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Abstract: We observe anomalous visible to near-infrared 
electromagnetic emission from electrically driven atomic-
size point contacts. We show that the number of photons 
released strongly depends on the quantized conductance 
steps of the contact. Counterintuitively, the light inten-
sity features an exponential decay dependence with the 
injected electrical power. We propose an analytical model 
for the light emission considering an out-of-equilibrium 
electron distribution. We treat photon emission as a 
Bremsstrahlung process resulting from hot electrons 
colliding with the metal boundary, and find qualitative 
accord with the experimental data.
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conductivity; visible light emission; Bremsstrahlung.

1  �Introduction
An atomic-scale contact formed between two macroscopic 
metal leads has been a canonical testbed for understand-
ing the quantum nature of electron and heat transport at 
this ultimate length scale [1, 2]. Central to the discussion is 
the role of dissipation, which must be taken into account 
in any finite-conductance, externally driven electrical 

device. In the phenomenological treatment of quantum 
transport of a one-dimensional conductor [3, 4], the col-
lision-free transmission imposes the dissipation to occur 
away from the ballistic channel, i.e. in the reservoirs con-
tacting the conductor in a distance equal to the inelastic 
electron mean free path. Even when describing electron 
flow from first-principles quantum kinetics [5], inelastic 
coupling to the interface region guarantees the conserva-
tion of the charge required for any open geometry [6]. It 
is generally understood that the main channel for energy 
dissipation in a out-of-equilibrium ballistic contact occurs 
via a coupling to the vibrational degrees of freedom of the 
system and the local generation of heat [7]. Population 
of the phonon distribution has been confirmed through 
voltage-dependent conductance spectroscopy [8, 9] and 
weak-field current fluctuations analysis [10, 11].

Such inherent fluctuations of the charge current are 
necessarily accompanied by the emission of a transverse 
electromagnetic field. For low driving voltages of a coher-
ent conductor, i.e. in the linear regime, radio frequency 
photons are indeed emitted by the device and may feature 
nonclassical statistics depending on the voltage applied 
[12, 13] and the temperature [14]. This was experimentally 
measured on tunnel junctions at cryogenic temperature 
and emitting in the gigahertz (GHz) frequency range [15, 
16]. For larger driving biases, the situation becomes com-
plicated and the standard fluctuation-dissipation theory 
is no longer applicable [17, 18]. Electron-electron scatter-
ing must be included in the dissipation, as it contributes 
to the elevatation of the temperature of the Fermi-Dirac 
distribution. In turn, the electron and the phonon subsys-
tems are not longer thermalized [19–22].

In this work, we identify the presence of a corollary 
dissipation mechanism. We show that the high-tempera-
ture nonequilibrium electron gas formed in an externally 
driven atomic-scale contact dissipates energy by emitting 
electromagnetic radiation tailing in the visible part of the 
spectrum. We observe an increase of the photon rate every 
time a transmission channel governing the electronic 
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transport closes. Opposite to the conventional exchange 
of energy to a thermal bath and to standard electrolu-
minescence, the light intensity emitted by the contact 
inversely scales with the electrical power dissipated  
nearby the ballistic conductor. We treat the emission of 
photons by as spontaneous Bremsstrahlung radiation 
emerging when hot electrons collide with the metal wall 
to explain the experimental results.

2  �Experimental methodology

2.1  �Sample fabrication

In this work, atomic-size electron channels are formed by 
electromigrating Au constrictions [23] placed on a glass 
substrate. The constrictions have typically a bow tie-like 
geometry with a neck width of approximately 150  nm. 
These constrictions are fabricated by standard electron 
beam lithography followed by successive thermal evapo-
rations of a thin layer of Cr and a 50-nm-thick layer of Au. 
The 3-nm-thick Cr layer improves the adhesion of gold to 
the glass. The macroscopic Au leads making electrical con-
tacts to both ends of the constriction are realized by optical 
ultraviolet lithography. A scanning electron micrograph of 
a pristine constriction is displayed in the inset of Figure 1.

2.2  �Electrical controls

Electromigration of the constriction is carried out at 
ambiant conditions. We apply a variable voltage source Vb 
along with a 20  mV alternative voltage Vac oscillating at 
frequency f = 12.1 kHz. Vac is used to extract the conduct-
ance G of the device with lock-in detection (HF2LI Zurich 

Instrument). ac

ac

= ,
I

G
V

∂
∂

 where Iac is the component of the 
electrical current oscillating at f flowing in the constric-
tion and measured by a current-to-voltage amplifier (I/V 
DLCPA-100 Femto GmBH; gain = 102 V/A; load imped-
ance = 50 Ω). The layout of the experiment is depicted 
in Figure 1, where the signal generation and detection 
is performed by a scanning electronics system (R9 RHK 
Technology). The total resistance of the electric circuit  
is roughly 500 Ω and may vary from sample to sample. 
The resistances of the contacts, the electrical cable, and 
the measurement device contribute ~470 Ω. The constric-
tion’s resistance before electromigration is thus a few 
tens of ohms. When increasing the voltage Vb above the 
onset of electromigration, a drop in conductance signals 

the reorganization of the morphology of the conductor. 
A larger fraction of the applied voltage is dropped of the 
constriction when it starts to thin down, and the process 
enters an active phase. Typically, this regime starts when 
the total resistance is ~1 k Ω in our circuitry, but the exact 
value depends on the series resistance [24]. If uncon-
trolled, this eventually leads to a thermal runaway and a 
catastrophic rupture of the constriction [25]. Instead, if Vb 
is decreased to contain the time evolution of the conduct-
ance, the electromigration process slows down, allowing 
us to explore the various regimes of electron transport 
ranging from diffusive to ballistic, and eventually tunnel 
when the last atomic bond breaks [26]. Quantized steps of 
the conductance in units of the quantum of conductance 
G0 = 2e2/h are the signature of a ballistic transport, where e 
is the electron charge and h is the Planck constant [27, 28].

