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Abstract: Devices based on two-dimensional photonic-
crystal nanocavities, which are defined by their air hole
patterns, usually require a high quality (Q) factor to
achieve high performance. We demonstrate that hole pat-
terns with very high Q factors can be efficiently found by
the iteration procedure consisting of machine learning of
the relation between the hole pattern and the correspond-
ing Q factor and new dataset generation based on the
regression function obtained by machine learning. First, a
dataset comprising randomly generated cavity structures
and their first principles Q factors is prepared. Then a
deep neural network is trained using the initial dataset to
obtain a regression function that approximately predicts
the Q factors from the structural parameters. Several can-
didates for higher Q factors are chosen by searching the
parameter space using the regression function. After add-
ing these new structures and their first principles Q fac-
tors to the training dataset, the above process is repeated.
As an example, a standard silicon-based L3 cavity is opti-
mized by this method. A cavity design with a high Q fac-
tor exceeding 11 million is found within 101 iteration steps
and a total of 8070 cavity structures. This theoretical Q
factor is more than twice the previously reported record
values of the cavity designs detected by the evolution-
ary algorithm and the leaky mode visualization method.
It is found that structures with higher Q factors can be
detected within less iteration steps by exploring not only
the parameter space near the present highest-Q structure
but also that distant from the present dataset.
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1 Introduction

Photonic nanocavities based on artificial defects in
two-dimensional (2D) photonic-crystal (PC) slabs [1-11]
have received significant attention as structures that
enable preservation of photons for extended times in small
modal volumes. 2D-PC slab cavities are usually defined
by defects in the triangular air hole lattice of the PC. For
example, cavities can be defined by a defect consisting of
three missing air holes (the so-called L3 cavity), a single
missing hole (HO cavity), or a line defect with a modulation
of the lattice constants (heterostructure cavity). Photons
of the cavity modes are confined in such nanocavities in
the in-plane and vertical directions by Bragg reflection
due to the air hole pattern of the 2D PC and total inter-
nal reflection due to the refractive index contrast between
the PC slab and the surrounding air or cladding layers,
respectively. We note that the in-plane reflection is usually
almost perfect, while the vertical reflection is only partial
[2]. Thus, the total spectral intensity of the wavevector
components that do not fulfill the total internal reflec-
tion condition, i.e. the leaky components, determines the
cavity’s quality (Q) factor [12]. So far, various methods of
optimizing cavity designs with respect to the Q factor have
been proposed and demonstrated [2-5, 12-19]. Among
them, the Gaussian envelope approaches [2, 3], the leaky
position visualization approach [17], and the analytic
inverse problem approaches [13, 14] utilize the knowledge
of the physics of photon confinement mentioned above.
For instance, the analytic inverse problem approaches are
based on approximations that relate the cavities’ struc-
tural parameters to the mode fields and thus allow us to
explicitly determine an optimized cavity geometry with
less leaky components [13, 14]. This type of approaches
is very useful to optimize specific structural parameters,
but targets are limited because suited analytical expres-
sions are only available for certain cavity types. On the
other hand, the Gaussian envelope and leaky position
visualization approaches improve cavity designs based on
the differences between the mode field calculated for the
actual structure and the ideal mode field, which is artifi-
cially generated and has a minimum of leaky components
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[2, 3, 17]. The comparison of these fields enables identi-
fication of spatial positions where leakage of photons
occurs. However, since these approaches cannot predict
the optimized structure, the modifications required for
a reduction of leakage have to be manually identified by
trial and error. While these approaches are useful in early
optimization stages, they cannot utilize the large degree of
freedom that is inherent to the 2D geometry of the air hole
pattern. The reports on optimization of 2D-PC nanocavity
designs by these approaches have so far considered only
up to nine structural parameters (e.g. symmetric displace-
ments of certain holes) for optimization [2, 3, 17], because
it is difficult to manually locate better air hole patterns
in the high-dimensional parameter space consisting of
the positions of all individual air holes. Obviously, more
systematic and automated methods of exploring high-
dimensional parameter spaces are required to fully utilize
the potential of 2D-PC nanocavities.

The adjoint method has proven very effective in the
optimization of nanophotonic devices such as demultiplex-
ers, grating couplers, and waveguide bends [20], in which
the emphasis lies in optimization of transmission proper-
ties. While there are also reports that use the adjoint method
for optimizing designs of ring resonators and cavities with
respect to the Q factor in 1D and 2D calculations [21-24], 3D
calculations are inevitable to evaluate the Q factors of 2D-PC
nanocavity designs in the high-Q region. However, the Q
factors that have been obtained in such 3D adjoint-method
calculations are relatively small (~1x10°) [25, 26] compared
to those achieved by the methods explained in the follow-
ing (>1x10°). Minkov et al. utilized a genetic algorithm to
explore the parameter space of the 2D-PC air hole pattern
and succeeded in tuning up to 11 parameters to find more
suited nanocavity structures without using the physical
knowledge of leaky components [15, 16, 18]. However, this
approach requires a relatively large number of randomly
generated sample cavity structures and their calculated
Q factors: they have reported that 100 cyclesx80 indi-
viduals=8000 sample cavities (300 cyclesx120 individu-
als=36,000 sample cavities) were required to optimize five
(seven) parameters in the L3 (HO) cavity [16]. The relatively
large number of required sample cavities is considered to be
a consequence of the genetic algorithm, which basically uti-
lizes only the good cavities among the sample cavities gener-
ated in each cycle. Recently, we have proposed an approach
based on deep learning, demonstrating optimization of
27 parameters of a heterostructure cavity using a training
dataset consisting of 1000 randomly generated air hole pat-
terns and their calculated Q factors [19]. In [19], we trained
a neural network (NN) by the sample dataset to obtain an
approximate function of the Q factor with respect to the
structural parameters. This regression function was then
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employed to detect new cavity structures that are likely to
exhibit higher Q factors. The important point is that not only
high-Q structures but also moderate or low-Q structures can
be useful when searching new cavity geometries with higher
Q factors (since both improve the accuracy of the regression
function developed by the NN), although high-Q sample
cavity structures are of course more helpful. However, one
problem of this approach is that structures with Q factors
much higher than that of the base cavity design are rarely
generated during the random preparation of the training
dataset. Therefore, the accuracy of the regression function
at the parameter space near extremely high Q factors is low.

