active—passive dimer with F=0.71, whereas the black
curve represents the results for the completely passive
dimer (F=0). Therefore, the presence of gain, in addition
to increasing the power radiated by more than one order
of magnitude as compared with the passive dimer (note
the scaling factor), directs the energy predominantly
toward the gain side of the dimer.

We can gain a deeper insight into the optical response
of the active-passive dimer by using a simple dipolar
approach, in which each of the nanoparticles is modelled
as a point dipole. Within this approximation, the optical
response of the passive and active particles is described
using the frequency-dependent polarisabilities ;, and «,
respectively. We assume that these polarisabilities already
incorporate the corrections arising from the mutual inter-
action between the nanoparticles. Then, as shown in
Appendix B, the power radiated at an angle 6 by the dimer
and the dipole emitter can be written as

@ - §(1+ cos'0)[1+]G,at, [ +1G,cr,
i wdeoso[ a0, o M
+2|G [’ Reje ™ q ar +e 2 | S4+—L ||,
G G,

where G,=e*"?[2k’/d+4ik/d*-8/d’] is the dipole-dipole
interaction tensor connecting the dipole source with the
dipoles induced in either of the two particles. Using this
expression, we can write the ratio of the power radiated
along the 6=0° and 6 =180° directions as (1+)/(1 - ) with
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nanostructures with different geometries [56], as is the
case for the Yagi—-Uda nanoantenna [4]. Another option is
what we discuss in this work, that is, the combination of
nanostructures with balanced gain and loss. Specifically,
as F increases, the dimer approaches the point for which
a, =a;, thus making f#0, in complete agreement with
the asymmetric radiation pattern analysed in Figure 3.
Incidentally, this mechanism has the added feature that it
can be actively controlled through the tuning of the exter-
nal pumping, thus enabling the possibility of adjusting
the level of asymmetry in the radiated power.

So far, we have analysed the behaviour of the active—
passive dimer under a dipole excitation and shown that the
system is capable of acting as a tunable antenna in trans-
mitter mode, that is, enhancing and directing the power
radiated by the dipole along the axis of the dimer in the
direction of the gain particle. However, in order to complete
the characterisation of this system, we need to analyse its
performance when acting in receiver mode. To that end, in
Figure 4, we study the field intensity enhancement, FE(0),
produced by the dimer at the centre of its gap when it is
illuminated with a plane wave. We define this quantity as
the ratio between the squared magnitude of the x compo-
nent of the electric field at the centre of the gap and that of
the incident plane wave. Furthermore, we assume that the
plane wave propagates toward the dimer at an angle 6 and
is polarised parallel to the plane of incidence (i.e. in the
xz plane), as shown in the inset. The red and blue curves
show the results for the active—passive dimer, with F=0.71,
when illuminated at #=0° and 6=180°, respectively.
Analysing these results, we conclude that the field inten-
sity at the gap displays a strongly asymmetrical behaviour,
being almost 3 times larger when the plane wave impinges
from the gain side of the dimer. This asymmetric behaviour
is in sharp contrast with the results obtained for the com-
pletely passive dimer (black curve), which are identical for

2|G, P sin(kd)im{ac! } + 2sin(kd/m{G, (e, - t, )}

) 14[G, [ (|, P +]t, P +2cos(kd)Re{arcr; 1)+ 2cos(kd/2Re{G, (a ra)}

This expression confirms that, for a completely
passive system (i.e. F=0), in which the two particles are
identical (o =«,), =0, and hence, there is no asymmetry
in the radiated power. It also shows that it is possible to
achieve an asymmetric radiation pattern by introducing
a phase difference in the response of the two elements
of the dimer, such that the numerator of this expression
does not vanish. One way of achieving this is by using

the two different illumination angles. Furthermore, as was
the case for a dipole excitation, the presence of gain also
enhances the response of the system through the mitiga-
tion of its losses, thus resulting in a field intensity that is 21
times larger than that produced by the completely passive
dimer. It is worth noting that this asymmetric response
could have been obtained from the results of Figure 3 by
exploiting Lorentz reciprocity [60] (Appendix C).
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Figure 4: Analysis of the directionality of the field intensity
enhancement.