2.3  �Optical interrogations

We align the constriction to the focus of an inverted optical 
microscope (Nikon Eclipse) equipped with a high-numeri-
cal-aperture (NA) objective (NA = 1.49). We detect the light 
activity during the electromigration process by captur-
ing the photon emission with two single-photon-counting 
avalanche photodiodes (APD; SPCM-AQR, Perkin Elmer). 
The quantum efficiency of the APDs sets the detected spec-
tral range to photon energies spanning the visible and 

Figure 1: Experimental setup used for measuring simultaneously 
electron transport and light emission during the electromigration of 
a Au constriction shown in the inset.
The electromigration is facilitated by controlling the voltage applied 
to the constriction. The latter is the sum of a d.c. contribution (Vb) 
and an a.c. one (Vac) oscillating at a frequency f. A current-to-voltage 
converter (I/V) provides a measure of the current flowing in the 
constriction (Ib). The conductance (G) of the device is extracted 
by lock-in detection at f, and the photons are collected by a 
high-numerical-aperture objective and measured with two cross-
polarized avalanche photodiodes (APD-1, APD-2).
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near-infrared region (ca. 1.2–3.1 eV). We use a cross-polarized 
detection scheme to discriminate photons with an electric 
field aligned with the main axis of the geometry from those 
emitted with a transverse polarization state, an expected 
signature from surface-plasmon-mediated emission of such 
biased nanoscale contact [29]. All experiments are per-
formed at room temperature in a laboratory environment.

3  �Experimental results

3.1  �Time traces

Figure 2 shows examples of the time traces recorded at 
the end of the electromigration process taken before and 

after the electrical failure of two different devices. Both 
time traces display the simultaneous dynamics of the nor-
malized conductance (right axis) and the photon counts 
(left axis). The applied voltage is maintained constant at 
Vb = 800 mV in (A) and Vb = 700 mV in (B). The time bin 
of the acquistion is 10 ms. The step-like evolution of the 
normalized conductance G/G0 suggests that the devices 
undergo a change of the transport mechanism from bal-
listic to tunnel; the abrupt passage takes place at t = 27.8 s 
in Figure 2A and at t = 64.2 s in Figure 2B. The plateaus in 
the normalized conductance are consistent with numer-
ous observations reported in the past [24, 25, 27, 28]. 
There is evidence of sub-quantum steps, especially in the 
regime where the conductance explores values between 
6G0 and 4G0. These noninteger excursions have already 
been reported in gold contacts [30, 31]. They are linked 
to the atomic rearrangement of the contact [32, 33] and 
can be understood from quantized conductors placed 
in series [34]. In the time traces displayed in Figure  2, 
the amplitudes of the voltage applied during the last 
moment reduce the probability of G to explore the small-
est integer numbers N × G0 [35], and the last measured step 
is at approximately N = 4 in both cases. We have observed 
lower quantum numbers in the past [26, 36], but typically 
with applied voltage before rupture below 500 mV.

Figure 2 also displays the simultaneously acquired 
photon counts measured by the two cross-polarized 
APDs. In this detected range of counts, the APD counting 
modules are linear. The graphs show an unambiguous 
correlation between the conductance steps and light emis-
sion. Photons emitted in the detected spectral window are 
measured as soon as G ~ 5G0, with a rate staying constant 
for the duration of the conductance plateaus. A tenfold 
increase of the number of photons is concomitant to the 
closing of an electron transmission channel identified by 
the short excursion of G at 4G0 in both examples.

Immediately after the rupture of the device, electron 
transport occurs by tunneling and the junction features 
conductances of G = 6 × 10−3G0 and G = 1.4 × 10−3G0, meas-
ured at Vb = 800 mV and Vb = 700 mV, respectively. In both 
cases, the photon rate drops when electron transport 
changes from ballistic to tunnel. Light emission is still 
observed in this tunneling regime with the junction of 
Figure 2A.

3.2  �Discussion about the mechanisms of 
light emission

Light emitted by tunnel junctions has been a subject of 
intense research since Lambe and McCarthy identified 

Figure 2: Photon counts and measured conductance versus time.
(A, B) Conductance (normalized) and photon counts time traces 
captured during the last moment of electromigration for two 
different devices. The rupture occurs at t = 27.8 s in (A) and at 
t = 64.2 s in (B). The conductance is normalized by the quantum 
of conductance G0. Stepwise closing of conduction channels in 
approximate units of G0 is correlated with an increase in photon 
emission. The cross-polarized APD-1 and APD-2 share similar trends.
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the crucial role of inelastic electron coupling to decaying 
surface plasmons [37]. In the latest advances, tunnel junc-
tions are constituting the active feed of the next genera-
tion of electrically driven optical antennas [36, 38–40]. In 
this context, engineering the surface plasmon landscape 
and the barrier height is expected to boost the notoriously 
low transduction yield plaguing inelastic energy transfer 
[41–43]. Continuing on this, a recent proposal suggested 
that multiple collisions of transported electrons with the 
boundaries of a plasmonic ballistic constriction may sig-
nificantly improve the probability to generate an electro-
magnetic response [29].

