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Abstract: Devices based on two-dimensional photonic-
crystal nanocavities, which are defined by their air hole 
patterns, usually require a high quality (Q) factor to 
achieve high performance. We demonstrate that hole pat-
terns with very high Q factors can be efficiently found by 
the iteration procedure consisting of machine learning of 
the relation between the hole pattern and the correspond-
ing Q factor and new dataset generation based on the 
regression function obtained by machine learning. First, a 
dataset comprising randomly generated cavity structures 
and their first principles Q factors is prepared. Then a 
deep neural network is trained using the initial dataset to 
obtain a regression function that approximately predicts 
the Q factors from the structural parameters. Several can-
didates for higher Q factors are chosen by searching the 
parameter space using the regression function. After add-
ing these new structures and their first principles Q fac-
tors to the training dataset, the above process is repeated. 
As an example, a standard silicon-based L3 cavity is opti-
mized by this method. A cavity design with a high Q fac-
tor exceeding 11 million is found within 101 iteration steps 
and a total of 8070 cavity structures. This theoretical Q 
factor is more than twice the previously reported record 
values of the cavity designs detected by the evolution-
ary algorithm and the leaky mode visualization method. 
It is found that structures with higher Q factors can be 
detected within less iteration steps by exploring not only 
the parameter space near the present highest-Q structure 
but also that distant from the present dataset.

Keywords: optimization; neural network; photonic 
crystals; nanocavities; Q factor.

1  �Introduction
Photonic nanocavities based on artificial defects in 
two-dimensional (2D) photonic-crystal (PC) slabs [1–11] 
have received significant attention as structures that 
enable preservation of photons for extended times in small 
modal volumes. 2D-PC slab cavities are usually defined 
by defects in the triangular air hole lattice of the PC. For 
example, cavities can be defined by a defect consisting of 
three missing air holes (the so-called L3 cavity), a single 
missing hole (H0 cavity), or a line defect with a modulation 
of the lattice constants (heterostructure cavity). Photons 
of the cavity modes are confined in such nanocavities in 
the in-plane and vertical directions by Bragg reflection 
due to the air hole pattern of the 2D PC and total inter-
nal reflection due to the refractive index contrast between 
the PC slab and the surrounding air or cladding layers, 
respectively. We note that the in-plane reflection is usually 
almost perfect, while the vertical reflection is only partial 
[2]. Thus, the total spectral intensity of the wavevector 
components that do not fulfill the total internal reflec-
tion condition, i.e. the leaky components, determines the 
cavity’s quality (Q) factor [12]. So far, various methods of 
optimizing cavity designs with respect to the Q factor have 
been proposed and demonstrated [2–5, 12–19]. Among 
them, the Gaussian envelope approaches [2, 3], the leaky 
position visualization approach [17], and the analytic 
inverse problem approaches [13, 14] utilize the knowledge 
of the physics of photon confinement mentioned above. 
For instance, the analytic inverse problem approaches are 
based on approximations that relate the cavities’ struc-
tural parameters to the mode fields and thus allow us to 
explicitly determine an optimized cavity geometry with 
less leaky components [13, 14]. This type of approaches 
is very useful to optimize specific structural parameters, 
but targets are limited because suited analytical expres-
sions are only available for certain cavity types. On the 
other hand, the Gaussian envelope and leaky position 
visualization approaches improve cavity designs based on 
the differences between the mode field calculated for the 
actual structure and the ideal mode field, which is artifi-
cially generated and has a minimum of leaky components 
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[2, 3, 17]. The comparison of these fields enables identi-
fication of spatial positions where leakage of photons 
occurs. However, since these approaches cannot predict 
the optimized structure, the modifications required for 
a reduction of leakage have to be manually identified by 
trial and error. While these approaches are useful in early 
optimization stages, they cannot utilize the large degree of 
freedom that is inherent to the 2D geometry of the air hole 
pattern. The reports on optimization of 2D-PC nanocavity 
designs by these approaches have so far considered only 
up to nine structural parameters (e.g. symmetric displace-
ments of certain holes) for optimization [2, 3, 17], because 
it is difficult to manually locate better air hole patterns 
in the high-dimensional parameter space consisting of 
the positions of all individual air holes. Obviously, more 
systematic and automated methods of exploring high-
dimensional parameter spaces are required to fully utilize 
the potential of 2D-PC nanocavities.

The adjoint method has proven very effective in the 
optimization of nanophotonic devices such as demultiplex-
ers, grating couplers, and waveguide bends [20], in which 
the emphasis lies in optimization of transmission proper-
ties. While there are also reports that use the adjoint method 
for optimizing designs of ring resonators and cavities with 
respect to the Q factor in 1D and 2D calculations [21–24], 3D 
calculations are inevitable to evaluate the Q factors of 2D-PC 
nanocavity designs in the high-Q region. However, the Q 
factors that have been obtained in such 3D adjoint-method 
calculations are relatively small (~1 × 105) [25, 26] compared 
to those achieved by the methods explained in the follow-
ing (>1 × 106). Minkov et al. utilized a genetic algorithm to 
explore the parameter space of the 2D-PC air hole pattern 
and succeeded in tuning up to 11 parameters to find more 
suited nanocavity structures without using the physical 
knowledge of leaky components [15, 16, 18]. However, this 
approach requires a relatively large number of randomly 
generated sample cavity structures and their calculated 
Q factors: they have reported that 100 cycles × 80 indi-
viduals = 8000  sample cavities (300 cycles × 120 individu-
als = 36,000 sample cavities) were required to optimize five 
(seven) parameters in the L3 (H0) cavity [16]. The relatively 
large number of required sample cavities is considered to be 
a consequence of the genetic algorithm, which basically uti-
lizes only the good cavities among the sample cavities gener-
ated in each cycle. Recently, we have proposed an approach 
based on deep learning, demonstrating optimization of 
27 parameters of a heterostructure cavity using a training 
dataset consisting of 1000 randomly generated air hole pat-
terns and their calculated Q factors [19]. In [19], we trained 
a neural network (NN) by the sample dataset to obtain an 
approximate function of the Q factor with respect to the 
structural parameters. This regression function was then 

