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Abstract: Metasurfaces are subwavelength-structured 
artificial media that can shape and localize electromag-
netic waves in unique ways. The inverse design of these 
devices is a non-convex optimization problem in a high 
dimensional space, making global optimization a major 
challenge. We present a new type of population-based 
global optimization algorithm for metasurfaces that is 
enabled by the training of a generative neural network. 
The loss function used for backpropagation depends on 
the generated pattern layouts, their efficiencies, and effi-
ciency gradients, which are calculated by the adjoint vari-
ables method using forward and adjoint electromagnetic 
simulations. We observe that the distribution of devices 
generated by the network continuously shifts towards 
high performance design space regions over the course of 
optimization. Upon training completion, the best gener-
ated devices have efficiencies comparable to or exceeding 
the best devices designed using standard topology opti-
mization. Our proposed global optimization algorithm 
can generally apply to other gradient-based optimization 
problems in optics, mechanics, and electronics.

Keywords: simulator-based training; generative net-
works; neural networks; adjoint variable method; global 
optimization.

1  �Introduction

Photonic technologies serve to manipulate, guide, and 
filter electromagnetic waves propagating in free space 

and in waveguides. Due to the strong dependence of 
electromagnetic function on geometry, much emphasis in 
the field has been placed on identifying geometric designs 
for these devices given a desired optical response. The 
vast majority of existing design concepts utilize relatively 
simple shapes that can be described using physical intui-
tion. For example, silicon photonic devices typically utilize 
adiabatic tapers and ring resonators to route and filter 
guided waves [1], and metasurfaces, which are diffrac-
tive optical components used for wavefront engineering, 
typically utilize arrays of nanowaveguides or nanoreso-
nators comprising simple shapes [2]. While these design 
concepts work well for certain applications, they possess 
limitations, such as narrow bandwidths and sensitivity to 
temperature, which prevent the further advancement of 
these technologies.

To overcome these limitations, design methodolo-
gies based on optimization have been proposed. Among 
the most successful of these concepts is gradient-based 
topology optimization, which uses the adjoint variables 
method to iteratively adjust the dielectric composition 
of the devices and improve device functionality [3–8]. 
This design method, based on gradient descent, has 
enabled the realization of high performance, robust [9] 
devices with nonintuitive layouts, including new classes 
of on-chip photonic devices with ultrasmall footprints 
[10, 11], non-linear photonic switches [12], and diffractive 
optical components that can deflect [13–17] and focus [18, 
19] electromagnetic waves with high efficiencies. While 
gradient-based topology optimization has great potential, 
it is a local optimizer and depends strongly on the initial 
distribution of dielectric material making up the devices 
[20]. The identification of a high performance device is 
therefore computationally expensive, as it requires the 
optimization of multiple random initial dielectric distri-
butions and selecting the best device.

We present a detailed mathematical discussion of a 
new global optimization concept based on Global Topol-
ogy Optimization Networks (GLOnets) [21], which combine 
adjoint variables electromagnetic calculations with the 
training of a generative neural network to realize high 
performance photonic structures. Unlike gradient-based 
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topology optimization, which optimizes one device at a 
time, our approach is population-based and optimizes a 
distribution of devices, thereby enabling a global search 
of the design space. As a model system, we will apply our 
concept to design periodic metasurfaces, or metagratings, 
which selectively deflect a normally incident beam to the 
+1 diffraction order. In our previous work [21], we demon-
strated that GLOnets conditioned on incident wavelength 
and deflection angle can generate ensembles of high effi-
ciency metagratings. In this manuscript, we examine the 
underlying mathematical theory behind GLOnets, spe-
cifically a derivation of the objective and loss functions, 
discussion of the training process, interpretation of hyper-
parameters, and calculations of baseline performance 
metrics for unconditional GLOnets. We emphasize that our 
proposed concepts are general and apply broadly to design 
problems in photonics and other fields in the physical sci-
ences in which the adjoint variables method applies.

