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Abstract: Tip-enhanced Raman spectroscopy (TERS)
is a very useful method to achieve label-free and super-
resolution imaging, and the plasmonic tip nanofocusing
plays a decisive role for TERS performance. Here, we pre-
sent a method to enhance the nanofocusing characteristic
of a plasmonic tip integrated in a grating near the tip apex.
Simulation results show that the grating near the tip apex
can significantly improve the electric field intensity of the
nanofocusing field compared with a conventional bare
tip, under axial excitation of a tightly focused radial vec-
tor beam. The electric field enhancement characteristic is
quantified in relation with the groove number of grating,
excitation wavelength, period of grating, and numerical
aperture of the micro-objective (MO). These simulation
results could be a good reference to fabricate a plasmonic
tip for TERS applications, which is an effective way to pro-
mote the development of tip-enhanced near-field optical
microscopy.
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1 Introduction

In the past two decades, tip-enhanced Raman spectro-
scopy (TERS) has received extensive attention. The
most remarkable feature of TERS technology is that it
can provide label-free chemical analysis with nanom-
eter spatial resolution and corresponding topographical
imaging [1]. Therefore, as an effective means of analysis,
TERS was widely adopted to investigate the biological
systems [2], low-dimensional materials [3], single-mole-
cule detection [4], catalysis [5], surface physics [6-8], and
SO on.

In the application process of TERS technology, the
nanofocusing characteristic of the plasmonic tip plays a
crucial role. Generally, a sharp metallic tip is used as the
plasmonic tip. Under illumination of the external focused
light, the field can be compressed to the nanoscale at the tip
apex due to the localized surface plasmon resonance effect
[9-13]. The enhanced electric field at the tip apex is used to
excite and enhance Raman signal within nanoscale.

For the elongated metallic tip commonly used in
TERS system, it is generally known that only the electric
field component paralleling the axis of the tip can effec-
tively excite the nanofocusing field at the tip apex [14-17].
Thus, it is an effective way to obtain strong TER signals by
illuminating the tip apex using a light beam with strong
longitudinal field component under tight focusing. In the
previous works, it was demonstrated that the metallic tip
was axially excited via the focused radial vector beam
(RVB) can obtain a higher TER signal than that of the
linear polarized beam (LPB) excitation [18-20] because
RVB has stronger longitudinal electric field component
than that of LPB in case of tight focusing [19].
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In addition to achieve electric field enhancement at
the tip apex by regulating the polarization of the excita-
tion light, it is also essential to design the shape of the
tip to improve the nanofocusing characteristic [21-30]. For
example, Raschke et al. introduced a plasmonic tip with
a grating written on the tip shaft to significantly reduce
background illumination, to achieve high contrast in TERS
[21, 22]. Cancado et al. proposed a tip with a single groove
carved near the tip apex to tune the resonance wavelength
and achieve electric field enhancement, simultaneously
[26, 27]. Lu et al. proposed a tip with surface corrugated
grating at the tip apex to improve the collection effi-
ciency and the localized field intensity [28]. In the case
of z-polarized plane wave side illumination, the localized
field intensity near the apex of the tip with surface corru-
gated grating is about twice as strong as the conventional
bare tip.

In this paper, we present a method to enhance the
electric field enhancement characteristic of a plasmonic
tip with a grating near the apex. Under axial excitation
of a tightly focused RVB, the simulation results show
that the grating near the tip apex can significantly
improve the localized field intensity, which is two orders
of magnitude higher than that of the conventional bare
tip. Meanwhile, the electric field intensity enhance-
ment characteristic is also quantified in relation with
the groove number of grating, excitation wavelength,
period of grating, and numerical aperture of the micro-
objective (MO).

2 Methods

Figure 1A is a sketch map of the grating-assisted plas-
monic tip axially excited via a tightly focused RVB. Gold
(Au) is used as the material of the tip, and the structure
parameters of the tip with grating is shown as inset in
Figure 1A. A rounded-tip cone with a cone angle a=25°
terminated by a hemisphere with a radius of r=5 nm is
used. The distance between the tip-apex and the first
groove is g. The period of grating is p varying from 200 nm
to 500 nm, the width of grating groove is w, and the depth
is d=60 nm. RVB is tightly focused via a MO with high
numerical aperture (NA), and then set to propagate along
the tip axis to axially excite the plasmonic tip.

Based on the structure parameters of the tip shown
as inset in Figure 1A, the 3D finite difference time domain
(FDTD Solutions, Lumerical Inc., Vancouver, BC, Canada)
method was adopted to calculate the electric field enhance-
ment of the tip under axial excitation of the tightly focused
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Figure 1: Calculation model of plasmonic tip nanofocusing.