In this report, we propose an iterative optimization
method to overcome this problem: here, the candidate
structures for higher-Q factors identified by the regression
function at the present iteration step are added to the train-
ing dataset for the next step. The new dataset is used to
derive an improved regression function. To increase the
diversity of the new candidates, several different candi-
date-selection constraints are defined, and their combina-
tions are used to efficiently explore the parameter space. In
order to avoid strong influences of initial discoveries, one
constraint is that the new candidate should lie at a para-
meter space distant from the structures that have already
been analyzed. Additionally, we employ several NNs that
learn the dataset in different orders, resulting in different
regression functions. With these we can partly account for
the uncertainty of the prediction by a NN. By repeating the
optimization cycles, cavity structures that are important
for detection of high-Q cavity structures are automatically
accumulated in the dataset. To demonstrate this, we opti-
mize the design of a silicon (Si) L3 cavity via 25 parameters.
We are able to detect a structure with a maximum Q factor
of almost 11 million by generating a total of 8070 sample
structures within 101 iterations. This theoretical Q factor is
more than two times larger than the Q factors of Si-based
L3 cavity structures found by the genetic algorithm [16]
and leaky mode visualization approaches [17].

2 Framework

In this section we explain the procedures of the proposed
iterative optimization method, which contains the prepa-
ration, learning, structure search, validation, and dataset
update phases. The latter four phases are repeated to iter-
atively improve the regression function developed in the
learning phase and the following structure search. The
general design of the preparation and learning phases can
be found in [19]. First of all, we assume that the type of
2D-PC cavity that is to be optimized is known (in Section 3
we choose the L3 cavity). Next, the preparation phase
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consisting of the following three procedures (I)-(III) has

to be implemented:

I.  Select the structural parameters of the base cavity
(such as air hole positions and radii) that should be
considered for optimization. Generate many sample
cavity structures by randomly varying the selected
parameters within a certain meaningful range.

II. Calculate the Q factors of the sample cavities gen-
erated in (I) by a first principles method to obtain
the training dataset consisting of the sample cavity
structures and the corresponding Q factors.

III. Prepare deep NNs that have input nodes correspond-
ing to the structural parameters selected in (I) and
have a single output node corresponding to the Q
factor.

The learning phase is described by the following

procedure:

IV. Train the deep NNs prepared in (III) to learn the rela-
tion between the structure and the Q factor using
the dataset prepared in (I) and (II) (only for the first
round) or the updated dataset obtained in (VII) (for
the following rounds). Let each deep NN learn the
dataset in a different order so that they acquire differ-
ent approximation functions of Q. To avoid memory
effects, the NN’s weights are reset at the beginning of
each iteration cycle.

The structure search phase consists of the following

procedure:

V.  Starting from a randomly chosen initial cavity struc-
ture, gradually change the structural parameters
using the gradient (in the parameter space) of the
approximated Q factor that is predicted by a trained
deep NN. By this process, one new candidate struc-
ture with a potentially higher Q factor is located.
Various candidate structures are prepared by using
different deep NNs and by applying different con-
straints (described later).

The validation phase is straightforward:
VI. Determine the accurate Q factors of the candidate
structures by a first principles calculation.

After the learning, structure search, and validation

phases, the training dataset is updated and the next itera-

tion cycle is carried out as follows:

VII. Add the sets of the structures obtained in (V) and the
Q factors calculated in (VI) to the training dataset.

VIIIL. Go to (IV).

By repeating the procedures (IV)—(VII), the sample cavi-
ties that are important for locating high-Q structures are
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automatically accumulated, because both correct and
wrong predictions constitute important information for
the development of an improved regression function.
Figure 1 briefly illustrates the concept of the approach for
optimization explained above.

3 Optimization of the cavity design
for a Si-based L3 nanocavity

In this section, we demonstrate the optimization of the
cavity design for a L3 cavity made of Si by the proposed
iterative optimization. The results are useful for device
development and also provide a benchmark for the opti-
mization performance of the presently used algorithm.
The numbers given can be compared with those in previ-
ously reported methods [16, 17], because the Si-based L3
nanocavity is a standard 2D-PC nanocavity.

3.1 Preparation phase

Figure 2 shows the basic structure of the presently con-
sidered L3 nanocavity, where the lattice constant is a, the

roblem: Find ¥* that maximizes Q(x).
he value of Q(¥) for a structure #; can be

mputed, but with a large cost

(VII} Update dataset

{(E15 QD) = (B QD)+ Farom QEsrgam)]

i N

(IV) Train NNs by using the dataset (V1) Calculate Q(%41.j4m)
{#1.j, @(#,.)} to obtain a regression by a first principles method
function Quy (%) that approximates Q(¥)

(V) Search m different structures X;, 1., that

maximize Quy(X) by using gradient method
under different constraint conditions

(I-11) Dataset preparation
{715, Q1)) & (i QL))
(111) NN setup

Figure 1: The iterative optimization proposed in this paper.