2  �Related machine learning work
In recent years, deep learning has been investigated as a 
tool to facilitate the inverse design of photonic devices. 
Many efforts have focused on using deep neural net-
works to learn the relationship between device geometry 
and optical response [22, 23], leading to trained networks 
serving as surrogate models mimicking electromagnetic 
solvers. These networks have been used together with clas-
sical optimization methods, such as simulated annealing 
or particle swarm algorithms, to optimize a device [24, 25]. 
Device geometries have also been directly optimized from 
a trained network by using gradients from backpropaga-
tion [26–29]. These methods work well on simple device 
geometries described by a few parameters. However, the 
model accuracy decreases as the geometric degrees of 

freedom increase, making the scaling of these ideas to the 
inverse design of complex systems unfeasible.

An alternative approach is to utilize generative adver-
sarial networks (GANs) [30], which have been proposed 
as a tool for freeform device optimization [31–33]. GANs 
have been of great interest in recent years and have a 
broad range of applications, including image generation 
[34, 35], image synthesis [36], image translation [37], and 
super resolution imaging [38]. In the context of photon-
ics inverse design, GANs are provided images of high 
performance devices, and after training, they can gener-
ate high performance device patterns with geometric fea-
tures mimicking the training set [32]. With this approach, 
devices from a trained GAN can be produced with low 
computational cost, but a computationally expensive 
training set is required. New data-driven concepts that 
can reduce or even eliminate the need for expensive train-
ing data would dramatically expand the scope and prac-
ticality of machine learning-enabled device optimization.

3  �Problem setup
The metagratings consist of silicon nanoridges and 
deflect normally incident light to the +1 diffraction order 
(Figure 1). The thickness of the gratings is fixed to be 
325  nm, and the incident light is transverse magnetic 
(TM) polarized. The refractive index of silicon is taken 
from Ref. [39], and only the real part of the index is used 
to simplify the design problem. For each period, the 
metagrating is subdivided into N = 256  segments, each 
possessing a refractive index value between silicon and 
air during the optimization process. These refractive 
index values are the design variable in our problem and 
are specified as x (a 1 × N vector). Deflection efficiency is 
defined as the intensity of light deflected to the desired 
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Figure 1: Schematic of a silicon metagrating that deflects normally incident TM-polarized light of wavelength λ to an outgoing angle θ.
The optimization objective is to search for the metagrating pattern that maximizes deflection efficiency.
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direction, defined by angle θ, normalized to the incident 
light intensity. The deflection efficiency is a nonlinear 
function of index profile Eff = Eff(x) and is governed by 
Maxwell’s equations. This quantity, together with the 
electric field profiles within a device, can be accurately 
solved using electromagnetic solvers.

Our optimization objective is to maximize the deflec-
tion efficiency of the metagrating at a specific operating 
wavelength λ and outgoing angle θ:

	

* : argmax Eff( )
{ 1,1}N

=
∈ −

x x
x

� (1)

The term x* represents the globally optimized device 
pattern, and it has an efficiency of Effmax. We are interested 
in physical devices that possess binary index values in the 
vector x ∈ { − 1, 1}N, where −1 represents air and +1 repre-
sents silicon.

4  �Methods
Our proposed inverse design scheme is shown in Figure 2 
and involves the training of a generative neural network 
to optimize a population of devices. Uniquely, our scheme 
does not require any training set. The input of the gen-
erator is a random noise vector z ∈ UN( − 1, 1) and it has 
the same dimension as the output device index profile 
x ∈[ − 1, 1]N. The generator is parameterized by φ, which 
relates z to x through a nonlinear mapping: x = G

φ
(z). In 

other words, the generator maps a uniform distribution 
of noise vectors to a device distribution G

φ
 : UN( − 1, 1)aP

φ
, 

where P
φ
(x) defines the probability of generating x in the 

device space S = [ − 1, 1]N. We frame the objective of the 
optimization as maximizing the probability of generating 
the globally optimized device in S:

	
φ

φ δ
φ

= − ⋅∫ max
*: argmax (Eff( ) Eff ) ( )P d x x x

S

� (2)

4.1  �Loss function formulation

While our objective function above is rigorous, it cannot 
be directly used for network training due to two reasons. 
The first is that the derivative of the δ function is nearly 
always 0. To circumvent this issue, we express the δ func-
tion as the following:

	 σ
δ

σπσ→

  − − = −    

2

max
max

0

Eff( ) Eff1(Eff( ) Eff ) explim
x

x � (3)

By substituting the δ function with this Gaussian form 
and leaving σ as a tunable parameter, we relax Eq. (2), and 
it becomes

	
φ

φ
σφ

  − = − ⋅    ∫ max
2Eff( ) Eff* : argmax exp ( )P d

x
x x

S

� (4)

As we will see later, the inclusion of σ as a tunable 
hyperparameter turns out to be important for stabilizing 
the network training process in the limit of training with 
a finite batch size.

The second reason is that the objective function 
depends on Effmax, which is unknown. To address this 
problem, we approximate Eq. (4) with a different function, 
namely, the exponential function:

	
φ

φ
σφ

 −
= ⋅  ∫ maxEff( ) Eff* : argmax exp ( )P d

x
x x

S

� (5)

This  approximation is valid because P
φ
(x | Eff(x) > Effmax) = 0 

and our new function only needs to approximate that 
in Eq. (4) for efficiency values less than Effmax. With this 
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Figure 2: Schematic of generative neural network-based optimization.
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approximation, we can remove exp(−Effmax/σ) from the 
integral:

	
φ

φ
σφ

 
= ⋅  ∫ Eff( )* : argmax exp ( )A P dx x x

S

� (6)

A = exp(−Effmax/σ) now becomes a normalization constant 
and does not require explicit evaluation. Alternatives to 
the exponential function can be considered and tailored 
depending on the specific optimization problem. For this 
study, we will use Eq. (6).

In practice, it is not possible to evaluate Eq. (6) over 
the entire design space S. We instead sample a batch of 
devices =

( )
1{ }m M

mx  from P
φ
, which leads to further approxi-

mation of the objective function:

	

Eff( )* : argmax exp
P
φ

φ
σφ

 
=   x

xE
∼

� (7)

	

( )

1

1 Eff( )argmax exp
mM

mM σφ =

 
≈   ∑ x � (8)

We note that the deflection efficiency of device x is 
calculated using an electromagnetic solver, such that 
Eff(x) is not directly differentiable for backpropagation. 
To bypass this problem, we use the adjoint variables 
method to compute the efficiency gradient with respect 

to the refractive indices for device x: 
∂=
∂
Effg
x  (Figure 2). 

Details pertaining to these gradient calculations can be 
found in other inverse design papers [11–13]. To sum-
marize, electric field profiles within the device layer are 
calculated using two different electromagnetic excitation 
conditions. The first is the forward simulation, in which 
Efwd are calculated by propagating a normally incident 
electromagnetic wave from the substrate to the device, 
as shown in Figure 1. The second is the adjoint simula-
tion, in which Eadj are calculated by propagating an elec-
tromagnetic wave in the direction opposite of the desired 
outgoing direction. The efficiency gradient g is calculated 
by integrating the overlap of those electric field terms:

	

∂= ∝ ⋅
∂

fwd adjEff( ) Re( )xg E E
x � (9)

Finally, we use our adjoint gradients and objective func-
tion to define the loss function L = L(x, g, Eff). Our goal 
is to define L such that minimizing L is equivalent to 

maximizing the objective function 
σ=

 
  ∑

( )

1

1 Eff( )exp
m

M

mM
x  

during generator training. With this definition, L must 

satisfy 
σ

 ∂ ∂− =   ∂ ∂

( )