employed to detect new cavity structures that are likely to 
exhibit higher Q factors. The important point is that not only 
high-Q structures but also moderate or low-Q structures can 
be useful when searching new cavity geometries with higher 
Q factors (since both improve the accuracy of the regression 
function developed by the NN), although high-Q sample 
cavity structures are of course more helpful. However, one 
problem of this approach is that structures with Q factors 
much higher than that of the base cavity design are rarely 
generated during the random preparation of the training 
dataset. Therefore, the accuracy of the regression function 
at the parameter space near extremely high Q factors is low.

In this report, we propose an iterative optimization 
method to overcome this problem: here, the candidate 
structures for higher-Q factors identified by the regression 
function at the present iteration step are added to the train-
ing dataset for the next step. The new dataset is used to 
derive an improved regression function. To increase the 
diversity of the new candidates, several different candi-
date-selection constraints are defined, and their combina-
tions are used to efficiently explore the parameter space. In 
order to avoid strong influences of initial discoveries, one 
constraint is that the new candidate should lie at a para-
meter space distant from the structures that have already 
been analyzed. Additionally, we employ several NNs that 
learn the dataset in different orders, resulting in different 
regression functions. With these we can partly account for 
the uncertainty of the prediction by a NN. By repeating the 
optimization cycles, cavity structures that are important 
for detection of high-Q cavity structures are automatically 
accumulated in the dataset. To demonstrate this, we opti-
mize the design of a silicon (Si) L3 cavity via 25 parameters. 
We are able to detect a structure with a maximum Q factor 
of almost 11 million by generating a total of 8070 sample 
structures within 101 iterations. This theoretical Q factor is 
more than two times larger than the Q factors of Si-based 
L3 cavity structures found by the genetic algorithm [16] 
and leaky mode visualization approaches [17].

2  �Framework
In this section we explain the procedures of the proposed 
iterative optimization method, which contains the prepa-
ration, learning, structure search, validation, and dataset 
update phases. The latter four phases are repeated to iter-
atively improve the regression function developed in the 
learning phase and the following structure search. The 
general design of the preparation and learning phases can 
be found in [19]. First of all, we assume that the type of 
2D-PC cavity that is to be optimized is known (in Section 3 
we choose the L3 cavity). Next, the preparation phase 
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consisting of the following three procedures (I)–(III) has 
to be implemented:
I.	 Select the structural parameters of the base cavity 

(such as air hole positions and radii) that should be 
considered for optimization. Generate many sample 
cavity structures by randomly varying the selected 
parameters within a certain meaningful range.

II.	 Calculate the Q factors of the sample cavities gen-
erated in (I) by a first principles method to obtain 
the training dataset consisting of the sample cavity 
structures and the corresponding Q factors.

III.	 Prepare deep NNs that have input nodes correspond-
ing to the structural parameters selected in (I) and 
have a single output node corresponding to the Q 
factor.

The learning phase is described by the following 
procedure:
IV.	 Train the deep NNs prepared in (III) to learn the rela-

tion between the structure and the Q factor using 
the dataset prepared in (I) and (II) (only for the first 
round) or the updated dataset obtained in (VII) (for 
the following rounds). Let each deep NN learn the 
dataset in a different order so that they acquire differ-
ent approximation functions of Q. To avoid memory 
effects, the NN’s weights are reset at the beginning of 
each iteration cycle.

The structure search phase consists of the following 
procedure:
V.	 Starting from a randomly chosen initial cavity struc-

ture, gradually change the structural parameters 
using the gradient (in the parameter space) of the 
approximated Q factor that is predicted by a trained 
deep NN. By this process, one new candidate struc-
ture with a potentially higher Q factor is located. 
Various candidate structures are prepared by using 
different deep NNs and by applying different con-
straints (described later).

The validation phase is straightforward:
VI.	 Determine the accurate Q factors of the candidate 

structures by a first principles calculation.

After the learning, structure search, and validation 
phases, the training dataset is updated and the next itera-
tion cycle is carried out as follows:
VII.	 Add the sets of the structures obtained in (V) and the 

Q factors calculated in (VI) to the training dataset.
VIII.	 Go to (IV).

By repeating the procedures (IV)–(VII), the sample cavi-
ties that are important for locating high-Q structures are 

automatically accumulated, because both correct and 
wrong predictions constitute important information for 
the development of an improved regression function. 
Figure 1 briefly illustrates the concept of the approach for 
optimization explained above.

3  �Optimization of the cavity design 
for a Si-based L3 nanocavity

In this section, we demonstrate the optimization of the 
cavity design for a L3 cavity made of Si by the proposed 
iterative optimization. The results are useful for device 
development and also provide a benchmark for the opti-
mization performance of the presently used algorithm. 
The numbers given can be compared with those in previ-
ously reported methods [16, 17], because the Si-based L3 
nanocavity is a standard 2D-PC nanocavity.