Each cavity with the structural parameters selected in the
preparation phase is represented by a unique high-dimensional
vector X. The accurate Q as a function of X, Q(X), can be calculated
by first principle approaches but is costly to compute. )?i:l, denotes

the set of structures and consists of X,, X, , ..., X,. Q(X,,) denotes

the corresponding set of Q factors, and {X, Q(X,,)} is used to

refer to the dataset consisting of the chosen cavity structures

and their Q factors. The number of sample structures in the initial
dataset is n. Q,(X) represents a low-cost regression function that
approximates Q(X) and is obtained by training a neural network (NN)
using the training dataset {’?1:,-’ Q()?l:).)}. Q,,(X) is only used to locate
new structures via the gradient, but the values are not explicitly
discussed in this work.
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Figure 2: Athree-missing-air-holes (L3) cavity is used as the base
structure for structural optimization.

The lattice constant a is 410 nm. The circles indicate the air

holes (hole radius: 102.5 nm=0.25 a) formed in Si slab with a
refractive index n=3.46 and a thickness of 220 nm (0.5366 a).
The distribution of the y component of the electric field () of the
fundamental resonant mode is plotted in color. The theoretical Q
factor and modalvolume V_ of the base structure determined by
FDTD are 7160 and 0.61 (1/)*, respectively. The displacements of
the 50 air holes inside the red square are the structural parameters
that are used to optimize the cavity design with respect to Q.

radius of each air hole is 0.25 a, the thickness of the slab
is 0.5366 a, and the refractive index of the slab material
(Si) is n=3.46. These values were chosen by consider-
ing the standard dimensions of fabricated nanocavities
(a=410 nm, t=220 nm) operating at optical communica-
tion wavelengths [9, 27] and the refractive index of Si at
these wavelengths. The radii of the air holes are the same
as those used in [16], and the slab thickness is similar to
that in [16] (0.55 a). The color plot in Figure 1 shows the
electric field distribution of the fundamental mode in the
y direction (Ey). The distribution was calculated for the
base cavity structure by a first principle method [three-
dimensional finite-difference time-domain (3D-FDTD)
method], and the resulting Q factor of the base structure
is 7160. The modal volume V_ of the mode is 0.61 cubic
wavelengths in the material (1/n)’. Further details of the
calculation conditions are provided in [19].

[Step (I)]: The positions of the 50 air holes within
the area of 11 (a) x5 (rows) (indicated by the red square
in Figure 2) are the structural parameters that are used
to optimize the cavity design with respect to the Q factor,
because most of the electric field intensity of the mode con-
centrates in this area [19]. We used the air hole positions
as the variable parameters in the optimization process,
because a specified but small offset in the air hole radius
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or shape that is different for each hole is more difficult to
control in the etching step during fabrication. In contrast,
the air hole positions, which are precisely defined in the
electron beam writing process, can be reproduced with
higher accuracy during etching. Each sample cavity struc-
ture (labelled by index i) is defined by the base structure
and a set of 2D displacement vectors {q d, . ..},» where
a,, =(d,.d - ) defines the displacement of the hth air hole
in the x-y plane and h enumerates all air holes that are
selected for structural optimization (from 1 to 50 in the
present case). The parameter space vector of structure i,
X, as defined in Figure 1, is a single column vector with
the structure (d,, d d,,..d )T and contains displace-
ments correspondlng to the smgle set {d - aso}i.
Although we have 100 degrees of freedom in the 2D dis-
placements of 50 air holes, the actual degrees of freedom
in the present analysis are 25 because we have to impose
mirror symmetries with respect to the central x and y axes
to obtain high Q factors [12].

[Step (II)]: Random displacements are applied to all
air holes in the x and y directions in such a way that the
mirror symmetries of the structure are maintained and
that a uniform distribution between -0.1a and 0.1a is
obtained. The appropriate magnitude of the fluctuation
has been determined in previous manual optimizations
of L3 cavities [2, 17]. In this demonstration, we initially
prepare n=1000 random nanocavity structures (the
whole set is denoted by X, ) using the above outlined dis-
placement restrictions and calculate their Q factors using
the 3D-FDTD method. The FDTD cell dimensions used in
this work are about a/10 in x and y directions. For the dis-
cretization of the distribution of the dielectric constant
in the FDTD calculation, we employed a sub-cell size of
about a/4000, and the dielectric constants of each cell
was determined by averaging over its sub-cells. Therefore,
a change on the order of a/4000 in the dielectric constant
distribution (which reflects the air hole displacements)
can be resolved in the FDTD calculation of the Q factor.
The obtained set of Q values, Q(X, ), exhibits a distribu-
tion between 10° and 10°, and the average is 6700 (see
Figure 7A). Because the first principles Q values of the
initial set are spread over two orders of magnitudes, and
this difference should increase in the subsequent opti-
mization cycles, we employ log, (Q(X,)) as the target of
machine learning. As a result, the initial training dataset
consists of the structural parameters X, and logIOQ()?i)
of the 1000 structures, i.e. {X,_,log Q(X, )} instead of
%, Q(%,, )

[Step (IlI)]: Ten four-layer-NNs with the same
configuration as in [19] are prepared (Figure 3). The input
nodes are two-channel 2D tables, where each channel



DE GRUYTER

X displacement 200 Nodes

o

Nx x Ny

No pooling

-

Y displacement .-

Nx x Ny

Figure 3: Configuration of the neural network prepared to learn
the relationship between displacements of air holes and Q factors
(ReLU: rectified linear unit. Affine: affine transformation. Dropout:
random dropping of units including connections.)

corresponds to the x and y components of {511, 32, - 350}.
The first layer is a convolutional layer [28] with 50 filters
with a size of 3 (holes) x 5 (rows) x 2 (channels) that is con-
nected to the second layer with 450 units. The last part of
each NN comprises the third layer (200 units), the fourth
layer (50 units), and the output layer (one unit). These
layers are fully connected through rectified linear units
(ReLU [29] and affine transformations. Stochastic infor-
mation selection units (DROPOUT [30]) are additionally
inserted between the third and fourth layers. The single
output unit is intended to predict log, (Q(X)).