During the entire time traces and the excursion of G 
in the different transport regimes, the photon energy is 
always greater than the bias energy. The quantum ine-
quality hν ≤ eVb is systematically violated, where ν is the 
frequency of the photon. We can thus exclude emission 
processes akin to inelastic tunneling [44] to explain the 
light activity. This is further confirmed by the similarity 
of the signals detected by the two cross-polarized APDs. 
Inelastic coupling to surface plasmon modes in the metal-
lic contact is expected to show a polarization anistropy 
[29, 39]. As shown in the time traces of Figure 2, this par-
ticular radiative pathway triggered by the decay of surface 
plasmons is not observed experimentally either in the 
regime of quantized conduction steps or when the elec-
trons are tunneling. The two cross-polarized signals are at 
the same count level at all times. Such unpolarized light 
in the regime of overbias emission confirms our earlier 
measurement performed with tunnel devices [36], where 
a wavevector analysis did not show evidence of running 
surface plasmon. The spatially extended geometrical 
system introduced by the electrical leads further contrib-
utes to the absence of well-defined local surface plasmon 
resonance.

3.2.1  �Tunnel regime: light emission after the rupture

Considering that hν ≥ eVb, the emission released in the 
regime of electron tunneling for t ≥ 27.8 s in Figure 2A is due 
either to the radiative glow of a hot electron distribution 
[36, 45] or to higher order electron-plasmon interactions 
[46–49]. The fast dynamics of the last moment of electro-
migration prevents us from acquiring information pertain-
ing to the spectral content of the light, which would have 
been instrumental for discriminating the physical origin 
of the light emitted in the regime of electron tunneling. 
For the second device, the smaller applied bias combined 
with a lower conductance inhibits the emission, if any, to 
the tail in the detected energy window.

3.2.2  �Ballistic regime: light emission before the rupture

The range of conductance values explored here (a few G0) 
before the tunnel barrier forms is similar to that in the work 
of Malinowski et al., where infrared emission interpreted 
as blackbody radiation of an out-of-equilibrium electron 
gas was measured in mechanically controlled break junc-
tions [45]. Figure 3A is a semilogarithmic plot displaying 
the dependence of the total photon counts (sum of the 
two APDs) versus conductance gathered from nine elec-
tromigrated devices. The red circles and the light blue dia-
monds are the experimental points inferred from Figure 2A  
and B, respectively. The evolution with conductance is 
consistent across the tested devices: light emission is 
detected when the conductance of the contact enters 
8G0 to 5G0 and dramatically increases up to the breaking 

Figure 3: Photo counts versus conductance and electrical power.
(A) Concatenation of results obtained on nine devices showing 
the evolution of the photon counts (logarithmic scale) with the 
normalized conductance. The dark count rate of the APDs is about 300 
counts s−1. (B) Semilogarithmic plot of the photon count dependence 
on the dissipated power −= ×2 1

bP I G  in the contact (Vb = 700 mV). The 
magenta and the blue inverted triangles are the model expectation, 
considering either a vanishing heat exchange at the side wall (h  1) 
or an efficient thermalization (h  1), respectively.
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point characterized by G < G0. Even in the absence of well-
defined quantized steps in the conductance trace, anoma-
lous photon emission from the constriction can be linked 
to an indirect demonstration of ballistic electron transport 
in the system.

The few data points between 4G0 and G0 suggest that 
the light emission levels off. However, the rapid failure 
of the contact during the last moment of the electromi-
gration process prevents us from making an affirmative 
statement. Like the junction displayed in Figure 2A, some 
devices are optically active in the tunneling regime, as 
shown by the data points located below G0 in Figure 3A.

Early observations of overbias emission in an atomic 
contact have shown that it follows a power-law relation-
ship with the electrical power injected in the device. For a 
given value of the conductance, and regardless of the emis-
sion mechanism at play, increasing the current by changing 
the electrical bias drastically boosts the detected photon 
counts [45, 46]. In the present experiment, the voltage bias 
is maintained at a constant value during the last moment 
of electromigration. The excursion of the conductance in 
the ballistic regime allows us to monitor the evolution of 
the photon counts with the electrical power dissipated in 
the contact without changing the driving conditions and 
to obtain a deeper insight into the emission mechanism. 
Light is emitted when the conductance of the contact 
reaches 5G0, i.e. ~2.5 kΩ. Considering a series resistance of 
470 Ω, about 85% of the voltage drop occurs at the constric-
tion. At 4G0, it is 87% of the bias, which is falling. The small 
difference in the voltage applied cannot account for the 
one order of magnitude difference of the detected photon 
counts. Furthermore, the voltage drop is maximum when 
the contact between the two leads is broken. In this regime 
of largest potential drop, light emission is either weak or 
absent in the time traces of Figure 2. For low driving volt-
ages, the process responsible for light emission remains 
modest and its spectral tail in the visible cannot be dis-
criminated from the background noise. Thus, a trade-off 
exists between the probability of G to explore few G0 and 
detecting an overbias light activity. Here, at 700 mV bias, 
the smallest integer is N = 4. When the transport channels 
are closing, the electrical power dissipated in the contact 
reduces concomitantly. Figure 3B shows a semilogarithmic 
plot of the measured light intensity (red circles) versus the 
electrical power P inferred from Figure 2A before the elec-
trical failure using the relation 2 1

b ,P I G−= ×  where Ib is the 
current flowing through the contact. The graphs unequivo-
cally demonstrate that the photon count is maximum at 
lower electrical power and features an exponential decay 
with P. This trend is opposite to measurements performed 
at constant G [45, 46].