3.1  �Preparation phase

Figure 2 shows the basic structure of the presently con-
sidered L3 nanocavity, where the lattice constant is a, the 

Figure 1: The iterative optimization proposed in this paper.
Each cavity with the structural parameters selected in the 
preparation phase is represented by a unique high-dimensional 
vector .x�  The accurate Q as a function of , ( ),x Q x� �  can be calculated 
by first principle approaches but is costly to compute. :i jx�  denotes 

the set of structures and consists of 1, , , .i i jx x x+ …
� � �  :( )i jQ x�  denotes 

the corresponding set of Q factors, and 1: 1:{ , ( )}j jx Q x� �  is used to 
refer to the dataset consisting of the chosen cavity structures 
and their Q factors. The number of sample structures in the initial 
dataset is n. NN ( )Q x�  represents a low-cost regression function that 
approximates ( )Q x�  and is obtained by training a neural network (NN) 
using the training dataset 1: 1:{ , ( )}.j jx Q x� �  NN ( )Q x�  is only used to locate 
new structures via the gradient, but the values are not explicitly 
discussed in this work.
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radius of each air hole is 0.25 a, the thickness of the slab 
is 0.5366 a, and the refractive index of the slab material 
(Si) is n = 3.46. These values were chosen by consider-
ing the standard dimensions of fabricated nanocavities 
(a = 410 nm, t = 220 nm) operating at optical communica-
tion wavelengths [9, 27] and the refractive index of Si at 
these wavelengths. The radii of the air holes are the same 
as those used in [16], and the slab thickness is similar to 
that in [16] (0.55 a). The color plot in Figure 1 shows the 
electric field distribution of the fundamental mode in the 
y direction (Ey). The distribution was calculated for the 
base cavity structure by a first principle method [three-
dimensional finite-difference time-domain (3D-FDTD) 
method], and the resulting Q factor of the base structure 
is 7160. The modal volume Vcav of the mode is 0.61 cubic 
wavelengths in the material (λ/n)3. Further details of the 
calculation conditions are provided in [19].

[Step (I)]: The positions of the 50 air holes within 
the area of 11 (a) × 5 (rows) (indicated by the red square 
in Figure 2) are the structural parameters that are used 
to optimize the cavity design with respect to the Q factor, 
because most of the electric field intensity of the mode con-
centrates in this area [19]. We used the air hole positions 
as the variable parameters in the optimization process, 
because a specified but small offset in the air hole radius 

or shape that is different for each hole is more difficult to 
control in the etching step during fabrication. In contrast, 
the air hole positions, which are precisely defined in the 
electron beam writing process, can be reproduced with 
higher accuracy during etching. Each sample cavity struc-
ture (labelled by index i) is defined by the base structure 
and a set of 2D displacement vectors 1 2 { , , } ,id d …

� �
 where 

( , )h hx hyd d d=
�

 defines the displacement of the hth air hole 
in the x-y plane and h enumerates all air holes that are 
selected for structural optimization (from 1 to 50 in the 
present case). The parameter space vector of structure i, 
ix
�  as defined in Figure 1, is a single column vector with 
the structure (d1x, d1y, d2x, …, d50y)T and contains displace-
ments corresponding to the single set 1 2 50{ , , } ., id d d…

� � �
 

Although we have 100 degrees of freedom in the 2D dis-
placements of 50 air holes, the actual degrees of freedom 
in the present analysis are 25 because we have to impose 
mirror symmetries with respect to the central x and y axes 
to obtain high Q factors [12].

[Step (II)]: Random displacements are applied to all 
air holes in the x and y directions in such a way that the 
mirror symmetries of the structure are maintained and 
that a uniform distribution between −0.1 a and 0.1 a is 
obtained. The appropriate magnitude of the fluctuation 
has been determined in previous manual optimizations 
of L3 cavities [2, 17]. In this demonstration, we initially 
prepare n = 1000 random nanocavity structures (the 
whole set is denoted by 1:nx� ) using the above outlined dis-
placement restrictions and calculate their Q factors using 
the 3D-FDTD method. The FDTD cell dimensions used in 
this work are about a/10 in x and y directions. For the dis-
cretization of the distribution of the dielectric constant 
in the FDTD calculation, we employed a sub-cell size of 
about a/4000, and the dielectric constants of each cell 
was determined by averaging over its sub-cells. Therefore, 
a change on the order of a/4000 in the dielectric constant 
distribution (which reflects the air hole displacements) 
can be resolved in the FDTD calculation of the Q factor. 
The obtained set of Q values, 1:( ),nQ x�  exhibits a distribu-
tion between 103 and 105, and the average is 6700 (see 
Figure 7A). Because the first principles Q values of the 
initial set are spread over two orders of magnitudes, and 
this difference should increase in the subsequent opti-
mization cycles, we employ 10(log ( ))iQ x�  as the target of 
machine learning. As a result, the initial training dataset 
consists of the structural parameters ix

�  and 10log ( )iQ x�  
of the 1000  structures, i.e. 1: 10 1:{ , log )}(n nx Q x� �  instead of 

1: 1:({ , }.)n nx Q x� �

[Step (III)]: Ten four-layer-NNs with the same 
configuration as in [19] are prepared (Figure 3). The input 
nodes are two-channel 2D tables, where each channel 

Air holes
(r = 0.25 a (102.5 nm))

Si slab
(t = 0.5366 a  (220 nm),
n = 3.46)   

a = 410 nm

Base structure (L3)

Q = 7160, Vcav = 0.61(λ/n)3

x

y

E
y

Optimization area

1

0

–1

Figure 2: A three-missing-air-holes (L3) cavity is used as the base 
structure for structural optimization.
The lattice constant a is 410 nm. The circles indicate the air 
holes (hole radius: 102.5 nm = 0.25 a) formed in Si slab with a 
refractive index n = 3.46 and a thickness of 220 nm (0.5366 a). 
The distribution of the y component of the electric field (Ey) of the 
fundamental resonant mode is plotted in color. The theoretical Q 
factor and modal volume Vcav of the base structure determined by 
FDTD are 7160 and 0.61 (λ/η)3, respectively. The displacements of 
the 50 air holes inside the red square are the structural parameters 
that are used to optimize the cavity design with respect to Q.
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corresponds to the x and y components of 1 2 50{ , , , }.d d d…
� � �

 
The first layer is a convolutional layer [28] with 50 filters 
with a size of 3 (holes) × 5 (rows) × 2 (channels) that is con-
nected to the second layer with 450 units. The last part of 
each NN comprises the third layer (200 units), the fourth 
layer (50 units), and the output layer (one unit). These 
layers are fully connected through rectified linear units 
(ReLU [29] and affine transformations. Stochastic infor-
mation selection units (DROPOUT [30]) are additionally 
inserted between the third and fourth layers. The single 
output unit is intended to predict 10(log ( )).Q x�

3.2  �Learning phase

[Step (IV)]: For this phase, we employ a conventional loss 
function L consisting of two terms: the squared difference 
between the output of the NN and the teacher data (i.e. 