3.2 Learning phase

[Step (IV)]: For this phase, we employ a conventional loss
function L consisting of two terms: the squared difference
between the output of the NN and the teacher data (i.e.
log,(Q(%,))), and the summation of the squared connec-
tion weights w_in the network (weight decay method
[31]), where the latter is used to avoid the overfitting,

. . 1
L= ‘Output(l) —log,, Q(xl,)‘2 + E/IZqu . 6))]

For the hyperparameter A we use 0.00333 determined
from the (10-fold) cross-validation method. In the train-
ing process, we randomly select one set {X,, log Q(X,)}
from the training dataset {)?1:]., loglOQ()?l:}.)}, where j is the
number of samples in the present dataset as defined in
Figure 1, and change the internal parameters of the NN to
reduce L using the back-propagation method [32]. Here, the
actual output of the NN is referred to as log, Q,, Where Q,
is an approximation of the Q factor. We apply the momen-
tum optimization method to speed up convergence [33],
where the learning rate and the momentum decay rate are
set to 1.0x10-* and 0.9, respectively. The random selection
of one structure and following reduction of L by using the
back-propagation method is repeated 5x10* times. Ten
separate NNs are trained by the same method, but with
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different orders of data feeding. Therefore, after the train-
ing, each NN has acquired different internal parameters,
which widens the divergence of the candidate structures
that are generated in the following step (V).

3.3 Structure search phase

[Step (V)]: Several candidate structures (here, we use
m=70) with potentially higher Q factors are generated
using the gradient method. For this we define the loss
function L',

L’ =[l0g,, Q. ~108,,Q, ' + (Artifitial loss), ®)

and calculate the gradient of L’ with respect to X (i.e. V_L")
using the back-propagation method [32], where Qe IS
set to a very high value (here, we use 1.0 x108). Starting
from a randomly generated initial structure defined in the
parameter space by x;" (k>j), we incrementally change
the structure to reduce the loss L’ (i.e. X, < )?k +AX, where
AX is a set of incremental hole displacements calculated
from V_L’|, based on the momentum method [33]), which
is repeatedk2><10“ times. The artificial loss or regulariza-
tion term in Eq. (2) is used to constrain the structural para-
meter space that is explored during the optimization, and
different conditions are used to obtain different candidate
structures. We designed the following three types of artifi-
cial losses, where 1’ is a control parameter.

(A) Squared distance from the base structure or the

best structure in the previous round:

1., -
5/1 |X-%, [, (3)

where X, refers to the sample structure with the highest Q
in the previous rounds (i.e. the highest Q among Q()?hj)).
(In the case of the first round, ¥’ is set to 0, because the
base structure has no displacements). This artificial loss
is designed to explore the parameter space in the vicinity
of the best structure in the previous rounds.

(B) Squared distance from a randomly generated

Sini

initial structure X

SHIR-FOF (@)

This artificial loss forces exploration of unknown
parameter space stochastically. It is expected that a
structure with a higher Q that is not predictable from the
training dataset can be accidentally found by using this
artificial loss.
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(C) Sum of the inverse of the distances from all the
structures in the training data set:

MY IxX-X,1". (5)
i<j
This artificial loss increases as the parameter space
vector of the structure that is being optimized approaches
the locations of the known structures, X, with i<j. This
restriction forces exploration of unknown parameter
space more strictly than (B).
For the present demonstration, we designed and
investigated the following three strategies of candidate
generation:

Strategy (A): Each NN generates seven different candi-
dates using the artificial loss (A) with seven different A’
(3.0, 1.0, 0.1, 0.01, 0.001, 0.0001, 0.00001).

Strategy (A+B): Each NN generates three candidates
using the artificial loss (A) with three different A" (1.0, 0.1,
0.01), one candidate without using artificial losses (A’=0),
and three different candidates using the artificial loss (B)
with three different A’ (1.0, 0.1, 0.01).

Strategy (A+C): Each NN generates three candidates
using the artificial loss (A) with three different A" (1.0, 0.1,
0.01), one candidate without using artificial losses (A’=0),
and three different candidates using the artificial loss (C)
with three different A’ (1.0, 0.1, 0.01).

3.4 Validation and update phases

[Step (VI)]: The Q factors of the 70 candidate structures
obtained in step (V) for each strategy are determined by
3D-FDTD calculations. The calculation conditions are the
same as in [19].

[Step (VID)]: The new data consisting of 70 candi-
date structures (defined by ’—‘m:mo) and their Q factors
(Q()?MNO)) calculated in (VI) for each strategy are added
to each strategy’s training dataset.

[Step (VIID)]: Steps (IV)—(VII) are repeated 101 times.
During this iterative optimization of the regression func-
tion Q(X) and, consequently, also that of the cavity
design, different series of training datasets are accumu-
lated for each strategy, and 8070 sample cavities are accu-
mulated in each dataset after 101 rounds of optimization.

3.5 Results

Figure 4 shows the highest Q factors of the additional
70 sample structures generated in each iteration step
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Figure 4: The highest Q factor of the additional 70 sample cavities
generated in one round as a function of the size of the dataset.