(A) Sketch map of the grating-assisted coupling tip nanofocusing
axially excited via the tightly focused RVB. Inset is the enlargement
of the tip with geometric parameters. (B) Normalized longitudinal
electric field intensity distribution of the tightly focused RPB in the
r-zplane (NA=0.9,A=633 nm).

RVB. The permittivity of Au is taken from Johnson and
Christy [31]. Non-uniform grid sizes are employed for all
calculations to ensure a good tradeoff between accuracy,
memory requirements, and simulation time. A uniform grid
size of 1 nm is used in the volume 40 nm x40 nm x 50 nm
containing the tip apex and 0.5-nm mesh size around the
tip apex, while the other grid size is taken to be less than
A/50. Because of the rotational symmetry of the tip and the
excitation source, the symmetry boundary is used to save
the simulation time. The perfectly matched layer (PML) is
used as absorption boundary to avoid unphysical reflec-
tions around structures. In addition, the PML is placed
along the upper cone surface to reduce reflection of SPPs
from the upper tip cone boundary [32].

Cylindrical vector beams (CVBs) are vector-beam
solutions of Maxwell’s wave equation and have axial
symmetry in both amplitude and phase [33]. RVB is a
type of CVBs, and its polarization is aligned along the
radial direction in the transverse plane. Under the con-
dition of tight focusing, based on the Richards-Wolf
vector diffraction theory [33, 34], the longitudinal and
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transverse electric field components E_and E, of RVB can
be expressed as

E = Aoj: P(60)cos"” 0sin(20)], (kr sin 6)exp(ikz cos 6)d6 (1)

E = 2iA0j: P(6)cos’ 0sin? 0 J , (kr sin 0)exp(ikz cos 6)d 0
)]

where r and z are the cylindrical coordinates, A is the
amplitude, k=2n/A is the wave vector, « is the maximal
angle determined by NA of the MO, and J, and J, are the
first kind of Bessel function with the orders of 0 and 1. P(6)
is the pupil function of MO with formation as [35]:

P(6) = exp —ﬂZ(S.me] L[Zﬂ Sine] 3)

sina sina

where =1 is the ratio between the pupil radius and
the beam waist. The script that solved Egs. (1) and (2) is
written in Matlab code (Matlab, The Math Works, Natick,
MA, USA) and imported into the FDTD software. The nor-
malized longitudinal electric field intensity distribution of
the focused RVB in r-z plane is shown in Figure 1B.

The electric field intensity enhancement factor is
defined as EF=|E__|?/|E,|? where |E__|?is the localized
electric field intensity located 1 nm below the tip apex, and
|E, |?is the incoming electric field intensity of the focused
RVB. In addition, the improvement factor I=EFTip_Graﬁng/
EF, .r, is defined as the ratio between EF,_ . . induced
by the grating-assisted tip and EF,, . induced by the
bare tip to evaluate the improvement performance of the
electric field enhancement characteristic of the grating-
assisted tip. The structural parameters of the bare tip are
the same as the grating-assisted tip, except for the metal-
lic grating.

3 Results and discussions

3.1 Influence of the tip position in the
longitudinal component of RVB on EF

The generation of the localized surface plasmon (LSP)
mode at the tip apex is closely related to the polariza-
tion direction of the excitation light [19]. When the plas-
monic tip is axially excited via the tightly focused RVB,
the polarization direction of the longitudinal electric field
component, as shown by the arrow in Figure 1B, parallels
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to the tip axis. Thus, the longitudinal electric component
of the focused RVB is the determinant for the generation
of LSP mode at the tip apex. In addition, it should be
noted that the longitudinal electric field component has
a length of ~656 nm along the z-axis. The influence of the
tip apex position in the longitudinal electric field compo-
nent on the enhancement characteristic is first calculated.
Figure 2A is the relationship between the tip position and
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Figure 2: Calculation of electric field enhancement for the tip apex
in different positions.

