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Abstract: Metasurfaces are subwavelength-structured
artificial media that can shape and localize electromag-
netic waves in unique ways. The inverse design of these
devices is a non-convex optimization problem in a high
dimensional space, making global optimization a major
challenge. We present a new type of population-based
global optimization algorithm for metasurfaces that is
enabled by the training of a generative neural network.
The loss function used for backpropagation depends on
the generated pattern layouts, their efficiencies, and effi-
ciency gradients, which are calculated by the adjoint vari-
ables method using forward and adjoint electromagnetic
simulations. We observe that the distribution of devices
generated by the network continuously shifts towards
high performance design space regions over the course of
optimization. Upon training completion, the best gener-
ated devices have efficiencies comparable to or exceeding
the best devices designed using standard topology opti-
mization. Our proposed global optimization algorithm
can generally apply to other gradient-based optimization
problems in optics, mechanics, and electronics.

Keywords: simulator-based training; generative net-
works; neural networks; adjoint variable method; global
optimization.

1 Introduction

Photonic technologies serve to manipulate, guide, and
filter electromagnetic waves propagating in free space
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and in waveguides. Due to the strong dependence of
electromagnetic function on geometry, much emphasis in
the field has been placed on identifying geometric designs
for these devices given a desired optical response. The
vast majority of existing design concepts utilize relatively
simple shapes that can be described using physical intui-
tion. For example, silicon photonic devices typically utilize
adiabatic tapers and ring resonators to route and filter
guided waves [1], and metasurfaces, which are diffrac-
tive optical components used for wavefront engineering,
typically utilize arrays of nanowaveguides or nanoreso-
nators comprising simple shapes [2]. While these design
concepts work well for certain applications, they possess
limitations, such as narrow bandwidths and sensitivity to
temperature, which prevent the further advancement of
these technologies.

To overcome these limitations, design methodolo-
gies based on optimization have been proposed. Among
the most successful of these concepts is gradient-based
topology optimization, which uses the adjoint variables
method to iteratively adjust the dielectric composition
of the devices and improve device functionality [3-8].
This design method, based on gradient descent, has
enabled the realization of high performance, robust [9]
devices with nonintuitive layouts, including new classes
of on-chip photonic devices with ultrasmall footprints
[10, 11], non-linear photonic switches [12], and diffractive
optical components that can deflect [13-17] and focus [18,
19] electromagnetic waves with high efficiencies. While
gradient-based topology optimization has great potential,
it is a local optimizer and depends strongly on the initial
distribution of dielectric material making up the devices
[20]. The identification of a high performance device is
therefore computationally expensive, as it requires the
optimization of multiple random initial dielectric distri-
butions and selecting the best device.

We present a detailed mathematical discussion of a
new global optimization concept based on Global Topol-
ogy Optimization Networks (GLOnets) [21], which combine
adjoint variables electromagnetic calculations with the
training of a generative neural network to realize high
performance photonic structures. Unlike gradient-based
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topology optimization, which optimizes one device at a
time, our approach is population-based and optimizes a
distribution of devices, thereby enabling a global search
of the design space. As a model system, we will apply our
concept to design periodic metasurfaces, or metagratings,
which selectively deflect a normally incident beam to the
+1 diffraction order. In our previous work [21], we demon-
strated that GLOnets conditioned on incident wavelength
and deflection angle can generate ensembles of high effi-
ciency metagratings. In this manuscript, we examine the
underlying mathematical theory behind GLOnets, spe-
cifically a derivation of the objective and loss functions,
discussion of the training process, interpretation of hyper-
parameters, and calculations of baseline performance
metrics for unconditional GLOnets. We emphasize that our
proposed concepts are general and apply broadly to design
problems in photonics and other fields in the physical sci-
ences in which the adjoint variables method applies.

2 Related machine learning work

In recent years, deep learning has been investigated as a
tool to facilitate the inverse design of photonic devices.
Many efforts have focused on using deep neural net-
works to learn the relationship between device geometry
and optical response [22, 23], leading to trained networks
serving as surrogate models mimicking electromagnetic
solvers. These networks have been used together with clas-
sical optimization methods, such as simulated annealing
or particle swarm algorithms, to optimize a device [24, 25].
Device geometries have also been directly optimized from
a trained network by using gradients from backpropaga-
tion [26-29]. These methods work well on simple device
geometries described by a few parameters. However, the
model accuracy decreases as the geometric degrees of
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freedom increase, making the scaling of these ideas to the
inverse design of complex systems unfeasible.