( )
1 Eff( )exp

m

m
L

M(m)
x

x x
 and is defined as:

	 σ σ=

 
= − ⋅  ∑

( )
( ) ( )

1

1 1 Eff( , ,  Eff) exp
mM

m m

m

L
M

x g x g � (10)

Eff(m) and g(m) are treated as independent variables 
calculated from electromagnetic simulations and have no 
dependence on x(m). Finally, we add a regularization term 
−| x | · (2 − | x |) to L to ensure that the generated patterns are 
binary. This term reaches a minimum when the generated 
patterns are fully binarized. A coefficient γ is introduced 
to balance binarization with efficiency enhancement, and 
we have as our final loss function:

	
γ

σ σ= =

=
 

− ⋅ − ⋅ ⋅ −  ∑ ∑
( )

( ) ( ) ( ) ( )

1 1

( ,  ,  Eff)
1 1 Eff 1exp | | (2 | |)

mM M
m m m m

m m

L

M M

x g

x g x x
�

(11)

4.2  �Network architecture

The architecture of the generative neural network is adapted 
from DCGAN [40], which comprises two fully connected 
layers, four transposed convolution layers, and a Gaussian 
filter at the end to eliminate small features. LeakyReLU is 
used for all activation functions except for the last layer, 
which uses a tanh activation function. We also add dropout 
layers and batchnorm layers to enhance the diversity of the 
generated patterns. Periodic paddings are used to account 
for the fact that the devices are periodic structures.

4.3  �Training procedure

Algorithm 1: Generative neural network-based optimization

Parameters: M, batch size. σ, loss function coefficient. α, learning rate.
   β1 and β2, momentum coefficients used in Adam. γ, 
   binarization coefficient.

initialization;
while i < Total iterations do

 Sample ( )
1{ } ( 1, 1);m M N

m= −z U∼

 
( ) ( )

1{ ( )} ,m m M
mG

φ ==x z
 
device samples;

  ( ) ( )
1 1{ } , {Eff }m M m M

m m= = ←g  forward and adjoint simulations;

 g
φ
←

  
( )

( ) ( ) ( ) ( )
1 1

1 1 Eff 1exp | | (2 | |) ;
m

M Mm m m m
m mM Mφ

γ
σ σ= =

  
∇ ⋅ + ⋅ ⋅ −    ∑ ∑x g x x

 φ ← φ + α · Adam(φ, g
φ
);

end
*

( ) ( ){ | }* 1
argmax Eff( )m m MP mφ

∈ =

←
x x x

x x
∼
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The training procedure is shown in Algorithm 1. The 
Adaptive Moment Estimation (Adam) algorithm, which 
is a variation of gradient descent, is used to optimize the 
network parameters φ. β1 and β2 are two hyperparameters 
used in Adam [41]. Initially, with the use of an identity 
shortcut [42], the device distribution P

φ
 is approximately 

a uniform distribution over the whole device space S. 
During the training process, P

φ
 is continuously refined 

and maps more prominently to high-efficiency device sub-
spaces. When the generator is done training, the devices 
produced from the generator have a high probability to be 
highly efficient. The final optimal device design is deter-
mined by generating a batch of devices from the fully 
trained generator 

φ∗ =
( ) ( )

1{ | } ,m m M
mPx x ∼  simulating each of 

those devices, and selecting the best one.

4.4  �Comparison with gradient-based 
topology optimization

In gradient-based topology optimization, a large number 
of local optimizations are used to search for the global 
optimum. For each run, device patterns are randomly 
initialized, and a local search in the design space is per-
formed using gradient descent. The highest efficiency 
device among those optimized devices is taken as the final 
design. With this approach, many devices get trapped in 
local optima or saddle points in S, and the computational 
resources used to optimize those devices do not contribute 
to finding or refining the globally optimal device. Addi-
tionally, finding the global optimum in a very high dimen-
sional space can require an exceedingly large number of 
individual optimization runs. GLOnets are qualitatively 
different, as they optimize a distribution of devices to 
perform global optimization. As indicated in Eq. (11), each 
device sample x(m) is weighted by the term exp(Eff(m)/σ), 
which biases generator training towards higher efficiency 
devices and pushes P

φ
 towards more favorable design sub-

spaces. In this manner, computational resources are not 

wasted optimizing devices within subspaces possessing 
low-efficiency local optima.