Field intensity enhancement, FE(0), at the centre of the dimer gap
when the system is illuminated with a plane wave. As shown in the
inset, we assume the plane wave to propagate toward the dimer at an
angle 6 and to be polarised parallel to the xz plane. The colour curves
display the results for an active—passive dimer with F=0.71when
6=0° (red curve) and #=180° (blue curve), whereas the black curve
indicates the results for a completely passive dimer (i.e. F=0). Notice
that, in this case, the results for =0° and 6=180° are identical.

Based on the results of Figures 3 and 4, we anticipate
that a pair of active—passive dimers can efficiently mediate
the transfer of energy between two emitters separated by
a distance much larger than their resonant wavelengths,
i.e. in the far-field region. In particular, consider the pair
of nanoantennas depicted in the upper panel of Figure 5A,
and assume that the dipole in the leftmost dimer acts as the
emitter, whereas the one in the rightmost dimer serves as
the receiver. Thanks to the combination of (i) the enhance-
ment of the radiated power and (ii) the increased field at
the gap of the dimer, which we analysed, respectively, in
Figures 3 and 4, we expect the energy transfer between the
two dipoles to be greatly enhanced in this arrangement,
which we denote as the LGGL configuration. On the con-
trary, when the orientation of the dimers is reversed, as
in the GLLG configuration shown in the lower panel of
Figure 5A, we expect a much smaller energy transfer. In
order to verify this hypothesis, we compute the normal-
ised energy transfer rate (nETR) [61, 62], defined as

_In E(x)f
|n,-E, (x)f

T

nETR

Here, flr is a unit vector oriented as the receiver dipole,
E (r) is the electric field produced by the emitter dipole at
the position of the receiver when each dipole is placed in
the gap of an active—passive dimer, and Ee,o(rr) is the same
quantity when the dipoles are in vacuum. Assuming that
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the two dimers are in the far-field region of each other, we
can write the following approximate expression for the
nETR (Appendix C):

4 P(6)
ETFE(H)’ 2

0

nETR =

where 0 is equal either to 0° for the LGGL configuration or
to 180° for the GLLG one. Figure 5B shows the results of
the nETR, calculated using this expression, as a function
of the pumping parameter F for a detuning w - w,=-0.19y,.
Red and blue curves correspond, respectively, to the LGGL
and GLLG configurations. As expected, for F=0, both con-
figurations result in the same nETR of approximately 10. As
F grows, the nETR increases significantly with the LGGL
arrangement, reaching values of several thousand when
F=0.71. Simultaneously, the ratio between the two configu-
rations, which is shown by the black dashed curve (right
axis), grows and becomes almost 8 when F=0.71. These
results confirm that the active—passive dimers can operate
as efficient nanoantennas, which can be externally con-
trolled through the adjustment of the pumping level.
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Figure 5: Analysis of the energy transfer.

(A) Schematic of a nanoantenna pair mediating the radiative transfer
of energy between two emitters placed at distances much larger than
their resonant wavelengths. We consider two different arrangements
that we denote as LGGL and GLLG configurations, where L and

G represent a passive and active nanoparticle, respectively. (B)
Normalised energy transfer rate (nETR) between the two dipole
emitters for the LGGL configuration (red solid curve) and the GLLG
configuration (blue solid curve). This quantity is plotted as a function
of the pumping parameter F for a detuning w - w,=-0.19y,. Notice
the axis break introduced to improve visibility for small values of F.
The black dashed curve (right axis) indicates the ratio between the
nETR of the LGGL and GLLG configurations.
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3 Conclusion and outlook

In summary, we have investigated the optical response of a
nanoparticle dimer composed of two metallic nanospheres,
one with a conventional passive response and the other
made from an active material, which displays optical gain
when externally pumped. We have found that this system,
thanks to the interplay between the gain and loss, is capable
of enhancing and directing the power radiated by a dipole
emitter placed at the centre of its gap. For the same reasons,
when excited by a plane wave, the active—passive dimer
produces a field enhancement at the centre of its gap that is
strongly dependent on the direction of incidence of the plane
wave. Owing to these properties, which can be explained as
the result of a phase difference between the elements of the
dimer introduced by the gain, the active—passive dimer can
act as a directional nanoantenna, both in transmitter and
receiver modes. In order to illustrate this possibility, we have
analysed the nETR between two dipole emitters placed at
the centre of two active—passive dimers. The results of this
work show that the combination of nanostructures with bal-
anced gain and loss provides an alternative path to achieve
directional optical responses, which can complement and
enhance other strategies based on tailoring the geometrical
properties of the system. Furthermore, the presence of active
elements provides the additional features of being tunable
through the control of the external pumping and enhancing
the overall optical response due to the decrease in the inher-
ent material losses of the system.
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Appendix