10(log ( ))iQ x� ), and the summation of the squared connec-
tion weights wm in the network (weight decay method 
[31]), where the latter is used to avoid the overfitting,

	

2 2
10

1Output( ) log ( )  .
2i m

m

L i Q x wλ= − + ∑
�

� (1)

For the hyperparameter λ we use 0.00333 determined 
from the (10-fold) cross-validation method. In the train-
ing process, we randomly select one set 10{ log, ( )}i ix Q x� �  
from the training dataset 1: 10 1:log{ , ( )},j jQx x� �  where j is the 
number of samples in the present dataset as defined in 
Figure 1, and change the internal parameters of the NN to 
reduce L using the back-propagation method [32]. Here, the 
actual output of the NN is referred to as log10QNN, where QNN 
is an approximation of the Q factor. We apply the momen-
tum optimization method to speed up convergence [33], 
where the learning rate and the momentum decay rate are 
set to 1.0 × 10−4 and 0.9, respectively. The random selection 
of one structure and following reduction of L by using the 
back-propagation method is repeated 5 × 104 times. Ten 
separate NNs are trained by the same method, but with 

different orders of data feeding. Therefore, after the train-
ing, each NN has acquired different internal parameters, 
which widens the divergence of the candidate structures 
that are generated in the following step (V).

3.3  �Structure search phase

[Step (V)]: Several candidate structures (here, we use 
m = 70) with potentially higher Q factors are generated 
using the gradient method. For this we define the loss 
function L′,

	
2

10 target 10 NN| log log | (Artifitial loss),L Q Q= − +′ � (2)

and calculate the gradient of L′ with respect to x� (i.e. xL∇ ′� )  
using the back-propagation method [32], where Qtarget is 
set to a very high value (here, we use 1.0 × 108). Starting 
from a randomly generated initial structure defined in the 
parameter space by ini

kx
�  (k > j), we incrementally change 

the structure to reduce the loss L′ (i.e. ,k kx x x← + ∆
� � �  where 

x∆
� is a set of incremental hole displacements calculated 

from |
kx xL∇ ′� �  based on the momentum method [33]), which 

is repeated 2 × 104 times. The artificial loss or regulariza-
tion term in Eq. (2) is used to constrain the structural para-
meter space that is explored during the optimization, and 
different conditions are used to obtain different candidate 
structures. We designed the following three types of artifi-
cial losses, where λ′ is a control parameter.

(A) Squared distance from the base structure or the 
best structure in the previous round:

	
21 ,| |

2 bx xλ −′
� �

� (3)

where bx
�  refers to the sample structure with the highest Q 

in the previous rounds (i.e. the highest Q among 1:( )jQ x� ).  
(In the case of the first round, bx�  is set to 0, because the 
base structure has no displacements). This artificial loss 
is designed to explore the parameter space in the vicinity 
of the best structure in the previous rounds.

(B) Squared distance from a randomly generated 
initial structure ini :kx

�

	
i 2ni1 |

2
| .kx xλ −′

� �
� (4)

This artificial loss forces exploration of unknown 
parameter space stochastically. It is expected that a 
structure with a higher Q that is not predictable from the 
training dataset can be accidentally found by using this 
artificial loss.
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Y displacement
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Figure 3: Configuration of the neural network prepared to learn 
the relationship between displacements of air holes and Q factors 
(ReLU: rectified linear unit. Affine: affine transformation. Dropout: 
random dropping of units including connections.)
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(C) Sum of the inverse of the distances from all the 
structures in the training data set:

	

1| .|i
i j

x xλ −

≤

−′∑
� � � (5)

This artificial loss increases as the parameter space 
vector of the structure that is being optimized approaches 
the locations of the known structures, ix

�  with i ≤ j. This 
restriction forces exploration of unknown parameter 
space more strictly than (B).

For the present demonstration, we designed and 
investigated the following three strategies of candidate 
generation:

Strategy (A): Each NN generates seven different candi-
dates using the artificial loss (A) with seven different λ′ 
(3.0, 1.0, 0.1, 0.01, 0.001, 0.0001, 0.00001).
Strategy (A + B): Each NN generates three candidates 
using the artificial loss (A) with three different λ′ (1.0, 0.1, 
0.01), one candidate without using artificial losses (λ′ = 0), 
and three different candidates using the artificial loss (B) 
with three different λ′ (1.0, 0.1, 0.01).
Strategy (A + C): Each NN generates three candidates 
using the artificial loss (A) with three different λ′ (1.0, 0.1, 
0.01), one candidate without using artificial losses (λ′ = 0), 
and three different candidates using the artificial loss (C) 
with three different λ′ (1.0, 0.1, 0.01).

3.4  �Validation and update phases

[Step (VI)]: The Q factors of the 70 candidate structures 
obtained in step (V) for each strategy are determined by 
3D-FDTD calculations. The calculation conditions are the 
same as in [19].

[Step (VII)]: The new data consisting of 70 candi-
date structures (defined by 1: 70j jx + +

� ) and their Q factors 
1: 70 )( )( j jQ x + +

�  calculated in (VI) for each strategy are added 
to each strategy’s training dataset.