5  �Numerical experiments

5.1  �A toy model

We first perform GLOnet-based optimization on a simple 
test case, where the input z and output x are two dimen-
sional. The “efficiency” function Eff(x) is defined as:

	
= − + −2 2

1 2 1 1 2 2Eff( , ) exp( 2 )cos(9 ) exp( 2 )cos(9 )x x x x x x � (12)

This function is non-convex and has many local 
optima and one global optimum at (0, 0). We use Algo-
rithm 1 to search for the global optimum. Hyperparam-
eters are chosen to be α = 1e − 3, β1 = 0.9, β2 = 0.999, a = 30, 
and σ = 0.5, and the batch size M = 100 is fixed through-
out network training. The generator is trained for 150 
iterations, and the generated samples over the course of 
training are shown as red dots in Figure 3. Initially, the 
generated “device” distribution is spread out over the x 
space, and it then gradually converges to a cluster located 
at the global optimum. In the training run shown, no 
device is trapped in any local optima. Upon training 100 
distinct GLOnets, 96 of them successfully produced the 
globally optimized device.

5.2  �Inverse design of metagratings

We next apply our algorithm to the inverse design of 63 
different types of metagratings, each with differing operat-
ing wavelengths and deflection angles. The wavelengths λ 
range from 800 nm to 1200 nm, in increments of 50 nm, and 
the deflection angles θ range from 40° to 70°, in increments 
of 5°. Unlike our conditional GLOnet in Ref. [21], where 

x1 x1 x1 x1

x2 x2 x2 x2

Iteration 0 Iteration 100 Iteration 120 Iteration 150

Figure 3: Results from a toy model test.
Samples generated from the generator, shown as red dots, evolve in the [−1, 1]2 space over the course of training.
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many different types of metagratings are simultaneously 
designed using a single network, we use distinct uncon-
ditional GLOnets to design each device type operating for 
specific wavelength and deflection angle parameters.

5.2.1  �Implementation details

The hyperparameters we use are α = 0.05, β1 = 0.9, β2 = 0.99, 
σ = 0.5, and γ = 0.2. The batch size is 100. To prevent vanish-
ing gradients when the generated patterns are binarized 
as x ∈ { − 1, 1}N, we specify the last activation function to 
be 1.05*tanh.

For each combination of wavelength and angle, we 
train the generator for 1000 iterations. Upon completion of 
network training, 500 different values of z are used to gen-
erate 500 different devices. All devices are simulated, and 
the highest efficiency device is taken as the final design.

The network is implemented using the pytorch-1.0.0 
package. The forward and adjoint simulations are per-
formed using the Reticolo RCWA [43] electromagnetic 
solver in MATLAB. The network is trained on an Nvidia 
Titan V GPU and four CPUs, and it takes 10 min for one 

device optimization. Our code implementation can be 
found at https://github.com/jiaqi65/GLOnet.git.

5.2.2  �Baseline

We benchmark our method with gradient-based topol-
ogy optimization. For each design target (λ, θ), we start 
with 500 random gray-scale vectors and iteratively opti-
mize each device using efficiency gradients calculated 
from forward and adjoint simulations. A threshold filter 
binarizes the device patterns. Each initial dielectric distri-
bution is optimized for 200 iterations, and the highest effi-
ciency device among 500 candidates is taken as the final 
design. The computational budget is set to be the same 
used for GLOnets training to facilitate a fair comparison.