Influence of the position relationship between the tip apex and the
longitudinal component of the tightly focused RVB on the EF for
bare tip (A) and grating-assisted tip (B). (A, B) Insets are the sketch
maps of the tip apex located at the positions of the longitudinal
component of RVB. Electric field intensity distributions near the
apex of the bare tip (C) and the grating-assisted tip (D) at three tip
positions. (E) Ratio of the electric field enhancement factor of the tip
with grating to that of the bare tip.
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the EF, .., of the bare tip axially excited via the focused
RVB as shown in Figure 1B. Note that the position of the tip
apex in the longitudinal component does affect EF, emipy
and the optimized EF}, oqp =35 can be obtained when the
tip apex is located at the center of the longitudinal compo-
nent, as shown in the middle inset in Figure 2A. Figure 2B
is the relationship between the tip position and EF1 crating:
Note that the electric field enhancement characteristics of
the grating-assisted tip is significantly different from the
bare tip. The optimized EF |, Grating = 8 X 10° can be obtained
when the tip apex is completely wrapped by the longitu-
dinal component of the focused RVB, as shown in the left
inset in Figure 2B. As the tip apex moves away from the
longitudinal component region, although the EF, . .
decreases linearly, the EFTip-Grating: 2x10° can still be
obtained when the tip apex is located at the top edge of
the longitudinal component, as shown in the right inset
in Figure 2B.

In addition, to better understand the influence of the
tip position on EF, the electric field intensity distributions
near the apex of the bare tip and the grating-assisted tip at
three positions are shown in Figure 2C and D, respectively.
Figure 2E is the ratio of EF, . . to EF,_ ... Note that the
EF of the grating-assisted tip is two orders of magnitude
higher than that of the bare tip in the whole region of the
longitudinal component of the focused RVB. It indicates
that the grating located near the tip apex can strongly

improve the nanofocusing characteristic of the plasmonic
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tip. For the grating-assisted tip, no matter where the tip in
the focus region of RVB is, the EF is still in the magnitude
of 10%, which is strong enough to acquire excellent TERS
performance. For convenience, the tip apex is located at
the center of the focusing region whether it is a bare tip or
a grating-assisted tip in the later calculations.

3.2 Influence of grating groove number on EF

With the parameters of the tip and the excitation light used
in Figure 1A, the influences of the grating groove number
on the electric field enhancement characteristic of the tip
are calculated. Figure 3A is the relationship between EF
and the grating groove number. Note that the EF of the grat-
ing-assisted tip increases gradually as the groove number
increases from N=1 to 6 and remains on the order of ~10°,
which is two orders of magnitude higher than that of the
bare tip (EF ~30). Figure 3B and C show the electric field
intensity distributions near the apex of the bare tip and the
grating-assisted tip with N=4, respectively. This phenom-
enon can be considered as an interference effect between
the localized surface plasmons (LSPs) from the tip apex and
the surface plasmon polaritons (SPPs) generated from grat-
ings. Using the formalism of the Green’s function [36], the
electric field underneath the tip apex can be expressed as

= i, i
Etotal_Eo(g)+Ele l"I'Eze 24 (4)
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Figure 3: Calculation of electric field enhancement versus grating groove number.
(A) Influence of grating groove number on the EF of the tip. Electric field intensity distributions on the x—z plane near the apex of the bare tip
(B) and the grating-assisted tip with four grooves (C) =633 nm, NA=0.9).
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where E (g) is the electric field directly induced by the
tip apex and dependent on g, which is the distance from
the tip apex and the first grating groove. As for the bare
tip, E_, =E, (g=infinity). E, is the electric field generated
by the i-th grating groove with an initial phase ¢,, which
is determined by the structural parameters. The initial
phase ¢, is determined by the optical path of SPPs that
propagate along the bare tip and the phase delay at the
(i-1)th groove. The initial phase ¢, can be written as

¢, =k, [g+Z(-1)(p-w)l/cos(a/2)+Z(i-Dp(w)  (5)

where ksp is the wave vector of SPPs and ¢(w) is the phase
retardation caused by the grating grooves. This model is
similar as the “bull’s eyes” metasurface [37], although
the scenario in this work is more complicated due to its
complex configuration. When all the parameters includ-
ing geometrical parameters and the wavelength of the
incident light are fixed, the initial phase is fixed. Thus, as
the number of the grating grooves increases, more con-
tributions from grating are obtained, and EF increases.
Because of the limited focusing region and propaga-
tion loss, the contributions from the i-th grating groove
become smaller, which means that the main contribution
to the electric field enhancement is from the tip apex and
the first grating groove after tip milling grating. Consid-
ering the fabrication process and the field enhancement
comprehensively, the groove number N=4 is chosen in
further simulations.
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3.3 Spectral responses of EF for grating
parameters

Generally, the grating period for SPP excita-
tion should satisfy the phase-matching condition
ks,,= k,cos(a/2)+n2n/p [38-41], where k5p is the wave
vector of the SPPs (actually, ksp is dependent on the cross-
sectional radius of the bare tip, but here, we regard ksp as
a constant at different positions due to the small change
range of k in the grating region [38]), k, is the wave vector
of the incident light, n is a positive integer (n=1, 2, 3...)
and * represents the SPPs propagating upward and down-
ward. Note that only the downward SPPs could contribute
to the electric field enhancement at the tip apex. Thus, the
grating period p canbederivedasp = n(l//lsp +cos(a/2)/A,)7,
where 1, is the wavelength of the incident light, and isp
is the wavelength of the SPPs. When n=1, the smallest
appropriate value of p is obtained.