An alternative approach is to utilize generative adver-
sarial networks (GANs) [30], which have been proposed
as a tool for freeform device optimization [31-33]. GANs
have been of great interest in recent years and have a
broad range of applications, including image generation
[34, 35], image synthesis [36], image translation [37], and
super resolution imaging [38]. In the context of photon-
ics inverse design, GANs are provided images of high
performance devices, and after training, they can gener-
ate high performance device patterns with geometric fea-
tures mimicking the training set [32]. With this approach,
devices from a trained GAN can be produced with low
computational cost, but a computationally expensive
training set is required. New data-driven concepts that
can reduce or even eliminate the need for expensive train-
ing data would dramatically expand the scope and prac-
ticality of machine learning-enabled device optimization.

3 Problem setup

The metagratings consist of silicon nanoridges and
deflect normally incident light to the +1 diffraction order
(Figure 1). The thickness of the gratings is fixed to be
325 nm, and the incident light is transverse magnetic
(TM) polarized. The refractive index of silicon is taken
from Ref. [39], and only the real part of the index is used
to simplify the design problem. For each period, the
metagrating is subdivided into N=256 segments, each
possessing a refractive index value between silicon and
air during the optimization process. These refractive
index values are the design variable in our problem and
are specified as x (a 1x N vector). Deflection efficiency is
defined as the intensity of light deflected to the desired
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Figure 1: Schematic of a silicon metagrating that deflects normally incident TM-polarized light of wavelength 4 to an outgoing angle 6.
The optimization objective is to search for the metagrating pattern that maximizes deflection efficiency.
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direction, defined by angle 6, normalized to the incident
light intensity. The deflection efficiency is a nonlinear
function of index profile Eff =Eff(x) and is governed by
Maxwell’s equations. This quantity, together with the
electric field profiles within a device, can be accurately
solved using electromagnetic solvers.

Our optimization objective is to maximize the deflec-
tion efficiency of the metagrating at a specific operating
wavelength A and outgoing angle 0:

*
X :

argmax Eff(x)
xe{-1,1}"

@

The term x* represents the globally optimized device
pattern, and it has an efficiency of Eff _ . We are interested
in physical devices that possess binary index values in the
vector xe {-1, 1}¥, where -1 represents air and +1 repre-
sents silicon.

4 Methods

Our proposed inverse design scheme is shown in Figure 2
and involves the training of a generative neural network
to optimize a population of devices. Uniquely, our scheme
does not require any training set. The input of the gen-
erator is a random noise vector ze U"(-1, 1) and it has
the same dimension as the output device index profile
xe[-1, 1]". The generator is parameterized by ¢, which
relates z to x through a nonlinear mapping: x=G ¢(z). In
other words, the generator maps a uniform distribution
of noise vectors to a device distribution G X U(-1,1)-P,,
where P ¢(x) defines the probability of generating x in the
device space S=[-1, 1]. We frame the objective of the
optimization as maximizing the probability of generating
the globally optimized device in S:
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¢*:=argmaxja(Eff(x)—Eff
S

maX) . P¢(x)dx
)

@

4.1 Loss function formulation

While our objective function above is rigorous, it cannot
be directly used for network training due to two reasons.
The first is that the derivative of the ¢ function is nearly
always 0. To circumvent this issue, we express the ¢ func-
tion as the following:

2

j } (3)

By substituting the 6 function with this Gaussian form
and leaving o as a tunable parameter, we relax Eq. (2), and
it becomes

S(EFF(X)—Eff )= im—r—exp

max
-0 A\ TTO

—Eff

[_[Eff(x)

o

2
Eff(x)—Eff
N

*
¢ := argmaxjexp
S

¢

As we will see later, the inclusion of ¢ as a tunable
hyperparameter turns out to be important for stabilizing
the network training process in the limit of training with
a finite batch size.