A. Evolution of the power radiated and
absorbed with the level of gain

Figure 2 shows the evolution with the level of gain of the
total power radiated (A) and absorbed (B) by the active—
passive dimer when excited by a dipole source. Clearly,
as F increases, both the radiated power and the absorbed
power display a monotonic behaviour.
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B. Dipole model

Within the dipolar approximation, we can model the
optical response of the active—passive dimer excited by
a dipole emitter at its gap as a collection of three point
dipole emitters. By doing so, the differential power radi-
ated by the system per unit of solid angle in the direction
of n can be written (using Gaussian units), as

P_o
aQ Zﬂc3i.j:0,G,L

k(r.-r.) " N PN
" *Ip,-p; - (p,-n)(p; 0],

where k= /c n is the wavevector of the radiation, and
r, is the position of dipole i. Furthermore, p, is the dipole
moment of the dipole emitter, whereas p.=a.G,p, and
p, =a,G,p,are the dipole moment induced in the active and
passive particles, respectively. We write the latter in terms
of frequency-dependent polarisabilities ¢, and ¢, which
we assume to already include the effect of the interaction
between the two particles, and G, which is the dipole—
dipole interaction tensor that describes the field produced
by p, at the position of the particles. Using the geometry
shown in Figure 1A, we can rewrite this expression as

dP o A 1
—= | =|n-p.
19~ 200 i:OE,G,L(l p,['=In-p,[")

4

w —ikdcos * - * oA
+ERe{e Kolp.-p; —(p,-0)(p; -0)]}

a)[‘ ikgcose . ~ PN
+ERQ e? [p, p,—(p, n)(p, n)]
4

—ikgcos(i . . . A
+:C3Re{e : [p0~pL—(po-n)(pL~n)]},

where d is the distance separating the gain and loss par-
ticles, and 6 is the angle between the dimer axis and the
unit vector n. After integrating this expression over the
azimuthal angle and normalising to the power radiated by
the p, dipole in vacuum, P, =4w"|p, |*/(3¢’), we obtain (1).

C. Normalised energy transfer rate

Following previous works [61, 62], we define the normal-
ised energy transfer rate (nETR) between two emitters
placed at the gaps of a pair of active—passive dimers as

_In E@)F

nETR = -
In -E_(r)]

€)

where n_corresponds to the unit vector parallel to the
receiver dipole, whereas E (r) and Ee’o(rr) represent the
electric field produced by the emitter dipole at the position
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of the receiver in presence of the active—passive dimers
and in vacuum, respectively.

Assuming that the two dimers are located in the far-field
region of each other, the field radiated by the emitter dipole
can be written as a spherical wave [63] fe/r, with r being
the distance between the emitter and the receiver dipoles,
and f, the far-field amplitude. This spherical wave can be
approximated, at the position of the receiver dimer, as a
plane wave, and therefore, we can write (3) as
£’

|2

FE(0),

nETR = |

0

where FE(0) is the field intensity enhancement (Figure
4), and f, =k’[p, —n(n-p,)] is the far-field amplitude for
the emitter dipole in vacuum. As the radiated power is
proportional to the squared magnitude of the far-field
amplitude, we can rewrite the factor [f[?/ |f|?, for 6=0°
and 6=180°, as

£} _4P(O)
|f0|2 3 P

>

where P(0) is the half-integrated power radiated in the
direction 6, which is plotted in Figure 3. Combining these
expressions, we obtain (2). It is worth noting that Lorentz
reciprocity [60] implies that 4P(0)/(3P,) is equal to FE(0)
for 6=0° and 180°. This means that, for these angles, we
can write the nETR as nETR ~16P*(6) / (9P;) and therefore
use (1) to obtain an analytical result within the dipolar
approximation.
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