The results for the three different strategies (A), (A+B), and (A+C)
are shown with blue, orange, and green curves, respectively. The
highest Q factors of the candidates identified in 101 rounds of
optimization of the regression function are 5.75x10¢, 9.12 x 10, and
1.10 x 107 for strategies (A), (A+B), and (A+C), respectively.

cycle as a function of the size of the dataset (training
set+70 structures generated in that cycle). The corre-
sponding Q,, are not discussed in the following, because
the regression function is only employed to identify struc-
tures with potentially higher Q factors (via the gradient
method). The results for the different strategies (A), (A +B),
and (A +C) are shown with the blue, orange, and green
curves, respectively. We find that the highest Q achieved
in each round overall increases with further iteration,
although some fluctuations exist. The highest Q factors
of the structures that have been detected by 101 iterations
of cavity design optimization are 5.75x10°, 9.12x10°, and
1.10x 107 for strategies (A), (A+B), (A+C), respectively.
These values are larger than the Q factor of the original
structure (Figure 2) by factors of about 800-1500. Figure 5
plots the inter-structure distances between the best struc-
ture in the present round and the best structure in the
previous rounds in terms of the parameter space vector X,
indicating how large the modifications in each round of
optimization are. It can be confirmed that the inter-struc-
ture distances tend to decrease as the optimization pro-
ceeds. The inter-structure distances for strategy (A +C) is
basically always larger than those for the other structures,
and that for strategy (A + B) is larger than that for (A) only
at early stages (<4000 samples). The air hole displace-
ments of the structures with the highest Q factors found
during 101 optimization cycles for the three strategies



DE GRUYTER

T. Asano and S. Noda: Iterative optimization of photonic crystal nanocavity =—— 2249

102 fksss

=t m———f——

A Strategy (A) Q=5.75x 108
OO0 00006 0 Vgyu=073An)P
Doooeooeoooeoooc

)@OOOOOOOOOOGOOC

103 e 41-1--

T

T

I

I

I

Il

I

I

I

i
LSRRI B

Distance from the structure of the last round (a)

0 2000 4000 6000
Size of dataset (samples)

[
9
=~

8000

Figure 5: Inter-structure distances between the structure with the
highest Q factor in the present round (at X; in the parameter space)
and that in the previous rounds (at )?b) as a function of the size of
the dataset.

The inter-structure distance | X, —X, | indicates how large the
modifications in each round of optimization are. The results for the
three different strategies (A), (A+B), and (A+ C) are shown with
blue, orange, and green curves, respectively.

are shown in Figure 6. The distribution of E is shown as
well. It is interesting to note that the displacements of the
best cavities for the three strategies are significantly dif-
ferent. The modal volumes of the cavity modes are also
provided in Figure 6: the V__ of the optimized cavities are
0.73, 0.68, and 0.74 (A/n)’ for strategies (A), (A+B), (A+C),
respectively, which are slightly larger than that of the base
structure [0.61 (1/n)? as shown in Figure 2]. We thus con-
firmed that the increase in V__ is less than 22%, which is
much smaller than the presently achieved increase in Q
(increase by a factor of about 10°). Therefore, the optimi-
zation of Q in the present case is almost equivalent to the
optimization of Q/V

cav®

4 Discussion

4.1 Performance of the three strategies

At first, we compare the results of the iterative optimiza-
tion proposed in this report with the optimization results
of the previously reported one-round NN-based optimi-
zation method [19]. For accurate comparison, the same
dataset sizes need to be employed. The size of the training
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Figure 6: Air hole displacements of the optimized cavities.

The results for three different strategies (A), (A+B), and (A+C) are
shown in (A), (B), and (C), respectively. The circles represent the
determined optimum positions of the air holes, and the arrows
represent the displacement vectors with the scale shown by the
red arrow. The electric field distributions of Ey are also plotted

in color. The highest Q factors of the structures generated by

our proposed method during 101 iteration cycles are 5.75 x 10¢,
9.12x10¢, and 1.10 x 107 for strategies (A), (A+B), (A+C),
respectively.

dataset that is utilized in different iteration steps of the
new optimization method exceeds 1000 after the first
round. On the other hand, the number of random cavities
in the training dataset that can be utilized for the verifi-
cation of the previous optimization method is only 1000.
Therefore, we generated 1050 random sample cavities in
addition to the initially prepared 1000 random cavities
(2050 cavities in total), calculated their Q factors, and per-
formed the previously proposed optimization method [19]
using these data. The following conditions were used for
this optimization: only one NN is employed, and this NN
generates five different candidates using the artificial loss
(A) with five different A’ (1.0, 0.5, 0.1, 0.05, 0.01), and the
structure with the highest Q among the 2050 cavities (No.
158, Q=8.12x10") serves as the initial structure for the
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gradient method, in order to reproduce the condition used
in Ref. [19]. The Q factor of the best structure obtained with
this method is 1.41x10°. This result has to be compared
with the result of the 16th round of the present iterative
optimization method, because here the size of the training
dataset equals 2050. As shown in Figure 4, the Q factors of
the best structures after the 16th round of the iterative opti-
mization method are 1.91 x 10¢, 3.99 x 10¢, and 4.32 x 10° for
the strategies (A), (A+B), and (A+C), respectively. The
values obtained by the new method are 13-30 times larger
than the one obtained by the previous method. This evi-
dences that the proposed iterative method is very effective
compared to the previous method.