The second reason is that the objective function
depends on Eff , which is unknown. To address this
problem, we approximate Eq. (4) with a different function,
namely, the exponential function:

* Eff(x)—Eff
¢ :=argmax J. exp[a“‘a"j

) K

-P¢(x)dx 5)

This approximation is valid because P ¢(x | Eff(x)>Eff  )=0
and our new function only needs to approximate that
in Eq. (4) for efficiency values less than Eff . With this
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Figure 2: Schematic of generative neural network-based optimization.
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approximation, we can remove exp(—Effmax/o) from the
integral:

* Eff(x)
¢ := arg(r;ax A:[exp(o) . P¢(x)dx (6)

A=exp(-Eff__ /o) now becomes a normalization constant
and does not require explicit evaluation. Alternatives to
the exponential function can be considered and tailored
depending on the specific optimization problem. For this
study, we will use Eq. (6).

In practice, it is not possible to evaluate Eq. (6) over
the entire design space S. We instead sample a batch of
devices {x"})/ | from P, which leads to further approxi-
mation of the objective function:

gb* :=argmax [E exp(Eff(x)j 7
¢ x~P¢ o

~ i M Eff(x(m))j

~ argglax i mz:{ exp(a 8)

We note that the deflection efficiency of device x is
calculated using an electromagnetic solver, such that
Eff(x) is not directly differentiable for backpropagation.
To bypass this problem, we use the adjoint variables
method to compute the efficiency gradient with respect
to the refractive indices for device x: g =% (Figure 2).
Details pertaining to these gradient calculations can be
found in other inverse design papers [11-13]. To sum-
marize, electric field profiles within the device layer are
calculated using two different electromagnetic excitation
conditions. The first is the forward simulation, in which
E™4 are calculated by propagating a normally incident
electromagnetic wave from the substrate to the device,
as shown in Figure 1. The second is the adjoint simula-
tion, in which E2¥ are calculated by propagating an elec-
tromagnetic wave in the direction opposite of the desired
outgoing direction. The efficiency gradient g is calculated
by integrating the overlap of those electric field terms:

OEff(x)

=" = Re(E™-E*Y) )

Finally, we use our adjoint gradients and objective func-
tion to define the loss function L=L(x, g, Eff). Our goal
is to define L such that minimizing L is equivalent to
Eff(x('"))]
o
during generator training. With this definition, L must

AL 1 3 Eff(x("“)] -
= M 3™ exp( o and is defined as:

maximizing the objective function ﬁz‘:ﬂ exp(

tisfy —
satisfy 5
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131

eXp(Eff"") ) X . gm
M=o g

L(x, g, Eff)=——Y = (10)

Eff™ and g™ are treated as independent variables
calculated from electromagnetic simulations and have no
dependence on x™. Finally, we add a regularization term
-| x|+ (2-]x|) to L to ensure that the generated patterns are
binary. This term reaches a minimum when the generated
patterns are fully binarized. A coefficient y is introduced
to balance binarization with efficiency enhancement, and
we have as our final loss function:

L(x, g, Eff)=
101 (Eff(’"))()() 15 m (m)
-—— ) —ex x™.g™—y.—» |x™|2-|x"
Mm§:1a p g" -y Mm§:1| |-(2—x"™)

o
(1)

4.2 Network architecture

The architecture of the generative neural network is adapted
from DCGAN [40], which comprises two fully connected
layers, four transposed convolution layers, and a Gaussian
filter at the end to eliminate small features. LeakyReLU is
used for all activation functions except for the last layer,
which uses a tanh activation function. We also add dropout
layers and batchnorm layers to enhance the diversity of the
generated patterns. Periodic paddings are used to account
for the fact that the devices are periodic structures.

4.3 Training procedure

Algorithm 1: Generative neural network-based optimization

Parameters: M, batch size. g, loss function coefficient. , learning rate.
p,and B,, momentum coefficients used in Adam. y,
binarization coefficient.

initialization;

while i< Total iterations do

Sample {z™}_ ~u" (-1, 1);

{x(m) — Gq) (z(m) )}M

m=1°

device samples;
{g™y" , {EFf™}"  « forward and adjoint simulations;

g,€

Iom 1
V«[ﬁzmgex

EFF™ ) m im o LM ym (m
P(T)X ‘g +V'ﬁzm:1|x [-2=]x"1])|;

¢ € ¢p+a-Adam(p, g¢);
end

X «argmax Eff(x)

xs{x(m]\x("')qu)* )xﬂ
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The training procedure is shown in Algorithm 1. The
Adaptive Moment Estimation (Adam) algorithm, which
is a variation of gradient descent, is used to optimize the
network parameters ¢. 8, and 3, are two hyperparameters
used in Adam [41]. Initially, with the use of an identity
shortcut [42], the device distribution P, is approximately
a uniform distribution over the whole device space S.
During the training process, P, is continuously refined
and maps more prominently to high-efficiency device sub-
spaces. When the generator is done training, the devices
produced from the generator have a high probability to be
highly efficient. The final optimal device design is deter-
mined by generating a batch of devices from the fully
trained generator {x™ |x™ ~P I, simulating each of
those devices, and selecting the best one.