5.2.3  �Results

The efficiencies of the best devices designed using gradi-
ent-based topology optimization and GLOnets are shown 
in Figure 4. Ninety percent of the best devices from 
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GLOnets have higher or the same efficiencies compared 
to the best devices produced from gradient-based topol-
ogy optimization; 98% of the best devices from GLOnets 
have efficiencies within 5% of the best devices from 
gradient-based topology optimization. For wavelengths 
and angles for which GLOnets perform worse than gra-
dient-based topology optimization, we can perform mul-
tiple network trainings or further tune the batch size 
and sigma to get better GLOnet results. The efficiency 
histograms from GLOnets and gradient-based topology 
optimization, for select wavelength and angle pairs, are 
displayed in Figure 5. For most cases, efficiency histo-
grams produced from our method have higher average 
efficiencies and maximal efficiencies, indicating that 

low-efficiency local optima are often avoided during the 
training of the generator.

5.2.4  �GLOnet stability

To validate the stability of GLOnet-based optimization, we 
train eight unconditional GLOnets independently for the 
same wavelength (λ = 850 nm) and deflection angle (θ = 65°). 
For each trained GLOnet, we generate 500 devices and visu-
alize the top 20 devices in a 2D plane using principle com-
ponent analysis (PCA) (Figure 6). The principle basis is the 
same for all eight figures and is calculated using the top 20 
devices of each GLOnet for a total of 160 devices. Six of the 
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Figure 5: Efficiency histograms of 500 devices designed using gradient-based topology optimization (red) and GLOnet-based optimization 
(blue).
The statistics of device efficiencies in each histogram are also displayed. For most wavelength and angle values, the efficiency distributions 
from GLOnets are narrower and have higher maximum values compared to those from gradient-based topology optimization.
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eight GLOnets converge to the same optimum, which is a 
device with 97% efficiency, while one GLOnet converges to 
a nearby optimum, which is a device with 96% efficiency. 
While we cannot prove that the device with 97% efficiency 
is globally optimal, the consistent convergence of GLOnet 
to this single optimum is suggestive that the network is 
finding the global optimum. At the very least, this demon-
stration shows that GLOnets have the potential to consist-
ently generate exceptionally high performance devices.

5.2.5  �Discussion of hyperparameter σ and batch size

In principle, σ approaching 0 could be used if the entire 
design space could be sampled to train the neural 
network. In this case, the globally optimized structure 
would be sampled and be the only device that contributes 
to neural network training, pushing the response of the 
network towards our desired objective response. However, 
the design space is immense and infeasible to probe in 
its entirety. Furthermore, this scenario would lead to the 
direct readout of the globally optimized device, negating 
the need to perform an optimization.

In practice, we can only realistically process small 
batches of devices that comprise a very small fraction of 
the total design space during network training. For many 
of these iterations, the best device within each batch will 
only be in locally optimal regions of the design space. To 
prevent the network from getting trapped within these 
local optima, we specify σ to be finite, which adds noise to 
the training process. In our loss function, this noise mani-
fests in the form exp(−Eff/σ). This exponential expression 
has a Boltzmann form, and σ can therefore be treated 

as an effective temperature. In a manner analogous to 
the process of simulated annealing, σ can be modulated 
throughout the training process.

The impact of batch size and σ on GLOnet performance 
for λ = 850  nm and θ = 65° is summarized in Figure 7. In 
Figure 7A, σ is fixed to be 0.5, and the batch size is varied 
from 10 to 1000 devices per iteration. When the batch size 
is too small, the design space is undersampled, which 
increases the difficulty of finding the global optimum. As 
the batch size is increased, the performance of the GLOnet 
starts to saturate such that the design space is oversam-
pled, leading to a waste of computational resources. For 
this particular GLOnet, a proper batch size that balances 
optimization capability with resource management is 100.