[Step (VIII)]: Steps (IV)–(VII) are repeated 101 times. 
During this iterative optimization of the regression func-
tion NN( )Q x�  and, consequently, also that of the cavity 
design, different series of training datasets are accumu-
lated for each strategy, and 8070 sample cavities are accu-
mulated in each dataset after 101 rounds of optimization.

3.5  �Results

Figure 4 shows the highest Q factors of the additional 
70  sample structures generated in each iteration step 

cycle as a function of the size of the dataset (training 
set + 70  structures generated in that cycle). The corre-
sponding QNN are not discussed in the following, because 
the regression function is only employed to identify struc-
tures with potentially higher Q factors (via the gradient 
method). The results for the different strategies (A), (A + B), 
and (A + C) are shown with the blue, orange, and green 
curves, respectively. We find that the highest Q achieved 
in each round overall increases with further iteration, 
although some fluctuations exist. The highest Q factors 
of the structures that have been detected by 101 iterations 
of cavity design optimization are 5.75 × 106, 9.12 × 106, and 
1.10 × 107 for strategies (A), (A + B), (A + C), respectively. 
These values are larger than the Q factor of the original 
structure (Figure 2) by factors of about 800–1500. Figure 5 
plots the inter-structure distances between the best struc-
ture in the present round and the best structure in the 
previous rounds in terms of the parameter space vector ,x�  
indicating how large the modifications in each round of 
optimization are. It can be confirmed that the inter-struc-
ture distances tend to decrease as the optimization pro-
ceeds. The inter-structure distances for strategy (A + C) is 
basically always larger than those for the other structures, 
and that for strategy (A + B) is larger than that for (A) only 
at early stages (<4000  samples). The air hole displace-
ments of the structures with the highest Q factors found 
during 101 optimization cycles for the three strategies 

Figure 4: The highest Q factor of the additional 70 sample cavities 
generated in one round as a function of the size of the dataset.
The results for the three different strategies (A), (A + B), and (A + C) 
are shown with blue, orange, and green curves, respectively. The 
highest Q factors of the candidates identified in 101 rounds of 
optimization of the regression function are 5.75 × 106, 9.12 × 106, and 
1.10 × 107 for strategies (A), (A + B), and (A + C), respectively.
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are shown in Figure 6. The distribution of Ey is shown as 
well. It is interesting to note that the displacements of the 
best cavities for the three strategies are significantly dif-
ferent. The modal volumes of the cavity modes are also 
provided in Figure 6: the Vcav of the optimized cavities are 
0.73, 0.68, and 0.74 (λ/n)3 for strategies (A), (A + B), (A + C), 
respectively, which are slightly larger than that of the base 
structure [0.61 (λ/n)3 as shown in Figure 2]. We thus con-
firmed that the increase in Vcav is less than 22%, which is 
much smaller than the presently achieved increase in Q 
(increase by a factor of about 103). Therefore, the optimi-
zation of Q in the present case is almost equivalent to the 
optimization of Q/Vcav.

4  �Discussion

4.1  �Performance of the three strategies

At first, we compare the results of the iterative optimiza-
tion proposed in this report with the optimization results 
of the previously reported one-round NN-based optimi-
zation method [19]. For accurate comparison, the same 
dataset sizes need to be employed. The size of the training 

dataset that is utilized in different iteration steps of the 
new optimization method exceeds 1000 after the first 
round. On the other hand, the number of random cavities 
in the training dataset that can be utilized for the verifi-
cation of the previous optimization method is only 1000. 
Therefore, we generated 1050 random sample cavities in 
addition to the initially prepared 1000 random cavities 
(2050 cavities in total), calculated their Q factors, and per-
formed the previously proposed optimization method [19] 
using these data. The following conditions were used for 
this optimization: only one NN is employed, and this NN 
generates five different candidates using the artificial loss 
(A) with five different λ′ (1.0, 0.5, 0.1, 0.05, 0.01), and the 
structure with the highest Q among the 2050 cavities (No. 
158, Q = 8.12 × 104) serves as the initial structure for the 

Figure 5: Inter-structure distances between the structure with the 
highest Q factor in the present round (at bx ′

�  in the parameter space) 
and that in the previous rounds (at bx

� ) as a function of the size of 
the dataset.
The inter-structure distance '| |b bx x−

� �  indicates how large the 
modifications in each round of optimization are. The results for the 
three different strategies (A), (A + B), and (A + C) are shown with 
blue, orange, and green curves, respectively.

Figure 6: Air hole displacements of the optimized cavities.
The results for three different strategies (A), (A + B), and (A + C) are 
shown in (A), (B), and (C), respectively. The circles represent the 
determined optimum positions of the air holes, and the arrows 
represent the displacement vectors with the scale shown by the 
red arrow. The electric field distributions of Ey are also plotted 
in color. The highest Q factors of the structures generated by 
our proposed method during 101 iteration cycles are 5.75 × 106, 
9.12 × 106, and 1.10 × 107 for strategies (A), (A + B), (A + C), 
respectively.
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gradient method, in order to reproduce the condition used 
in Ref. [19]. The Q factor of the best structure obtained with 
this method is 1.41 × 105. This result has to be compared 
with the result of the 16th round of the present iterative 
optimization method, because here the size of the training 
dataset equals 2050. As shown in Figure 4, the Q factors of 
the best structures after the 16th round of the iterative opti-
mization method are 1.91 × 106, 3.99 × 106, and 4.32 × 106 for 
the strategies (A), (A + B), and (A + C), respectively. The 
values obtained by the new method are 13–30 times larger 
than the one obtained by the previous method. This evi-
dences that the proposed iterative method is very effective 
compared to the previous method.