4.4 Comparison with gradient-based
topology optimization

In gradient-based topology optimization, a large number
of local optimizations are used to search for the global
optimum. For each run, device patterns are randomly
initialized, and a local search in the design space is per-
formed using gradient descent. The highest efficiency
device among those optimized devices is taken as the final
design. With this approach, many devices get trapped in
local optima or saddle points in S, and the computational
resources used to optimize those devices do not contribute
to finding or refining the globally optimal device. Addi-
tionally, finding the global optimum in a very high dimen-
sional space can require an exceedingly large number of
individual optimization runs. GLOnets are qualitatively
different, as they optimize a distribution of devices to
perform global optimization. As indicated in Eq. (11), each
device sample x™ is weighted by the term exp(Eff™/q),
which biases generator training towards higher efficiency
devices and pushes P , towards more favorable design sub-
spaces. In this manner, computational resources are not

Iteration O lteration 100
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Figure 3: Results from a toy model test.
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wasted optimizing devices within subspaces possessing
low-efficiency local optima.

5 Numerical experiments

5.1 A toy model

We first perform GLOnet-based optimization on a simple
test case, where the input z and output x are two dimen-
sional. The “efficiency” function Eff(x) is defined as:

Eff(x,, x,) = exp(-2x;)cos(9x,) + exp(-2x;)cos(9x,)  (12)

This function is non-convex and has many local
optima and one global optimum at (0, 0). We use Algo-
rithm 1 to search for the global optimum. Hyperparam-
eters are chosen to be a=1e-3, ,=0.9, 3,=0.999, a=30,
and 0=0.5, and the batch size M=100 is fixed through-
out network training. The generator is trained for 150
iterations, and the generated samples over the course of
training are shown as red dots in Figure 3. Initially, the
generated “device” distribution is spread out over the x
space, and it then gradually converges to a cluster located
at the global optimum. In the training run shown, no
device is trapped in any local optima. Upon training 100
distinct GLOnets, 96 of them successfully produced the
globally optimized device.

5.2 Inverse design of metagratings

We next apply our algorithm to the inverse design of 63
different types of metagratings, each with differing operat-
ing wavelengths and deflection angles. The wavelengths 4
range from 800 nm to 1200 nm, in increments of 50 nm, and
the deflection angles 6 range from 40° to 70°, in increments
of 5°. Unlike our conditional GLOnet in Ref. [21], where

Iteration 120 lteration 150

X4 X4

Samples generated from the generator, shown as red dots, evolve in the [-1, 1]? space over the course of training.
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many different types of metagratings are simultaneously
designed using a single network, we use distinct uncon-
ditional GLOnets to design each device type operating for
specific wavelength and deflection angle parameters.

5.2.1 Implementation details

The hyperparameters we use are ¢ =0.05, 3,=0.9, 3,=0.99,
0=0.5,and y =0.2. The batch size is 100. To prevent vanish-
ing gradients when the generated patterns are binarized
as xe { -1, 1}V, we specify the last activation function to
be 1.05*tanh.

For each combination of wavelength and angle, we
train the generator for 1000 iterations. Upon completion of
network training, 500 different values of z are used to gen-
erate 500 different devices. All devices are simulated, and
the highest efficiency device is taken as the final design.

The network is implemented using the pytorch-1.0.0
package. The forward and adjoint simulations are per-
formed using the Reticolo RCWA [43] electromagnetic
solver in MATLAB. The network is trained on an Nvidia
Titan V GPU and four CPUs, and it takes 10 min for one

A Gradient-based topology optimization
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device optimization. Our code implementation can be
found at https://github.com/jiaqi65/GLOnet.git.