Figure 7B summarizes the impact of σ on GLOnet train-
ing, given a fixed batch size of 100 devices. The plot indi-
cates that a proper range of σ that produces the highest 
efficiency devices is between 0.5 and 1.0. When σ is less 
than 0.5, there is insufficient noise in the training process 
and the network gets more easily trapped within local 
optima, particularly early in the training process. When 
σ becomes larger than 1, the performance of the GLOnet 
begins to deteriorate because low efficiency devices con-
tribute more significantly in the training process, leading 
to excess noise.

The optimal batch size and σ values are highly 
problem dependent and require tuning for each optimiza-
tion objective. For example, proper GLOnet optimization 
within a design space with relatively few local optima can 
be achieved with relatively small batch sizes and small 
values of σ. The proper selection of these hyperparameters 
is not intuitive and requires experience and parametric 
sweeps.

Figure 6: PCA visualization of GLOnet-optimized devices.
Eight unconditional GLOnets are trained independently, and the top 20 devices of each GLOnet are visualized. The pattern and efficiency of 
the best device in each plot are shown as insets.
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6  �Comparison with evolution 
strategies

Evolutionary strategies (ES) represent classical global 
optimization strategies. One such algorithm is the genetic 
algorithm, which has been applied to many types of pho-
tonic design problems, including metasurface design 
[44]. Compared to our approach, genetic algorithms are 
not efficient and require many thousands of iterations 
to search for even a simple optimal device structure. The 
difficulty is due to the complicated relationship between 
optical response and device geometry, governed by Max-
well’s equations. Methods like ours, which incorporate 
gradients, can more efficiently locate favorable regions 
of the design space because gradients provide clear, 
non-heuristic instruction on how to improve device 
performance.

Another ES algorithm is the Covariance Matrix Adap-
tation Evolution Strategy (CMA-ES), which is a probabil-
ity distribution-based ES algorithm. CMA-ES assumes an 
explicit form of the probability distribution of the design 
variables (e.g. multivariate normal distribution), which is 
typically parameterized by several terms. Our algorithm 
has two main differences compared with CMA-ES. First, 
instead of defining an explicit probability distribution, we 
define an explicit generative model parameterized by the 
network parameters. The probability distribution in our 
algorithm is therefore implicit and has no assumed form. 
This is important as there is no reason why the probability 
distributions of the design variables should have a simple, 
explicitly defined form such as the multivariate normal 
distribution. Second, CMA-ES is derivative-free, but our 

algorithm uses gradients and is therefore more efficient at 
generating device populations in the desirable parts of the 
design space.

7  �Conclusions and future directions
In this paper, we present a generative neural network-
based global optimization algorithm for metasurface 
design. Instead of optimizing many devices individually, 
which is the case for gradient-based topology optimiza-
tion, we reframe the global optimization problem as the 
training of a generator. The efficiency gradients of all 
devices generated each training iteration are used to col-
lectively improve the performance of the generator and 
map the noise input to favorable regions of the device 
subspace.

An open topic of future study is understanding how 
to properly select and tune the network hyperparameters 
dynamically during network training. We anticipate that, 
as the distribution of generated devices converges to a 
narrow range of geometries over the course of network 
training, the batch size can be dynamically decreased, 
leading to computational savings. We also hypothesize 
that dynamically decreasing σ can help further stabilize 
the GLOnet training process. These variations in batch 
size and σ can be predetermined prior to network train-
ing or be dynamically modified using feedback during the 
training process.

We are also interested in applying our algorithm to 
more complex systems, such as 2D or 3D metasurfaces, 
multi-function metasurfaces, and other photonics design 
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Figure 7: Performance of the unconditional GLOnet for different values of (A) batch size and (B) σ.
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problems. A deeper understanding of loss function engi-
neering will be necessary for multi-function metasurfaces 
design, which requires optimizing multiple objectives 
simultaneously. We envision that our algorithm has 
strong potential to solve inverse design problems in other 
domains of the physical sciences, such as mechanics and 
electronics.
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