The influence of the grating period on spec-
tral response is calculated within the wavelength of
600 nm ~ 800 nm, as shown in Figure 4A. Note that the
grating period p does not affect the spectral forms of EF,
but only slightly affects the magnitude of EF. According to
Eq. (4) and the phase-matching condition of the grating,
it can be known that the main contribution to E_ is E (g)
and E "' with g being fixed and ¢, =k_g. Thus, the influ-
ence of the grating period on EF is inconspicuous, and EF
remains in the order of 10° The spectral response of the
improvement factor I is shown in Figure 4B. Note that the
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Figure 4: Calculation of electric field enhancement versus grating period.
(A) Spectral responses of the enhancement factor EF and (B) the improvement factor | with different grating periods p.



2308 —— F.Luetal.: Grating-assisted coupling enhancing plasmonic tip nanofocusing

magnitude of I is affected by the grating period, and better
electric field improvement characteristics can be obtained
within a short waveband of 600 nm ~ 650 nm.

According to the abovementioned results and discus-
sions, the most critical factor to spectral responses is g,
the distance from the tip apex to the first groove. Figure
5A shows the effect of g on the spectral responses of EF.
Note that g not only affects the spectra form but also the
magnitude of EF. However, EF is still larger than ~10?
within the wavelength range of 600-800 nm. Figure 5B
shows the spectra response of I. The magnitude of I is
significantly enhanced with the increase in g, which indi-
cates that the spectral response of EF can be optimized
by changing g.

Based on Egs. (4) and (5), it can be known that there is
still a phase item ¢(w) caused by the width of the grating
groove w to influence the interference phenomenon. The
grating groove can be regarded as the geometric-phase
provider [42, 43]. Thus, it is important to calculate the
influence of the groove width w on EF and I. Figure 6
shows the spectral responses of EF and I with different
grating groove widths w. One significant peak is slightly
blue shifted, when w increases from 50 nm to 150 nm,
and EF remains in the order of 10> when w is in the order
of ~10? nm. Luo et al. reported a detailed analysis about
the dependence of phase retardation on the groove width
in a planar metallic plasmonic lens [44-46]. The phase
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retardation can be tuned by varying the groove width if
other parameters are fixed, which is consistent with the
calculation results shown in Figure 6.

Apart from the geometric design of the grating, the
influence of the focused RVB on the electric field enhance-
ment cannot be ignored. The properties of the focused
RVB are almost determined by NA of the MO. Figure 7A
and B show the dependence of EF on NA of the bare tip
and the grating-assisted tip, respectively. Note that the
EF of the bare tip and the grating-assisted tip are all
decreased, and the spectral curves are almost identical as
NA decreases from 0.9 to 0.7. This result indicates that only
the electric field component paralleling to the tip axis and
the grating surface can be used to achieve electric field
enhancement. With decreasing NA, the proportion of the
longitudinal electric filed component of the focused RVB
decreases, but the spectral responses remain unchanged,
as shown in Figure 7C, which coincides with Figure 7A
and B. Figure 7D shows the spectral response of I with dif-
ferent NAs. I decreases with increasing NA, which means
that the increase in EF of the grating-assisted tip with NA
is less dramatic than that of the bare tip. Nevertheless,
even in the case of low NA, the EF of the grating-assisted
tip remains in the order of 10°, which is still much higher
than that of the bare tip. It is convenient to expand the
TERS system using low NA MO because the low NA MO has
a longer working distance.
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Figure 5: Calculation of electric field enhancement versus the distance from the tip apex to the first groove.

Spectral responses of (A) EF and (B) | with different g.
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4 Conclusion

In summary, we presented a method to enhance the nano-
focusing characteristic of the plasmonic tip by integrating
a grating near the tip apex. Simulation results show that
the grating near the tip apex can significantly improve the
electric field intensity of the nanofocusing field compared
with the conventional bare tip, under axial excitation of
the focused RVB. The electric field intensity enhancement
characteristic is quantified in relation to the groove number
of grating, excitation wavelength, period of grating, and
numerical aperture of the MO. These simulation results
could be a good reference to fabricate the plasmonic tip
for TERS applications and an effective way to promote the
development of tip-enhanced near-field optical microscopy.
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