5.2.2 Baseline

We benchmark our method with gradient-based topol-
ogy optimization. For each design target (4, 6), we start
with 500 random gray-scale vectors and iteratively opti-
mize each device using efficiency gradients calculated
from forward and adjoint simulations. A threshold filter
binarizes the device patterns. Each initial dielectric distri-
bution is optimized for 200 iterations, and the highest effi-
ciency device among 500 candidates is taken as the final
design. The computational budget is set to be the same
used for GLOnets training to facilitate a fair comparison.

5.2.3 Results
The efficiencies of the best devices designed using gradi-

ent-based topology optimization and GLOnets are shown
in Figure 4. Ninety percent of the best devices from
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Deflection angle (°)
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(A) Plot of efficiency for devices operating with different wavelength and angle values, designed using gradient-based topology
optimization. For each wavelength and angle combination, 500 individual topology optimizations are performed and the highest efficiency
device is used for the plot. (B) Plot of efficiency for devices designed using GLOnet-based optimization. For each wavelength and angle
combination, 500 devices are generated and the highest efficiency device is used for the plot. (C) Training process of GLOnets. The figure
on the left shows the 90th percentile efficiency and average efficiency of the device batch over the course of training. The figure on the right
shows the binarization degree of generated devices, which is defined as zyxi |/N.


https://github.com/jiaqi65/GLOnet.git

DE GRUYTER

GLOnets have higher or the same efficiencies compared
to the best devices produced from gradient-based topol-
ogy optimization; 98% of the best devices from GLOnets
have efficiencies within 5% of the best devices from
gradient-based topology optimization. For wavelengths
and angles for which GLOnets perform worse than gra-
dient-based topology optimization, we can perform mul-
tiple network trainings or further tune the batch size
and sigma to get better GLOnet results. The efficiency
histograms from GLOnets and gradient-based topology
optimization, for select wavelength and angle pairs, are
displayed in Figure 5. For most cases, efficiency histo-
grams produced from our method have higher average
efficiencies and maximal efficiencies, indicating that

J. Jiang and J.A. Fan: Simulator-based training of generative neural networks =— 1065

low-efficiency local optima are often avoided during the
training of the generator.

5.2.4 GLOnet stability

To validate the stability of GLOnet-based optimization, we
train eight unconditional GLOnets independently for the
same wavelength (4 =850 nm) and deflection angle (6 = 65°).
For each trained GLOnet, we generate 500 devices and visu-
alize the top 20 devices in a 2D plane using principle com-
ponent analysis (PCA) (Figure 6). The principle basis is the
same for all eight figures and is calculated using the top 20
devices of each GLOnet for a total of 160 devices. Six of the
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Figure 5: Efficiency histograms of 500 devices designed using gradient-based topology optimization (red) and GLOnet-based optimization

(blue).

The statistics of device efficiencies in each histogram are also displayed. For most wavelength and angle values, the efficiency distributions
from GLOnets are narrower and have higher maximum values compared to those from gradient-based topology optimization.
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eight GLOnets converge to the same optimum, which is a
device with 97% efficiency, while one GLOnet converges to
a nearby optimum, which is a device with 96% efficiency.
While we cannot prove that the device with 97% efficiency
is globally optimal, the consistent convergence of GLOnet
to this single optimum is suggestive that the network is
finding the global optimum. At the very least, this demon-
stration shows that GLOnets have the potential to consist-
ently generate exceptionally high performance devices.

5.2.5 Discussion of hyperparameter ¢ and batch size

In principle, o approaching O could be used if the entire
design space could be sampled to train the neural
network. In this case, the globally optimized structure
would be sampled and be the only device that contributes
to neural network training, pushing the response of the
network towards our desired objective response. However,
the design space is immense and infeasible to probe in
its entirety. Furthermore, this scenario would lead to the
direct readout of the globally optimized device, negating
the need to perform an optimization.

In practice, we can only realistically process small
batches of devices that comprise a very small fraction of
the total design space during network training. For many
of these iterations, the best device within each batch will
only be in locally optimal regions of the design space. To
prevent the network from getting trapped within these
local optima, we specify o to be finite, which adds noise to
the training process. In our loss function, this noise mani-
fests in the form exp(-Eff/0). This exponential expression
has a Boltzmann form, and o can therefore be treated
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Figure 6: PCA visualization of GLOnet-optimized devices.
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as an effective temperature. In a manner analogous to
the process of simulated annealing, o can be modulated
throughout the training process.