The reason for this significantly different behavior
is explained with the distributions of Q factors in the
training datasets provided in Figure 7. In the case of
random structure generation, the distribution of the Q
factors in the dataset does not change largely even if we
increase the number of the random structures from 1000
(Figure 7A) to 2050 (Figure 7B). Because the Q factors of
cavities optimized by extrapolation cannot largely exceed
those in the dataset, it is difficult to increase the Q factor
by simply increasing the number of randomly generated
sample structures. In the case of the new method we
employed the distribution in Figure 7A as initial training
set, but in the course of the 15 iteration cycles (resulting
in 1050 new structures generated by the NNs), the distri-
bution of the Q factors at the learning phase of the 16th
round significantly expands to higher values as shown in
Figure 7C. This result evidences that iterative expansion
of the dataset is more effective than to simply increase
the number or randomly generated structures.

The effect of iterative optimization is more apparent
when we compare the learning result for the initial dataset
and that for the 101st round of the optimization. Figure 8A
shows an example of the correlation between Q,, (pre-
dicted by the NN) and the actual Q (calculated by FDTD)
after learning the initial 1000 random structures. A good
correlation between Q, and Q can be confirmed. There-
fore, the regression functions obtained by training NNs are
useful for extrapolation of new candidate structures [19].
However, only structures with Q factors less than 8 x 10*
are included in the initial dataset. The color scale indi-
cates the frequency of samples structures within a certain
range of Q factors: the yellow region in Figure 8A indicates
that most sample structures have a Q slightly less than 10%.
Therefore, it is impossible to extrapolate structures with Q
factors on the order of 107 from the initial dataset only. To
solve this issue, we proposed the use of iterative expansion
of the dataset. Figure 8B shows the correlation between Q,
and Q after learning the 8000 structures that include 7000
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Figure 7: Histrograms of the Q factors in the training datasets
generated by different methods.

(A) The initial 1000 random patterns. (B) The initial 1000 pandom
patterns+1050 newly generated random patterns. (C) The initial
1000 random patterns+1050 patterns generated by the regression
function provided by the NN according to strategy (A+C).

new structures generated according to strategy (A +C). Also
here, the correlation is good, and additionally a consider-
able amount of sample structures near Q = 107 can be con-
firmed. This demonstrates that the new iterative method
successfully generated additional sample structures that
are necessary for large improvements of Q factors.

In the following we compare the three strategies with
respect to the best Q and the computational costs. The best
Q factors found with strategies (A + B) and (A + C) are about
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Figure 8: Correlation between Q factors calculated by the 3D-FDTD method (Q) and predicted by neural networks (Q,, ) at different stages.
(A) The correlation after the learning phase of the first round where the initial 1000 random structures have been used as training dataset.
(B) The correlation after the learning phase of the 101st iteration step of strategy (A+ C) where 7000 automatically generated structures and
the initial 10000 random structures have been used in the training. The correlation coefficients and the decision coefficients are provided on

the upper side of the graphs.

1.6 and 1.9 times larger than that of (A). The differences in
the improvement ratios originate from the differences
in the methods of generating candidate cavity structures.
In strategy (A), candidates for high Q structures are gen-
erated by exploring the parameter space following the
gradient of Q, predicted by the trained NN while keeping
the distance from the best structure in the previous
rounds small. This constraint is controlled by parameter
A’, which was changed from 3 to 1x107° to generate seven
different candidates. Candidates with higher Q factors are
frequently generated, but the candidate structures are gen-
erated according to the past experience (although some
randomness is introduced by the initial structures). There-
fore, the possihility to get stuck in a local maximum during
the repetition of the optimizations is relatively large. The
rapid decrease of the inter-structure distance for this strat-
egy shown in Figure 5 supports this interpretation.

In strategy (A +B), half of the candidates are gener-
ated according to the past experience, and half of the
candidates are generated by exploring the parameter
space near randomly generated initial structures. The
latter approach is expected to add diversity to the gener-
ated candidates and the training dataset. It is important
to note that the latter half is not just a random genera-
tion; here, candidates are explored based on experience
(the gradient of Q,,), while the space to be explored is
intentionally limited. This can prevent getting stuck in an
already known local maximum. This explanation is sup-
ported by the larger inter-structure distances for this strat-
egy compared to those for strategy (A) in the early stages
of optimization (Figure 5; <4000 samples). It seems that
the advantage of this strategy decreases as the number
of iteration cycles increases as shown in Figures 4 and 5.

We explain this with the higher probability of an overlap
between the randomly generated initial structure and
some sample in the training dataset after many itera-
tions, reducing the diversity of the generated candidates.
However, this strategy detected a structure with a Q factor
that is 1.6 times larger than the best structure found with
strategy (A). It is noted that the computational cost for this
strategy is the same as that for (A), because the computa-
tional cost for the artificial loss (B) [Eq. (4)] equals that of
the artificial loss (A) [Eq. (3)].

In strategy (A +C), half of the candidates are gener-
ated according to the past experience, and half of the can-
didates are generated by exploring the parameter space
according to the gradient of Q,, while avoiding the space
near the already known structures in the training data set.
Therefore, unknown parameter space is explored more
explicitly compared to the case of using artificial loss (B).
The maximum Q factor found with this strategy is 20%
larger than that detected with strategy (A+B) as shown
in Figures 4 and 6. Moreover, the tendency to detect sig-
nificantly higher Q factors in the next iteration step is still
not saturated even at 101 optimization cycles (Figure 4;
the inclination of the green curve is relatively steep). This
is in contrast to the case of (A + B) and means that strategy
(A +C) can avoid local maxima more effectively. The much
larger inter-structure distances of this strategy shown in
Figure 4 support this interpretation. The drawback is the
increase in the computational cost: as can be seen from
Eq. (5), the evaluation cost of the artificial loss (C) scales
with the number of samples in the training dataset (N),
while the other terms in the loss function do not scale with
N as can be seen in Egs. (2)—-(4). However, this evaluation
has a marginal effect on the total cost for optimization
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because the computational cost of the first principle cal-
culation is much larger than that for the training and
structure generation [34]. Therefore, the total computa-
tional cost for optimization can be considered propor-
tional to the number of sample structures, which directly
represents the number of first principle calculations nec-
essary. It is also interesting to note that the evaluation cost
of the artificial loss (C) scales much slower than that of the
Bayesian optimization discussed later.