The reason for this significantly different behavior 
is explained with the distributions of Q factors in the 
training datasets provided in Figure 7. In the case of 
random structure generation, the distribution of the Q 
factors in the dataset does not change largely even if we 
increase the number of the random structures from 1000 
(Figure 7A) to 2050 (Figure 7B). Because the Q factors of 
cavities optimized by extrapolation cannot largely exceed 
those in the dataset, it is difficult to increase the Q factor 
by simply increasing the number of randomly generated 
sample structures. In the case of the new method we 
employed the distribution in Figure 7A as initial training 
set, but in the course of the 15 iteration cycles (resulting 
in 1050 new structures generated by the NNs), the distri-
bution of the Q factors at the learning phase of the 16th 
round significantly expands to higher values as shown in 
Figure 7C. This result evidences that iterative expansion 
of the dataset is more effective than to simply increase 
the number or randomly generated structures.

The effect of iterative optimization is more apparent 
when we compare the learning result for the initial dataset 
and that for the 101st round of the optimization. Figure 8A 
shows an example of the correlation between QNN (pre-
dicted by the NN) and the actual Q (calculated by FDTD) 
after learning the initial 1000 random structures. A good 
correlation between QNN and Q can be confirmed. There-
fore, the regression functions obtained by training NNs are 
useful for extrapolation of new candidate structures [19]. 
However, only structures with Q factors less than 8  ×  104 
are included in the initial dataset. The color scale indi-
cates the frequency of samples structures within a certain 
range of Q factors: the yellow region in Figure 8A indicates 
that most sample structures have a Q slightly less than 104. 
Therefore, it is impossible to extrapolate structures with Q 
factors on the order of 107 from the initial dataset only. To 
solve this issue, we proposed the use of iterative expansion 
of the dataset. Figure 8B shows the correlation between QNN 
and Q after learning the 8000 structures that include 7000 

new structures generated according to strategy (A + C). Also 
here, the correlation is good, and additionally a consider-
able amount of sample structures near Q  =  107 can be con-
firmed. This demonstrates that the new iterative method 
successfully generated additional sample structures that 
are necessary for large improvements of Q factors.

In the following we compare the three strategies with 
respect to the best Q and the computational costs. The best 
Q factors found with strategies (A + B) and (A + C) are about 

Figure 7: Histrograms of the Q factors in the training datasets 
generated by different methods.
(A) The initial 1000 random patterns. (B) The initial 1000 pandom 
patterns + 1050 newly generated random patterns. (C) The initial 
1000 random patterns + 1050 patterns generated by the regression 
function provided by the NN according to strategy (A + C).
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1.6 and 1.9 times larger than that of (A). The differences in  
the improvement ratios originate from the differences 
in the methods of generating candidate cavity structures. 
In strategy (A), candidates for high Q structures are gen-
erated by exploring the parameter space following the 
gradient of QNN predicted by the trained NN while keeping 
the distance from the best structure in the previous 
rounds small. This constraint is controlled by parameter 
λ′, which was changed from 3 to 1 × 10−5 to generate seven 
different candidates. Candidates with higher Q factors are 
frequently generated, but the candidate structures are gen-
erated according to the past experience (although some 
randomness is introduced by the initial structures). There-
fore, the possibility to get stuck in a local maximum during 
the repetition of the optimizations is relatively large. The 
rapid decrease of the inter-structure distance for this strat-
egy shown in Figure 5 supports this interpretation.

In strategy (A + B), half of the candidates are gener-
ated according to the past experience, and half of the 
candidates are generated by exploring the parameter 
space near randomly generated initial structures. The 
latter approach is expected to add diversity to the gener-
ated candidates and the training dataset. It is important 
to note that the latter half is not just a random genera-
tion; here, candidates are explored based on experience 
(the gradient of QNN), while the space to be explored is 
intentionally limited. This can prevent getting stuck in an 
already known local maximum. This explanation is sup-
ported by the larger inter-structure distances for this strat-
egy compared to those for strategy (A) in the early stages 
of optimization (Figure 5; <4000 samples). It seems that 
the advantage of this strategy decreases as the number 
of iteration cycles increases as shown in Figures 4 and 5. 

We explain this with the higher probability of an overlap 
between the randomly generated initial structure and 
some sample in the training dataset after many itera-
tions, reducing the diversity of the generated candidates. 
However, this strategy detected a structure with a Q factor 
that is 1.6 times larger than the best structure found with 
strategy (A). It is noted that the computational cost for this 
strategy is the same as that for (A), because the computa-
tional cost for the artificial loss (B) [Eq. (4)] equals that of 
the artificial loss (A) [Eq. (3)].

In strategy (A + C), half of the candidates are gener-
ated according to the past experience, and half of the can-
didates are generated by exploring the parameter space 
according to the gradient of QNN while avoiding the space 
near the already known structures in the training data set. 
Therefore, unknown parameter space is explored more 
explicitly compared to the case of using artificial loss (B). 
The maximum Q factor found with this strategy is 20% 
larger than that detected with strategy (A + B) as shown 
in Figures 4 and 6. Moreover, the tendency to detect sig-
nificantly higher Q factors in the next iteration step is still 
not saturated even at 101 optimization cycles (Figure 4; 
the inclination of the green curve is relatively steep). This 
is in contrast to the case of (A + B) and means that strategy 
(A + C) can avoid local maxima more effectively. The much 
larger inter-structure distances of this strategy shown in 
Figure 4 support this interpretation. The drawback is the 
increase in the computational cost: as can be seen from 
Eq. (5), the evaluation cost of the artificial loss (C) scales 
with the number of samples in the training dataset (N), 
while the other terms in the loss function do not scale with 
N as can be seen in Eqs. (2)–(4). However, this evaluation 
has a marginal effect on the total cost for optimization 

Figure 8: Correlation between Q factors calculated by the 3D-FDTD method (Q) and predicted by neural networks (QNN ) at different stages.
(A) The correlation after the learning phase of the first round where the initial 1000 random structures have been used as training dataset. 
(B) The correlation after the learning phase of the 101st iteration step of strategy (A + C) where 7000 automatically generated structures and 
the initial 1000 random structures have been used in the training. The correlation coefficients and the decision coefficients are provided on 
the upper side of the graphs.
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because the computational cost of the first principle cal-
culation is much larger than that for the training and 
structure generation [34]. Therefore, the total computa-
tional cost for optimization can be considered propor-
tional to the number of sample structures, which directly 
represents the number of first principle calculations nec-
essary. It is also interesting to note that the evaluation cost 
of the artificial loss (C) scales much slower than that of the 
Bayesian optimization discussed later.