The impact of batch size and o on GLOnet performance
for A=850 nm and 6=65° is summarized in Figure 7. In
Figure 7A, o is fixed to be 0.5, and the batch size is varied
from 10 to 1000 devices per iteration. When the batch size
is too small, the design space is undersampled, which
increases the difficulty of finding the global optimum. As
the batch size is increased, the performance of the GLOnet
starts to saturate such that the design space is oversam-
pled, leading to a waste of computational resources. For
this particular GLOnet, a proper batch size that balances
optimization capability with resource management is 100.

Figure 7B summarizes the impact of 0 on GLOnet train-
ing, given a fixed batch size of 100 devices. The plot indi-
cates that a proper range of ¢ that produces the highest
efficiency devices is between 0.5 and 1.0. When o is less
than 0.5, there is insufficient noise in the training process
and the network gets more easily trapped within local
optima, particularly early in the training process. When
o becomes larger than 1, the performance of the GLOnet
begins to deteriorate because low efficiency devices con-
tribute more significantly in the training process, leading
to excess noise.

The optimal batch size and o values are highly
problem dependent and require tuning for each optimiza-
tion objective. For example, proper GLOnet optimization
within a design space with relatively few local optima can
be achieved with relatively small batch sizes and small
values of 0. The proper selection of these hyperparameters
is not intuitive and requires experience and parametric
sweeps.
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Eight unconditional GLOnets are trained independently, and the top 20 devices of each GLOnet are visualized. The pattern and efficiency of

the best device in each plot are shown as insets.
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Figure 7: Performance of the unconditional GLOnet for different values of (A) batch size and (B) o.

6 Comparison with evolution
strategies

Evolutionary strategies (ES) represent classical global
optimization strategies. One such algorithm is the genetic
algorithm, which has been applied to many types of pho-
tonic design problems, including metasurface design
[44]. Compared to our approach, genetic algorithms are
not efficient and require many thousands of iterations
to search for even a simple optimal device structure. The
difficulty is due to the complicated relationship between
optical response and device geometry, governed by Max-
well’s equations. Methods like ours, which incorporate
gradients, can more efficiently locate favorable regions
of the design space because gradients provide clear,
non-heuristic instruction on how to improve device
performance.

Another ES algorithm is the Covariance Matrix Adap-
tation Evolution Strategy (CMA-ES), which is a probabil-
ity distribution-based ES algorithm. CMA-ES assumes an
explicit form of the probability distribution of the design
variables (e.g. multivariate normal distribution), which is
typically parameterized by several terms. Our algorithm
has two main differences compared with CMA-ES. First,
instead of defining an explicit probability distribution, we
define an explicit generative model parameterized by the
network parameters. The probability distribution in our
algorithm is therefore implicit and has no assumed form.
This is important as there is no reason why the probability
distributions of the design variables should have a simple,
explicitly defined form such as the multivariate normal
distribution. Second, CMA-ES is derivative-free, but our

algorithm uses gradients and is therefore more efficient at
generating device populations in the desirable parts of the
design space.

7 Conclusions and future directions

In this paper, we present a generative neural network-
based global optimization algorithm for metasurface
design. Instead of optimizing many devices individually,
which is the case for gradient-based topology optimiza-
tion, we reframe the global optimization problem as the
training of a generator. The efficiency gradients of all
devices generated each training iteration are used to col-
lectively improve the performance of the generator and
map the noise input to favorable regions of the device
subspace.

An open topic of future study is understanding how
to properly select and tune the network hyperparameters
dynamically during network training. We anticipate that,
as the distribution of generated devices converges to a
narrow range of geometries over the course of network
training, the batch size can be dynamically decreased,
leading to computational savings. We also hypothesize
that dynamically decreasing ¢ can help further stabilize
the GLOnet training process. These variations in batch
size and o can be predetermined prior to network train-
ing or be dynamically modified using feedback during the
training process.

We are also interested in applying our algorithm to
more complex systems, such as 2D or 3D metasurfaces,
multi-function metasurfaces, and other photonics design
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problems. A deeper understanding of loss function engi-
neering will be necessary for multi-function metasurfaces
design, which requires optimizing multiple objectives
simultaneously. We envision that our algorithm has
strong potential to solve inverse design problems in other
domains of the physical sciences, such as mechanics and
electronics.