4  �Analytical model

4.1  �Working hypothesis

In the following, we develop a theoretical framework 
to understand the relationship between the number 
of channels opened for electron transmission and the 
optical activity emitted at an overbias photon energy.  
The delivered electric power scales with the number of 
transport channels N as 2

b 0.NP V NG=  The radius of the Nth 
channel can be estimated as rN  ≈ Nr1. Here, r1 ≈ λF/4 is the 
characteristic radius of the first quantum channel [3] and 
λF is the Fermi wavelength of the ballistic electrons. As a 
result, both the current density and the power density are 
increasing in proportion to 1/N when the transport chan-
nels are closing. Thus, increasing the dissipated power 
results in a rise of the peak electron temperature within an 
area located at the end of the transport channel. Photons 
may be emitted by such a nonequilibrium distribution if 
electrons interact with the surface [19]. Qualitatively, this 
is expected to be the origin of the measured increase in 
photon yield at energies higher than the bias when the 
constriction explores the lower values of conductance 
quanta.

4.2  �Model of nonequilibrium electron 
temperature distribution

Below, we present a qualitative model that illustrates the 
above consideration. We assume that the electric current 
is transported by a channel connected to the drain contact 
through an interconnection region, which we model by a 
cylinder of radius R0 and finite length Lc, as schematically 
shown in Figure 4. The electron subsystem in this inter-
connection region is out of equilibrium because of the 
fast heating due to the arriving and colliding quasi-bal-
listic electrons. We assume a local temperature Te for the 

Figure 4: Sketch representing the constriction and the different 
characteristic parameters used in the model.
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electrons well above the homogeneous lattice tempera-
ture TL. The reader is referred to Ref. [22] for an exhaustive 
discussion on the temperature of the electronic distribu-
tion in driven nonequilibrium nanoscale constrictions. We 
treat the heat transport problem in this interconnection 
region in the frame of the two-temperature model, assum-
ing that the lattice temperature TL does not change signifi-
cantly along the interconnection region.

4.2.1  �Electron temperature

In accordance with the experimental conditions, we will 
seek a steady-state temperature distribution

	
e

e e e e L( ) ( ) 0,
T

C T g T T
t

κ
∂

= ∇ ∇ − − =
∂ � (1)

where g is the electron-lattice coupling constant, κe is 
the electron thermal conductivity, and Ce is the electron 
heat capacity. At electron temperatures below the Fermi 
temperature Te ≤ TF, the electron thermal conductivity is 
given by 2

e e F / 3,C vκ τ=  where νF is the Fermi velocity and 
τ is the characteristic electron transport relaxation time. 
In a bulk metal, τ is determined by the electron-phonon 
and the electron-electron collisions: 1/τ = 1/τe−ph + 1/τe−e 
[50, 51]. When the lattice temperature exceeds the Debye 
temperature, the electron-phonon collision rate can be 
estimated as 1/τe−ph ~ kBTL/ħ so that at room temperature 
we find τe−ph ~ 30 fs. Electron-electron collisions dominate 
at electron temperatures exceeding Te ≥ T* ~ (EFTL/kB)1/2, so 
one can find for gold T* ≈ 4 × 103 K, where EF is the Fermi 
energy and kB is the Boltzmann constant. In the case of 
our interest, the actual size of the interconnection region 
is much smaller than the mean free path of an electron 
in the bulk material. The characteristic electron trans-
port relaxation is determined rather by collisions with 
the walls of the interconnection region, and we can use 
the following estimate τ ~ R0/νF. As a result, the electron 
thermal conductivity in the interconnection region is 
much smaller than that for the bulk material, which pro-
vides a large difference between the lattice temperature 
and the temperature of quasi-ballistic electrons. We will 
show below that it explains qualitatively our anomalous 
experimental dependences of the above-voltage photon 
yield on the electric power delivered in the contact.

With the above estimate, the electron thermal con-
ductivity coefficient scales linearly with the electron 
temperature: κe ≡ κe(Te) = b × Te, with the proportional-
ity coefficient 2 2 2

F e B F/6b v N k Eπ τ=  and Ne is the number 
of electrons. The electron-lattice coupling constant g 

can be estimated through the heat capacity of electrons: 
2 2

e e e e B F e( / 2 )C C T N k E Tπ= =′  and thus also scales linearly 
with Te, e e l e e l e/ ( / ) .g C C Tτ τ− −= ′∼  Here, τe−1 is the charac-
teristic timescale for the electron-lattice energy trans-
fer. Keeping in mind these scaling dependences, we 
can rewrite the electron temperature conduction equa-
tion as 2 2 2

e e 0/ 0,T T L∆ − ≈  with the characteristic length 
2 1/2 1/2

0 F e l 0 F e l( /6) ( / 3) .L v R vτ τ τ− −= ≈
As the natural boundary conditions, we assume 

the electron temperature in the drain electrode far from 
the contact to be at the equilibrium with the lattice 
temperature, so that Te(z = Lc) = TL. At the front end of 
the contact, z = 0 (the z-axis is along the cylinder axis 
connecting the drain electrode), the electric power is 
assumed to be homogeneously deposited in a spot with 
radius rN of opened quantum transport channels N, so 
that the boundary heat flux is κe(∂Te/∂z)z=0 = – pNΘ(r – rN), 