4.2  �Comparison with other optimization 
methods

Here, we compare the L3 cavity optimization perfor-
mances of our proposed method and other state-of-the-
art optimization methods as a benchmark. The genetic 
algorithm based method was used in [16] to optimize 
five parameters in the Si-based L3 cavity and enabled 
detection of a structure with a Q of 4.2 million by using 
~8000  sample cavities. Reference [17] optimized nine 
parameters in L3 cavity using a leaky component visu-
alization method and found a structure with a Q of 
5.3 million by using 200 sample cavities. In comparison, 
our proposed method was used to optimize 25 parameters 
of the L3 cavity, and we detected a structure with a Q of 
11.0  million by using 8070  sample cavities generated 
with strategy (A + C). The maximum Q detected by the 
proposed method is more than 2.6 times larger than that 
found in [16], while the number of sample cavities that 
have been used is almost the same.

Compared to the leaky component visualization 
method, the Q obtained in the present method is more than 
two times larger. Although the number of sample cavities 
used in [17] is only about 200, these sample structures had 
to be explored manually, which usually consumes similar 
time and more effort compared to the proposed automated 
method. Therefore, our proposed method has provided a 
structure that is more optimized than those of the two pre-
vious methods, while the computational costs are similar. 
We consider that the higher optimization efficiency of the 
proposed method has two origins: a training database that 
contains all experiences accumulated during the whole 
calculation and also the aggressive search of unknown 
parameter space, which results in generation of candidate 
structures that are useful for the optimization.

From a generic point of view, other approaches based 
on a combination of direct and inverse NNs can be con-
sidered as well [35–40]. These methods are able to derive 
a target structure with given (desired) properties in case 
that the target response of the physical system (the input 

structure) can be well interpolated by a direct NN using 
the training dataset. However, we believe that these 
approaches are not very efficient in our case, because our 
purpose is to obtain structures with Q factors much larger 
than those in the initial training dataset. Therefore, it is 
necessary to implement a method that iteratively gener-
ates physically more significant candidate structures that 
are necessary for a large improvement of Q. Theoretically, 
it should be possible to employ NNs for the generation 
of such candidate structures, but prior to that we have to 
study suited NN learning strategies. This is considered to 
be an important topic of future research.

We also note that the idea of dimensionality reduc-
tion may help in some cases. For example, it has been 
shown that the problem of optimizing a grating structure 
with five tuning parameters can be reduced to search 
of the optimum on a 2D hyperplane [41]. This has been 
achieved by using an initial simple optimization via 
search from random starting points and sub-space iden-
tification based on the principal component analysis. The 
dimensionality reduction enables full search over the 
reduced parameter space, which requires less computa-
tional resources than the exhaustive search in the origi-
nal design space. However, it is likely that this strategy is 
difficult to apply when the dimension of the tuning para-
meter is much larger (e.g. 25 dimensions as in the present 
case), because the characteristics of such a problem 
usually cannot be represented by a much smaller number 
of parameters.

4.3  �Comparison with Bayesian optimization

Finally, we compare the proposed method and the well-
known Bayesian optimization in the context of generic 
optimization methods. The Bayesian optimization is a pow-
erful tool to optimize a black-box function that is expensive 
to calculate [42, 43]. In this method, an approximate func-
tion (usually a so-called Gaussian process [43]) that pre-
dicts not only the mean but also variance (uncertainty) of 
the values of the black-box function is generated by using 
the present dataset (the training dataset in our case). Then, 
an acquisition function that evaluates the probability of 
obtaining better values is prepared based on the predicted 
mean and uncertainty. As a new observation point (= can-
didate), the point with the highest value of the acquisi-
tion function is searched in its parameter space, and the 
value of the black-box function at this observation point 
is calculated and added to the dataset. This procedure is 
iterated many times. We note that the approach of our pro-
posed method constitutes almost the same procedure. As 
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explained in Section 2, our framework uses a NN to con-
struct an approximation function of the black-box function 

( ).Q x�  The artificial loss (C) roughly evaluates the inverse of 
the uncertainty, and the use of several NNs trained with 
different data feeding orders also corresponds to the evalu-
ation of the uncertainty of the predicted values.

However, there are important differences between 
the Bayesian optimization and our proposed optimi-
zation method. One is the computational cost for the 
search of candidate structures in the high-dimensional 
parameter space (this applies to the so-called normal 
Bayesian optimization only), and the other is the com-
putational cost of the learning of a large-scale train-
ing dataset (this also applies to other types of Bayesian 
optimization). Concerning the former difference, the 
normal Bayesian optimization usually uses direct search 
methods without relying on derivatives [43], and there-
fore sufficient search in a high-dimensional parameter 
space is impossible from the viewpoint of computational 
cost (a practical parameter space is usually limited to 
less than 10 dimensions) [43–45]. The gradient method 
starting from random initial points would be useful for 
the search in high-dimensional space, but it is difficult 
to implement because the gradient of the acquisition 
function in the normal Bayesian optimization tends to 
be 0 over a wider region in the parameter space as its 
dimension increases, because of the characteristics of the 
kernel function [44]. The Bayesian optimization with the 
elastic Gaussian process [44] can overcome this issue, but 
computation costs for the learning of large-scale datasets 
remain high as discussed later. The random embedding 
method [45] can also treat high-dimensional parameter 
spaces but only under the rather restrictive assumption 
that the numbers of important dimensions are very small. 
In contrast, our method is able to effectively utilize the 
gradient method in high-dimensional space because the 
gradient of the loss function does not disappear owing 

to the ReLU nonlinear layers in the NNs and the properly 
designed artificial loss terms. Therefore, a parallel trial 
of gradient-based searches starting from many randomly 
generated initial points works well in our case.