Acknowledgments: The simulations were performed in
the Sherlock computing cluster at Stanford University.
This work was supported by the U.S. Air Force, Funder Id:
http://dx.doi.org/10.13039/100006831, under Award Num-
ber FA9550-18-1-0070, the Office of Naval Research, Funder
Id: http://dx.doi.org/10.13039/100000006, under Award
Number N00014-16-1-2630, and the David and Lucile Pack-
ard Foundation.

References

[1] Jalali B, Fathpour S. Silicon photonics. ) Lightwave Technol
2006;24:4600-15.

[2] Genevet P, Capasso F, Aieta F, Khorasaninejad M, Devlin R.
Recent advances in planar optics: from plasmonic to dielectric
metasurfaces. Optica 2017;4:139-52.

[3] MoleskyS, Lin Z, Piggott AY, Jin W, Vuckovic J, Rodriguez AW.

Inverse design in nanophotonics. Nat Photonics 2018;12:

659-70.

Jensen ]S, Sigmund O. Topology optimization for nano-

photonics. Laser Photonics Rev 2011;5:308-21.

[5] Campbell SD, Sell D, Jenkins RP, Whiting EB, Fan JA, Werner DH.

Review of numerical optimization techniques for meta-device

design [Invited]. Opt Mater Express 2019;9:1842-63.

Sigmund O, Maute K. Topology optimization approaches.

Struct Multidiscip 0 2013;48:1031-55.

[7] Sigmund O. On the design of compliant mechanisms
using topology optimization. J Struct Mech 1997;25:

493-524.

[8] Lalau-Keraly CM, Bhargava S, Miller OD, Yablonovitch E. Adjoint

shape optimization applied to electromagnetic design. Opt

Express 2013;21:21693-701.

Wang EW, Sell D, Phan T, Fan JA. Robust design of topology-

optimized metasurfaces. Opt Mater Express 2019;9:469-82.

[10] Jensen ]S, Sigmund O. Systematic design of photonic crystal
structures using topology optimization: low-loss waveguide
bends. Appl Phys Lett 2004;84:2022-4.

[11] Piggott AY, Lu ), Lagoudakis KG, Petykiewicz ], Babinec TM,
Vuckovic J. Inverse design and demonstration of a compact and
broadband on-chip wavelength demultiplexer. Nat Photonics
2015;9:374~7.

[12] Hughes TW, Minkov M, Williamson IAD, Fan S. Adjoint method
and inverse design for nonlinear nanophotonic devices. ACS
Photonics 2018;5:4781-7.

[13] SellD, Yang ), Doshay S, Yang R, Fan JA. Large-angle, multifunc-
tional metagratings based on freeform multimode geometries.
Nano Lett 2017;17:3752-7.

[4

[6

[9

J. Jiang and J.A. Fan: Simulator-based training of generative neural networks

DE GRUYTER

[14] Yang]), Fan)A. Analysis of material selection on dielectric meta-
surface performance. Opt Express 2017;25:23899-909.

[15] Sell D, Yang ), Doshay S, Fan JA. Periodic dielectric metasur-
faces with high-efficiency, multiwavelength functionalities.
Adv Opt Mater 2017;5:2017.

[16] Yang], Sell D, Fan JA. Freeform metagratings based on complex
light scattering dynamics for extreme, high efficiency beam
steering. Ann Phys 2018;530:1700302.

[17] Sell D, Yang ), Wang EW, Phan T, Doshay S, Fan JA. Ultra-high-
efficiency anomalous refraction with dielectric metasurfaces.
ACS Photonics 2018;5:2402-7.

[18] Lin Z, Groever B, Capasso F, Rodriguez AW, Loncéar M.
Topology-optimized multilayered metaoptics. Phys Rev Appl
2018;9:044030.

[19] PhanT, Sell D, Wang EW, Doshay S, Edee K, Yang |, Fan JA. High-
efficiency, large-area, topology-optimized metasurfaces. Light
Sci Appl 2019;8:48.

[20] Yang ), Fan JA. Topology-optimized metasurfaces: impact of
initial geometric layout. Opt Lett 2017;42:3161-4.

[21] Jiang ), Fan JA. Global optimization of dielectric metasur-
faces using a physics-driven neural network. Nano Lett
2019;19:5366-72.