2 2 2 1
0 b 1/ ( / ) ,N N Np P r G V r Nπ π −= =  and Θ(x) is the step func-

tion defined as Θ(x > 0) = 0 and Θ(x < 0) = 1.
At the side wall of the cylinder r = R0, we assume that 

the heat flux is determined by the energy loss of the elec-
trons in collision with the metal boundary, in analogy 
with the Fedorovich-Tomchuk mechanism [52]. In this 
framework, the heat flux at the side wall is proportional to 
the squared temperature: 2 2

e e e L( / ) ( ).T r B T Tκ ∂ ∂ = − −  Here, 
B is a proportionality coefficient. As far as κe = b × Te, we 
find 2 2 2

e e L( / 2)( / ) ( ).b T r B T T∂ ∂ = − −  Finally, we set h = 2BR0/b 
and find 2 2 2

e e L 0/ ( ) / 0,T r T T h R∂ ∂ + − =  with h being a dimen-
sionless parameter characterizing the electron energy 
exchange rate at the side wall. The limit h = 0 corresponds 
to zero heat flux at the side wall and 2

e /T r∂ ∂  vanishes. 
Large values of the parameter h  1 describe a fast energy 
exchange, leading to the rapid establishment of equilib-
rium between the electrons and phonons, i.e. Te = TL.

Under the above assumptions, the steady-state tem-
perature distribution can be written as

	

2 2 2
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( / )sinh( ( )/ )n n n

n
T T T a J r R L z Rμ λ

+∞

= + −∑ � (2)

The coefficients an are given by

	

1
2 2 2

c 01 0

1
2 2 2

c 00

( ) 1
cosh( / )([ ( )] [ ( )] )

( ) 1
cosh( / )( )[ ( )]

n n N
n

nn n n n

n n N

nn n n

J
a

L RJ J
J

L Rh J

μ μ ζ

λλ μ μ μ

μ μ ζ

λλ μ μ

=
+

=
+

� (3)

Here, ζN = rN/R0, μn is the root of the equation 
μnJ1(μn)/J0(μn) = h with n = 0, 1, 2, …, and the eigen values 
of the problem along the z-axis are 2 2 2 1/2

0 0( / ) .n n R Lλ μ= +  
The coefficient 2

0T  before the sign of the sum in 
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Eq. (2) does not depend on the channel’s number, 
2 2 2 4 2
B 0 b F e F F= 96( ) / .k T eV E N vπ λ τ�  Within the accepted above 

approximation for the electron transport relaxation time, 
τ ~ R0/νF, using the well-known relation 3 2

e F / 3 ,N k π=  
we find kBT0 = (6/π2)(eVb)(λF/R0)1/2, which for the applied 
voltage Vb = 0.7 V results in 3

0 F 0[10 K] 4.92 / .T Rλ≈

4.2.2  �Dependence of Te on the number of transport 
channels

According to Eq. (2), the maximum temperature is at the 
center of a hot spot situated at the front end of the cylin-
der (z = 0, r = 0). When the side wall heat transfer is fast, 
i.e. the coefficient h is large (h → +∞), the boundary con-
dition reads Te(r = R0) = TL, and n nμ μ→ ′ becomes zeros of 
the Bessel function 0( ) 0nJ μ =′  with n = 1, 2…. The value of 
the characteristic length L0 well exceeds R0, L0/R0 ≈ (νFτe−1/
3R0)1/2  1. Thus ,n nλ μ≈ ′  and the maximum temperature in 
this limiting case is
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In the opposite case of vanishing energy exchange 
at the side wall, i.e. h  1 or even h = 0, the roots n nμ μ→ ′′ 
consist in the zeroth root 0 2hμ ≈′′  (for which the corre-
sponding eigen value is 2 2 1/2

0 0 0 0 0(2 / ) /h R L R Lλ ≈ + → ), and 
the sequence of the roots of the first-order Bessel function 

1( ) 0,nJ μ ≈′′  with n = 1, 2…, and the maximum temperature 
can be estimated as

	

2 2 2 1 cc
e[ 0] L 0 2

00 00

( )
tanh .

[ ( )]
n N nN

h
n n n

J LL
T T T

R RJ
μ ζ μζ

μ μ

+∞

→
=

  ′′ ′′
≈ + +  ′′ ′′    

∑ � (5)

The dependence of the maximum electron tempera-
ture versus the number of quantum transport channels is 
shown in Figure 5A and B for both limiting cases (h  1 
and h  1) and gradually increasing length Lc of the cyl-
inder interconnection region. The radius of the cylinder 
is fixed at R0 = 2.5λF, which corresponds to a maximum of 
10 available quantum channels in the contact. For each 
channel number N, the peak temperature increases with 
an increase in the cylinder length Lc ranging from Lc = R0/6 
to Lc = R0. Obviously, the largest electron temperature is 
attained when the exchange rate at the side wall is weak 
(h  1). We can draw the first important counterintui-
tive conclusion: regardless of the mechanism dictating 
the inelastic energy loss at the wall of the constriction, 
the electronic temperature drops with increasing electri-
cal power dissipation (large N). This dependence is more 

pronounced for short lengths of the interconnection 
region when the side wall energy exchange is efficient 
(h  1). In the other limiting case (h  1), a change in the 
trend appears with increasing Lc, with the occurrence of 
a maximum shift to higher N. This is the consequence 
of the first term in brackets in the right-hand side of Eq. 
(5), which grows linearly with N. In turn, at sufficiently 
large Lc, the peak temperature will start increasing with 
N before decreasing. This can be understood from the fol-
lowing argument:

In the case of small h, heat is only exchanged at the 
distal end of the interconnection, and if the length is suf-
ficiently large, all the transverse oscillations exponen-
tially vanish according to Eq. (5) except the constant flow 