Regarding the relationship between the scale of the 
training dataset (N) and the computational cost for the 
training, the cost in the Bayesian optimization scales with 
N3 because the inverse of a N × N matrix has to be calcu-
lated for the training [43]. (Ref. [46] utilized a deep neural 
network with a Bayesian linear regressor in the last hidden 
layer to resolve this issue. However, the maximum feasible 
dimension of the parameter space is still limited because 
direct (parallel) search is utilized [46]). Fortunately, the 
training cost of a NN only scales with N1, and thus a large-
scale dataset can be employed to increase the precision 
of the candidate search, which is especially important for 
the optimization in a high-dimensional parameter space. 
In addition, our method employs the gradient method 
starting from random initial points, which enables effi-
cient exploration of a high-dimensional space. In total, 
it is considered that the proposed approach benefits 
from the characteristics of a NN-based regression, which 
enables training of a large-scale dataset and search in a 
high-dimensional parameter space while introducing the 
policy of the Bayesian optimization (i.e. the mean and 
variation of the prediction are taken into account).

4.4  �Influences of fabrication errors

The deviations of the actually fabricated geometry from 
the intended design can be classified into the average 
deviations of air hole radius r and slab thickness t from the 
corresponding design values and the random fluctuations 
of radii and positions of the air holes.

Figure 9 visualizes the influences of variations in the 
average r and t on the Q factors of the optimized structures 

Figure 9: The influences of changes in the air hole radii r and the slab thickness t on the Q factors.
The results for the cavity designs optimized by the strategies A, A + B, and A + C, are shown in (A), (B) and (C), respectively. The values 
employed in Section 3 are r = 102.5 nm and t = 220 nm.
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obtained after 101 iteration steps by the three different 
strategies. It can be confirmed that the Q factor depends 
weakly on the slab thickness, while a change of the air 
hole radii on the order of 2 nm is detrimental (the Q factor 
decreases by about 50%). Fortunately, r (and t) can be 
adjusted in steps on the order of about 0.5 nm (1 nm) using 
a post process consisting of surface oxidization and oxide 
removal [47].

Figure 10 shows the influence of random fluctuations 
of hole radii and positions on the Q factors. To obtain a 
reliable statistical statement, we considered 200 samples 
with the same design and randomly applied small 
changes to all air hole positions (in x and y direction) and 
their radii without keeping the symmetry of the structure 
to reflect random fluctuations due to finite fabrication 
accuracy. The applied random deviations follow a Gauss-
ian distribution with a standard deviation of a/1000, and 
the same 200 random deviation patterns are applied to 
the cavities optimized by the three different strategies. 
This magnitude of the randomness corresponds to actual 
fabrication errors determined from experiments on state-
of-the-art photonic crystal nanocavities [9]. Figure 10C 
clarifies that the random structural fluctuations lead to 
an average Q factor of 4.47 × 106 for the case of the cavity 
with a predicted Q factor of 1.10 × 107 in the ideal case 
(optimization result of Strategy A + C). For the case of the 
cavity with a Q factor of 5.75 × 106 in the ideal case (Strat-
egy A), the average Q factor decreases to 3.14 × 106 due to 
the same structural fluctuations. Although the Q factors 
obviously degrade due to the random fluctuations, the 
average and the highest Q factors including effects of 
fabrication errors are still larger for cavity designs with 
a larger Q factor in the ideal case. Therefore, the designs 
with higher Q factors determined by our method have 
a significant impact even when fabrication errors are 
taken into account.

5  �Conclusion
We proposed and demonstrated a new approach for 
optimizing 2D-PC nanocavity designs, which have large 
degrees of structural freedom. This approach comprises 
the repetition of the following four steps: training of NNs 
to learn the relationship between cavity structure and the 
Q factor using the present dataset, generation of candi-
date structures using the trained NNs, calculation of their 
Q factors, and finally adding the new structures and Q 
factors to the dataset. The key point of this approach is to 
generate a variety of candidate structures to avoid getting 
stuck in a local maximum in the high-dimensional para-
meter space. For this purpose, we prepared several NNs 
and trained them with different data feeding orders. In 
addition, we designed three artificial loss terms and used 
them to generate candidate structures by employing the 
regression function provided by a trained NN. It was dem-
onstrated that the artificial loss term that increases near 
the known structures in the dataset works most efficiently 
to increase the speed of generating structures with higher 
Q factors: this method generated an optimized Si-based 
L3 nanocavity structure with a Q factor of 11 million (here, 
25 parameters were fine-tuned using 101 iterations and a 
total of 8070 sample cavities). This Q factor is more than 
2 times larger than the Q factors obtained by previously 
reported methods, while computational costs and efforts 
are similar. We also compared our method and the Bayes-
ian optimization in the context of generic optimization 
methods. The proposed approach is effective not only for 
the optimization of 2D-PC nanocavity designs but also 
for generic optimization problems in high-dimensional 
parameter space. Further development of the present idea 
including approaches like combination with the adjoint 
calculation of the gradient [20] may be advantageous for 
many optimization problems.

Figure 10: The influences of random fluctuations of air hole radii and positions on the Q factors.
The results for the cavity designs optimized by the strategies A, A + B, and A + C are shown in (A), (B), and (C), respectively. The random 
deviations follow a Gaussian distribution with a standard deviation of a/1000, and the same 200 random deviation patterns are applied to 
the cavities optimized by the three different strategies.
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