[22] Zhang QJ, Gupta KC, Devabhaktuni VK. Artificial neural net-
works for RF and microwave design - from theory to practice.
IEEE Trans Microw Theory Tech 2003;51:1339-50.

[23] Malheiros-Silveira GN, Hernandez-Figueroa HE. Prediction of
dispersion relation and PBGs in 2-D PCs by using artificial neu-
ral networks. IEEE Photonics Technol Lett 2012;24:1799-801.

[24] Luna DR, Vasconcelos CFL, Cruz RMS. Using natural optimiza-
tion algorithms and artificial neural networks in the design of
effective permittivity of metamaterials. In: 2013 SBMO/IEEE
MTT-S International Microwave Optoelectronics Conference
(IMOQ), 2013;1-4.

[25] Silva PHdaF, Cruz RMS, d’Assuncao AG. Blending PSO and ANN
for optimal design of FSS filters with Koch Island patch ele-
ments. IEEE Trans Magn 2010;46:3010-3.

[26] Peurifoy J, ShenY, Jing L, et al. Nanophotonic particle simula-
tion and inverse design using artificial neural networks. Sci
Adv 2018;4:eaar4206.

[27] Inampudi S, Mosallaei H. Neural network based design of
metagratings. Appl Phys Lett 2018;112:241102.

[28] Ma W, ChengF, LiuY. Deep-learning-enabled on-demand
design of chiral metamaterials. ACS Nano 2018;12:6326-34.

[29] Liu D, TanY, Khoram E, Yu Z. Training deep neural networks for
the inverse design of nanophotonic structures. ACS Photonics
2018;5:1365-9.

[30] Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative
adversarial nets. In: Advances in Neural Information Processing
Systems, 2014;2672-80.

[31] LiuZ, Zhu D, Rodrigues SP, Lee KT, Cai W. Generative model for
the inverse design of metasurfaces. Nano Lett 2018;18:6570-6.

[32] Jiang ), Sell D, Hoyer S, Hickey J, Yang |, Fan JA. Free-form dif-
fractive metagrating design based on generative adversarial
networks. ACS Nano 2019;13:8872-8.

[33] So'S, Rho J. Designing nanophotonic structures using condi-
tional deep convolutional generative adversarial networks.
Nanophotonics 2019;8:1255-61.

[34] Brock A, Donahue ), Simonyan K. Large scale GAN train-
ing for high fidelity natural image synthesis. arXiv preprint
arXiv:1809.11096, 2018.


http://dx.doi.org/10.13039/100006831
http://dx.doi.org/10.13039/100000006

DE GRUYTER

[35] Karras T, AilaT, Laine S, Lehtinen ). Progressive growing of gans

[36]

(37]

(38]

for improved quality, stability, and variation. arXiv preprint
arXiv:1710.10196, 2017.

Zhu JY, Zhang Z, Zhang C, et al. Visual object networks:
image generation with disentangled 3D representations.

In: Advances in neural information processing systems,
2018;118-29.

Zhu )Y, Park T, Isola P, Efros AA. Unpaired image-to-image
translation using cycle-consistent adversarial networks. In:
Proceedings of the IEEE international conference on computer
vision, 2017;2223-32.

Ledig C, Theis L, Huszar F, et al. Photo-realistic single image
super-resolution using a generative adversarial network. In:
Proceedings of the IEEE conference on computer vision and
pattern recognition, 2017;4681-90.

J. Jiang and J.A. Fan: Simulator-based training of generative neural networks =— 1069

[39] Green MA. Self-consistent optical parameters of intrinsic
silicon at 300k including temperature coefficients. Sol Energy
Mater Sol Cells 2008;92:1305-10.

[40] Radford A, Metz L, Chintala S. Unsupervised representation
learning with deep convolutional generative adversarial net-
works. arXiv preprint arXiv:1511.06434, 2015.

[41] Kingma DP, Adam JB. A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

He K, Zhang X, Ren S, Sun J. Deep residual learning for image

recognition. In: Proceedings of the IEEE conference on com-

puter vision and pattern recognition, 2016:770-8.

[43] Hugonin JP, Lalanne P. Reticolo software for grating analysis.

Palaiseau, France: Institut d’Optique, 2005.

Egorov V, Eitan M, Scheuer ). Genetically optimized all-

dielectric metasurfaces. Opt Express 2017;25:2583-93.

(42

(44