Figure 5: Peak electron temperature versus the number of open 
quantum channels N in the contact calculated in (A) and (B) at a 
fixed radius R0 = 2.5λF, and in (C) and (D) at a fixed cylinder length 
Lc = λF/2.
Squares represent data at large parameter h  1, while circles 
correspond to h  1. In (A) and (B), data are plotted for different 
lengths of the interconnection region: Lc = R0/6 (red), Lc = R0/4 
(green), Lc = R0/3 (blue), Lc = R0/2 (cyan), Lc = 3R0/4 (violet), and Lc = R0 
(black). In (C) and (D), the data are plotted for different radii of the 
cylinder interconnection region: R0 = 2λF (red), R0 = 2.5λF (green), 
R0 = 3λF (blue), and R0 = 4λF (black).
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(corresponding to the lowest eigen value), which is pro-
portional to the injected power.

Figure 5C,D displays the dependence of the 
maximum electron temperature versus the number of 
quantum transport channels at the fixed length Lc = R0/3 
and various radii R0 ranging from R0 = 2λF (8 quantum 
channels available) to R0 = 4λF (16 quantum channels 
available). The dependences are more pronounced when 
h  1 and for smaller radii and become smoother with 
increase in R0.

Since the electrical power dissipated in the contact 
areas scales with N ( 2

b 0NP V G N= ), Figure 5 agrees with 
experimental trend of Figure 3B providing we can link the 
electron temperature Te to the number of photons emitted 
by the contact.

4.3  �Bremsstrahlung emission emerging from 
nonequilibrium hot electrons colliding 
with the metal boundary

In a bulk metal, hot nonequilibrium electrons lose 
their energy mostly during nonradiative collisions with 
phonons or impurity atoms. Primary photons are emitted 
as a result of the corresponding Bremsstrahlung pro-
cesses (at temperatures of our interest, one can omit 
photons emitted in bound-bound transitions in lattice 
atoms). Establishment of thermal equilibrium of photons 
is the consequence of complicated kinetics of free-free 
electron transitions consisting in emission and absorp-
tion Bremsstrahlung processes as well as the Compton 
effect [53, 54]. In a simplified diffusion approximation, 
photon emission can be treated through the radiation 
transfer equation

	
e( ),

dI
I B T

ds
ω

ω ω ω ω
α α= − + � (6)

where I
ω
 is the radiation intensity spectrum, α

ω
 is the 

absorption coefficient at the given frequency, and B
ω
(Te) 

is the equilibrium radiation intensity given by Planck’s 
law. In a bulk metal, when the optical skin depth 1

ω
α−  is 

much smaller than the characteristic dimension, Eq. (6) 
results in Kirchhoff’s law, and the emissivity is given by 
j
ω
 = α

ω
B

ω
(Te).

In the case of a small interconnection region near 
the constriction, the region of elevated electron tem-
perature is given by rN ≈ NλF/4 and is much smaller 
than the optical skin depth 1.

ω
α−  As a result, an equilib-

rium photon distribution cannot be established within 
the interconnection region and Kirchhoff’s law is no 
longer valid. Consequently, the emission of photons is 

primarily guided by a thermal Bremsstrahlung process. 
Hot electrons in the interconnection region are quasibal-
listic: the electron-phonon mean-free path is measured 
as le−ph = νFτe−ph ~ 60  nm for Au [55]. Digressing from the 
presence of impurities and from the two-photon Compton 
emission in electron-electron collisions, we conclude 
that the optical activity detected in our experiment is 
mainly due to a Bremsstrahlung process resulting from 
hot electrons colliding with the surface potential. We note 
that within the detected spectral range, a spontaneous 
emission of an elevated electron temperature discussed 
in Refs. [36, 45] cannot be distinguished from thermal 
Bremsstrahlung, as both processes share the same wave-
length dependence [56].

To find the photon yield in the electron-wall 
Bremsstrahlung radiation process, we utilize the conven-
tional quantum mechanical calculation technique, which 
is analogous to that used in the theory of size-dependent 
conductivity of thin metal films by Trivedi and Ashcroft 
[57] as well as in the theory of intersubband transitions 
in semiconductor quantum wells [58, 59]. We consider a 
metal slab of the thickness L, which is considered to be 
sufficiently large to provide limiting transition to the con-
tinuous spectrum of electron momentum. Let the coordi-
nate axis z be transverse to the slab boundary and ρ

�  be 
the coordinate in the boundary plane. The wall of the 
slab, at z = 0, L, is modeled by an infinite stepwise poten-
tial. Within the jellium model of a noninteracting electron 
system, the wavefunction of an electron inside the slab is

	 e

2( , , ) sin[ ]exp( )exp ,zz t k z ik i t
V

ε
Ψ ρ ρ⊥

 
= −  

�� �
�

� (7)

which satisfies the boundary conditions Ψ(z = 0) =  
Ψ(z = L) = 0, kz = (π/L)j, j = 1, 2, 3…, is the longitudinal 
wavenumber, k⊥

�
�  is the transverse momentum, and Ve is 

the quantization volume for the electron. The energy of 
electrons 2 2 2( / 2 )( | | )zm k kε ⊥= +�  is the eigen value of the 
unperturbed Hamiltonian, the perturbation Hamiltonian 

int
ˆ ˆ( / ) ,H e mc Ap= −
� �  ˆ ,p i= − ∇

�
�  describes the spontaneous 

photon emission in a given mode of the wavevector ,k
�

 the 
polarization σ, and the frequency ω =

�
| | ,k c  with the fol-

lowing vector potential:

	

1/2

*
, ,

ph

2ˆ ˆ exp( )e .i t
k k

cA a e ikr
V

ω
σ σ

π
ω

+ −
 

= − 
 

� �
�� � �� � (8)

Here, ,
ˆ
ka σ

+�  is the corresponding photon creation opera-
tor, *

,ke σ
�
�  is the unit polarization vector, and Vph is the quan-

tization volume for photons. Transitions are induced 
between the initial state |i⟩ of an elecron with the energy 
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εi and empty photon state and the final state |f⟩ of electron 
with energy εf and one photon of the above mode. The rate 
of transition is given by first-order perturbation theory

	
2

int
2 | | | | ( ) .i f f i fW f H i dπ

δ ε ε ω ρ→ = 〈 〉 − + �
� � (9)

Here, dρf is the number density of the final states, 
3 3 3 3

e ph( /(2 ) ) (2 /(2 ) ) ,f fd V d k V d kρ π π= ×
� �

 in the limit of con-
tinuous states. The matrix element can be easily calcu-
lated as follows:

	

1/2

, , *
int , ,2 2 ,

e ph , ,

4 2 ( , ) ( ).i z f z
z i fk

i z f z

k ke cf H i i e e k k
mV V k k σ

π
δ

ω ⊥ ⊥

 
〈 〉 = × −  − 

�
� �� �� �

�
(10)

Here, 
ze
�  is the unit vector along the z-axis. The delta 

function in the matrix element [Eq. (10)] demonstrates the 
conservation of the transverse (parallel to the wall) com-
ponent of the electron momentum, while its z-component 
changes according to the energy conservation law corre-
sponding to the delta function in the right-hand side of the 
golden rule [Eq. (9)]. To find the spectrum rate of photon 
emission by a single electron, we have to sum over all the 
final electron states as well as over the polarization and 
solid angles of photon emission. The sum over the elec-
tron final states in the continuous limit L→ ∞  is provided 
through the following relation:

	

2 2
, , 2 3

, ,2 2 2
, ,

2 2
, ,2
3 2

( ) ( )
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(2 ) ,
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i z f z
i f f i f

i z f z
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k k
k k d k

k k
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S

δ δ ε ε ω

π
ω

⊥ ⊥

⊥

− × − +
−

=

∫
� � �

�

�
� (11)

where S⊥ is the square of the wall boundary, and the 
velocities νi,z = ħki,z/m and 2 1/2

, ,( 2 / )f z i zv v mω= − �  are intro-
duced. The sum over the polarization of Bremsstrahl-
ung photons can be accounted through the substitution 

2* 2
,2 |( , ) | ,sinzke e
σ

θ→�
� �

 and after summation over the photon 
solid angle dΩ = sinθdθdφ, we arrive at the following rela-
tion for the Bremsstrahlung emission rate per unit fre-
quency range:

	

ω

ω π ω ⊥=
�

2 2
, ,

3
e

8( )
.

3
i z f zi

e v vdN
S

d dt V c
� (12)

Let ni be the number density of electrons with the lon-
gitudinal component of velocity νi,z; the rate of collisions 

with the left wall of the metal slab is ,
1
2 i i zn S v⊥  and the same 

value holds for the collision rate with the right wall of the 

slab. Consequently, the total emitted power spectrum per 
electron (ni = 1/Ve) is

	

ω
ω ω

ω ω π⊥

= =� 2

, ,3
, e

( ) 8 .
/ 3

i
i z f z

i z

dP dN e v v
d d dt v S V c

� (13)

In the classical limit ħω → 0, i.e. when the energy of 
scattered electron does not change significantly, one can 
replace 2 2

, , , ,4 ( ) | |i z f z i z f z i fv v v v v v≈ + = −
� �

 and arrive at the 
well-known classical relation dP

ω
/dω =(2e2/3πc3) | Δν | 2 

for the power spectrum emitted by scattered electrons 
[56, 60].

To find the total photon emission rate per unit 
surface square, we sum Eq. (12) over all the electron states 
in the slab, assuming the Fermi distribution fF(ε) = 1/
(1 + exp[(ε – εF)/kBTe]).
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where 2 2 2
, ,( / 2 )( | | ),i i z im k kε ⊥= +
�

�  εf = εi – ħω, and the factor 
1/2S⊥ before the integral takes into account the doubled 
scattering surface in the slab. The function F(ω, Te, εF) is 
given by the following integral:
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ω ε ω
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(15)

The total Bremsstrahlung photon number spectrum 
emission rate given by Eqs. (14) and (15) is a complicated 
function, which we will analyze in detail elsewhere. To our 
particular purpose here, we will restrict ourselves by the 
conditions of our experiment, where the maximum attain-
able temperature is well below the energy of the collected 
photons, and we have the following relation between the 
parameters:

	 B e F.k T ω ε�  � (16)

One can easily see that under these conditions, the 
logarithms in braces in Eq. (15) vanish when the argument 
exceeds u > εF + ħω and u > εF, respectively. At ħω < u < εF, 
the term in braces is approximately constant and equals 
ħω/kBTe  1. At εF < u < εF + ħω, it almost linearly decreases 
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to zero. As a result, we arrive at the following approxima-
tion: ε ω ω ε≈ +� �2

F B e F( / 2 )(1 ( / )),F k T O  and finally find

	

2 2
ph F

3 3 3
B e

( ) 4 1 .
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dN e
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ω ε

ω ωπ
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−��
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Compared to the Planck formula for blackbody 
radiation
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the rate of Bremsstrahlung emission is less by the factor
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3
Fe

c
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which under the experimental condition can be estimated 
to be β ~ 0.1.