4.2 Comparison with other optimization
methods

Here, we compare the L3 cavity optimization perfor-
mances of our proposed method and other state-of-the-
art optimization methods as a benchmark. The genetic
algorithm based method was used in [16] to optimize
five parameters in the Si-based L3 cavity and enabled
detection of a structure with a Q of 4.2 million by using
~8000 sample cavities. Reference [17] optimized nine
parameters in L3 cavity using a leaky component visu-
alization method and found a structure with a Q of
5.3 million by using 200 sample cavities. In comparison,
our proposed method was used to optimize 25 parameters
of the L3 cavity, and we detected a structure with a Q of
11.0 million by using 8070 sample cavities generated
with strategy (A+C). The maximum Q detected by the
proposed method is more than 2.6 times larger than that
found in [16], while the number of sample cavities that
have been used is almost the same.

Compared to the leaky component visualization
method, the Q obtained in the present method is more than
two times larger. Although the number of sample cavities
used in [17] is only about 200, these sample structures had
to be explored manually, which usually consumes similar
time and more effort compared to the proposed automated
method. Therefore, our proposed method has provided a
structure that is more optimized than those of the two pre-
vious methods, while the computational costs are similar.
We consider that the higher optimization efficiency of the
proposed method has two origins: a training database that
contains all experiences accumulated during the whole
calculation and also the aggressive search of unknown
parameter space, which results in generation of candidate
structures that are useful for the optimization.

From a generic point of view, other approaches based
on a combination of direct and inverse NNs can be con-
sidered as well [35-40]. These methods are able to derive
a target structure with given (desired) properties in case
that the target response of the physical system (the input
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structure) can be well interpolated by a direct NN using
the training dataset. However, we believe that these
approaches are not very efficient in our case, because our
purpose is to obtain structures with Q factors much larger
than those in the initial training dataset. Therefore, it is
necessary to implement a method that iteratively gener-
ates physically more significant candidate structures that
are necessary for a large improvement of Q. Theoretically,
it should be possible to employ NNs for the generation
of such candidate structures, but prior to that we have to
study suited NN learning strategies. This is considered to
be an important topic of future research.

We also note that the idea of dimensionality reduc-
tion may help in some cases. For example, it has been
shown that the problem of optimizing a grating structure
with five tuning parameters can be reduced to search
of the optimum on a 2D hyperplane [41]. This has been
achieved by using an initial simple optimization via
search from random starting points and sub-space iden-
tification based on the principal component analysis. The
dimensionality reduction enables full search over the
reduced parameter space, which requires less computa-
tional resources than the exhaustive search in the origi-
nal design space. However, it is likely that this strategy is
difficult to apply when the dimension of the tuning para-
meter is much larger (e.g. 25 dimensions as in the present
case), because the characteristics of such a problem
usually cannot be represented by a much smaller number
of parameters.

4.3 Comparison with Bayesian optimization

Finally, we compare the proposed method and the well-
known Bayesian optimization in the context of generic
optimization methods. The Bayesian optimization is a pow-
erful tool to optimize a black-box function that is expensive
to calculate [42, 43]. In this method, an approximate func-
tion (usually a so-called Gaussian process [43]) that pre-
dicts not only the mean but also variance (uncertainty) of
the values of the black-box function is generated by using
the present dataset (the training dataset in our case). Then,
an acquisition function that evaluates the probability of
obtaining better values is prepared based on the predicted
mean and uncertainty. As a new observation point (= can-
didate), the point with the highest value of the acquisi-
tion function is searched in its parameter space, and the
value of the black-box function at this observation point
is calculated and added to the dataset. This procedure is
iterated many times. We note that the approach of our pro-
posed method constitutes almost the same procedure. As
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explained in Section 2, our framework uses a NN to con-
struct an approximation function of the black-box function
Q(X). The artificial loss (C) roughly evaluates the inverse of
the uncertainty, and the use of several NNs trained with
different data feeding orders also corresponds to the evalu-
ation of the uncertainty of the predicted values.