To model the total yield of Bremsstrahlung photons 
detected in our experiment, we integrate the spectrum 
rate [Eq. (17)] with the transmission function Q(ω) of the 
detection path, which includes the spectral sensitivity of 
the detector. The APD response restricts the detection effi-
ciency to overbias photon energy tailing in the visible part 
of the spectrum. We model the spectral response of the 
APDs by the following function:
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2 1

2 1
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� (20)

Here, ω1 corresponds to the detection threshold of the 
detector at a wavelength λ1 = 1070 nm, ω2 corresponds to 
the peak of detection efficiency at λ2 = 740 nm, and ω3 is 
taken at λ3 = 600 nm.

One can easily check that for the domain of inter-
est, i.e. for peak temperatures below 3.5 × 103 K (see 
Figure 5), the integrated Bremsstrahlung photon yield is 
well approximated by the relation dNph/dSdt ≈ 6.13 × 1022 ×  
ζ2exp( – 1/ζ)cm−2s−1, where the normalized tempera-
ture is ζ = kBTe/ħω1. The results of our calculation of the 
Bremsstrahlung photon yield rate dependence on the 
quantum channel number are shown in Figure 6 both 
for limiting values of the parameter h governing the heat 
transfer at the side wall of the system and for varying 
lengths Lc and radii R0 of the interconnection region. The 
data correspond to the calculated peak temperatures 
shown in Figure 5. One can find that these dependences at 

sufficiently small values of length Lc and radius R0 quali-
tatively recover the experimental data shown in Figure 3A, 
notably the exponential decay of the photon counts 
with the number of channels opened. We use the model 
described above to match the experimental dependence 
of the photon counts versus electrical power delivered 
in the contact displayed in Figure 3B, again consider-
ing the two extreme heat exchange scenarios at the side 
wall. The open blue and magenta triangles in Figure 3B 
are the results of the models considering a short cylinder 
of length Lc = λF/4 and R0 = 2λF. We estimate the total radia-
tion area as 2 14 2

0 0 c2 4.84 10  cm .S R R Lπ π −≈ + = ×  The overall 
detection efficiency is experimentally unknown, and we 
leave this as a free parameter η. To fit the maximum cal-
culated yield with the experimental value for the fourth 

Figure 6: Thermal Bremsstrahlung radiation photon rates versus 
the number of open quantum channels in the contact.
(A, B) Semilogarithmic plots at a fixed radius R0 = 2.5λF. Squares 
represent data at large parameter h  1 (A), while circles 
correspond to h  1 (B). Data are plotted at different lengths of the 
interconnection region: Lc = R0/6 (red), Lc = R0/4 (green), Lc = R0/3 
(blue), Lc = R0/2 (cyan), and Lc = 3R0/4 (violet). (C, D) Semilogarithmic 
plots at fixed cylinder length Lc = λF/2. Data are plotted at different 
radii of the cylinder interconnection region: R0 = 2λF (red), R0 = 2.5λF 
(green), R0 = 3λF (blue), and R0 = 4λF (black).
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quantum channel, one should put η  0.43, which means 
that the collection efficiency of the microscope is about 
43%. Considering the detection NA and the efficiency of 
the APDs in the spectral window, this value of η looks rea-
sonable. The experimental photon counts are bounded by 
the two limiting cases of the model, indicating the quali-
tative agreement with the model used and that electron 
thermalization at the side wall is an important process to 
consider.

5  �Conclusions
Past research in atomic-size point contacts has provided 
a firm understanding of the radio frequency electromag-
netic response occurring when the system is driven in the 
linear regime of low bias voltages (e.g. in the mV range). 
Recent reports have suggested that electrons transported 
through the contact with a large kinetic energy (~eV) may 
unveil new nonlinear mechanisms of light emission. Our 
findings show that photons with energies much higher 
than the kinetic energy of the electron are emitted during 
the formation of the contact when the transport becomes 
ballistic. Our experiment has revealed that the number 
of photons collected exponentially increases when the 
quantized transport channels are closing. By assuming 
an electron distribution near the contact, which is no 
longer at equilibrium with the phonon population, we 
derived a model relating the electron temperature and 
the photon yield to the number of channels. We find that 
the out-of-equilibrium electron temperature distribution 
increases when quantum channels are closing during 
the electromigration process. Within this model, we 
assumed the presence of a small interconnection region 
between the quantum channel and the body of the drain 
contact, in which transport of hot electrons proceeds in a 
quasi-ballistic manner. Energy exchange in this intercon-
nection region is mainly guided by electron collisions at 
the side wall rather than electron-phonon and electron-
electron interactions. Hot electrons emit photons in an 
overbias spectral domain as a result of the Bremsstrahl-
ung process driven by the boundary of the interconnec-
tion region. We derived (to our knowledge, for the first 
time) the quantum mechanical formula for the rate of 
this Bremsstrahlung photon emission, which in the limit 
ħω → 0 coincides with the classical relation. We found 
qualitative agreement between the estimated emission 
rates and the results of our measurements. At that stage 
of the research, the dynamics leading to the formation of 
the contact remains too rapid to interrogate the spectrum 

of the emitted photons and their statistics. Once we have a 
reliable strategy to control the closing and opening of the 
electron transport channels, these findings will contribute 
to the development and engineering of integrated, electri-
cally driven optical light sources at atomic length scales.
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