However, there are important differences between
the Bayesian optimization and our proposed optimi-
zation method. One is the computational cost for the
search of candidate structures in the high-dimensional
parameter space (this applies to the so-called normal
Bayesian optimization only), and the other is the com-
putational cost of the learning of a large-scale train-
ing dataset (this also applies to other types of Bayesian
optimization). Concerning the former difference, the
normal Bayesian optimization usually uses direct search
methods without relying on derivatives [43], and there-
fore sufficient search in a high-dimensional parameter
space is impossible from the viewpoint of computational
cost (a practical parameter space is usually limited to
less than 10 dimensions) [43-45]. The gradient method
starting from random initial points would be useful for
the search in high-dimensional space, but it is difficult
to implement because the gradient of the acquisition
function in the normal Bayesian optimization tends to
be 0 over a wider region in the parameter space as its
dimension increases, because of the characteristics of the
kernel function [44]. The Bayesian optimization with the
elastic Gaussian process [44] can overcome this issue, but
computation costs for the learning of large-scale datasets
remain high as discussed later. The random embedding
method [45] can also treat high-dimensional parameter
spaces but only under the rather restrictive assumption
that the numbers of important dimensions are very small.
In contrast, our method is able to effectively utilize the
gradient method in high-dimensional space because the
gradient of the loss function does not disappear owing
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to the ReLU nonlinear layers in the NNs and the properly
designed artificial loss terms. Therefore, a parallel trial
of gradient-based searches starting from many randomly
generated initial points works well in our case.
Regarding the relationship between the scale of the
training dataset (N) and the computational cost for the
training, the cost in the Bayesian optimization scales with
N’ because the inverse of a Nx N matrix has to be calcu-
lated for the training [43]. (Ref. [46] utilized a deep neural
network with a Bayesian linear regressor in the last hidden
layer to resolve this issue. However, the maximum feasible
dimension of the parameter space is still limited because
direct (parallel) search is utilized [46]). Fortunately, the
training cost of a NN only scales with N', and thus a large-
scale dataset can be employed to increase the precision
of the candidate search, which is especially important for
the optimization in a high-dimensional parameter space.
In addition, our method employs the gradient method
starting from random initial points, which enables effi-
cient exploration of a high-dimensional space. In total,
it is considered that the proposed approach benefits
from the characteristics of a NN-based regression, which
enables training of a large-scale dataset and search in a
high-dimensional parameter space while introducing the
policy of the Bayesian optimization (i.e. the mean and
variation of the prediction are taken into account).

4.4 Influences of fabrication errors

The deviations of the actually fabricated geometry from
the intended design can be classified into the average
deviations of air hole radius r and slab thickness t from the
corresponding design values and the random fluctuations
of radii and positions of the air holes.

Figure 9 visualizes the influences of variations in the
average r and t on the Q factors of the optimized structures

22 24

Figure 9: The influences of changes in the air hole radii r and the slab thickness t on the Q factors.
The results for the cavity designs optimized by the strategies A, A+B, and A+C, are shown in (A), (B) and (C), respectively. The values

employed in Section 3 are r=102.5 nm and t=220 nm.
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Figure 10: The influences of random fluctuations of air hole radii and positions on the Q factors.

The results for the cavity designs optimized by the strategies A, A+B,

and A+ C are shown in (A), (B), and (C), respectively. The random

deviations follow a Gaussian distribution with a standard deviation of a/1000, and the same 200 random deviation patterns are applied to

the cavities optimized by the three different strategies.

obtained after 101 iteration steps by the three different
strategies. It can be confirmed that the Q factor depends
weakly on the slab thickness, while a change of the air
hole radii on the order of 2 nm is detrimental (the Q factor
decreases by about 50%). Fortunately, r (and t) can be
adjusted in steps on the order of about 0.5 nm (1 nm) using
a post process consisting of surface oxidization and oxide
removal [47].

Figure 10 shows the influence of random fluctuations
of hole radii and positions on the Q factors. To obtain a
reliable statistical statement, we considered 200 samples
with the same design and randomly applied small
changes to all air hole positions (in x and y direction) and
their radii without keeping the symmetry of the structure
to reflect random fluctuations due to finite fabrication
accuracy. The applied random deviations follow a Gauss-
ian distribution with a standard deviation of a/1000, and
the same 200 random deviation patterns are applied to
the cavities optimized by the three different strategies.
This magnitude of the randomness corresponds to actual
fabrication errors determined from experiments on state-
of-the-art photonic crystal nanocavities [9]. Figure 10C
clarifies that the random structural fluctuations lead to
an average Q factor of 4.47 x10¢ for the case of the cavity
with a predicted Q factor of 1.10 x107 in the ideal case
(optimization result of Strategy A + C). For the case of the
cavity with a Q factor of 5.75 x 10 in the ideal case (Strat-
egy A), the average Q factor decreases to 3.14 x 10° due to
the same structural fluctuations. Although the Q factors
obviously degrade due to the random fluctuations, the
average and the highest Q factors including effects of
fabrication errors are still larger for cavity designs with
a larger Q factor in the ideal case. Therefore, the designs
with higher Q factors determined by our method have
a significant impact even when fabrication errors are
taken into account.

5 Conclusion

We proposed and demonstrated a new approach for
optimizing 2D-PC nanocavity designs, which have large
degrees of structural freedom. This approach comprises
the repetition of the following four steps: training of NNs
to learn the relationship between cavity structure and the
Q factor using the present dataset, generation of candi-
date structures using the trained NNs, calculation of their
Q factors, and finally adding the new structures and Q
factors to the dataset. The key point of this approach is to
generate a variety of candidate structures to avoid getting
stuck in a local maximum in the high-dimensional para-
meter space. For this purpose, we prepared several NNs
and trained them with different data feeding orders. In
addition, we designed three artificial loss terms and used
them to generate candidate structures by employing the
regression function provided by a trained NN. It was dem-
onstrated that the artificial loss term that increases near
the known structures in the dataset works most efficiently
to increase the speed of generating structures with higher
Q factors: this method generated an optimized Si-based
L3 nanocavity structure with a Q factor of 11 million (here,
25 parameters were fine-tuned using 101 iterations and a
total of 8070 sample cavities). This Q factor is more than
2 times larger than the Q factors obtained by previously
reported methods, while computational costs and efforts
are similar. We also compared our method and the Bayes-
ian optimization in the context of generic optimization
methods. The proposed approach is effective not only for
the optimization of 2D-PC nanocavity designs but also
for generic optimization problems in high-dimensional
parameter space. Further development of the present idea
including approaches like combination with the adjoint
calculation of the gradient [20] may be advantageous for
many optimization problems.
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