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Abstract: Fluorescence microscopy has long been a valu-
able tool for biological and medical imaging. Control of 
optical parameters such as the amplitude, phase, polari-
zation, and propagation angle of light gives fluorescence 
imaging great capabilities ranging from super-resolution 
imaging to long-term real-time observation of living 
organisms. In this review, we discuss current fluorescence 
imaging techniques in terms of the use of tailored or struc-
tured light for the sample illumination and fluorescence 
detection, providing a clear overview of their working 
principles and capabilities.
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1  �Introduction
Fluorescence microscopy has been widely used in numer-
ous biological applications because it provides molecular 
specificity via the labeling of target molecules with fluo-
rescent probes [1, 2]. This allows one to systematically 
study the dynamic behavior of living cells and tissues, 
and to reveal fine structures of interest and their interac-
tions with other biomolecules. Over the last two decades 
numerous fluorescence imaging techniques have been 
invented, expanding the capabilities of conventional 
imaging methods. For instance, subdiffraction spatial 
resolution was achieved by several far-field approaches, 
which enabled subcellular structures to be clearly imaged 
at the nanoscale [3]. Suppression of out-of-focus back-
ground light made it possible to directly observe and track 

single-molecules with high signal-to-background ratio 
(SBR), improving our understanding of molecular mecha-
nisms [4] and providing an analytical means for quantita-
tive measurements of gene expression [5]. The ability to 
perform long-term imaging with a low-light dose facili-
tated the investigation of developmental processes and 
neuronal activities on a large scale with unprecedented 
spatiotemporal resolution [6, 7].

One of the main factors that led to these advances in 
modern fluorescence microscopy is the great progress in 
tailoring the illumination beam and the light emitted from 
the samples. Manipulating the fundamental properties 
of light, i.e. amplitude, phase or polarization allows the 
generation of a user-defined spot, line or, plane depend-
ing on the imaging technique. Powerful optical devices 
such as deformable mirrors and spatial light modulators 
(SLM) offer a large degree of freedom to control beams 
[8] and especially make it possible to minimize aberra-
tions induced by specimens and optical components [9, 
10]. Specific arrangements of tailored beams can further 
enable desirable features by coherent/incoherent super-
position, parallelization and time-averaging.

In this review, we will describe how tailored light 
has been applied to advanced state-of-art fluorescence 
imaging techniques regarding three main aspects: super-
resolution microscopy, high contrast imaging with epi-
illumination, and fast volumetric imaging. We will explain 
their underlying principles based on how the beams 
are prepared at the back focal plane (BFP) of the objec-
tive lens. This will guide more explicit understanding in 
applying them to specific applications.

2  �Super-resolution

2.1  �Stimulated emission depletion (STED) 
microscopy

STED microscopy was first proposed to break the 
diffraction-limited spatial resolution in far-field fluores-
cence imaging [11, 12]. In this method, a tightly focused 
excitation beam is overlaid with what is referred to as the 
STED beam, which is red-shifted in the wavelength. The 
two beams are scanned over the sample, and the emitted 
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fluorescence signal is registered at each coordinate. The 
STED beam has a spatial distribution featuring a zero at 
the center of the beam such that it brings the excited fluo-
rophores located in the peripheral regions of the excita-
tion beam back to the ground state through stimulated 
emission before the spontaneous emission occurs. High 
intensity STED light induces saturation of the depletion 
of the fluorescent state, and this effectively narrows the 
point spread function (PSF).

Advancement of STED microscopy has been closely 
related to the use of sophisticated PSF engineering tech-
niques. In the early days, an offset beam with a Gaussian 
profile was used to demonstrate that the STED mechanism 
indeed improves the spatial resolution [13]. In this case, 
the STED beam was displaced laterally with respect to the 
excitation beam, which provided a resolution improve-
ment in one-dimensional (1D) images on the focal plane 
[13] and along the optical axis [14]. Before long, it was sug-
gested to use focal intensity distributions with a dark spot 
at the center by modulating the phase of the wavefront. 
A semi-circular π-shifting phase plate was employed for 
transforming a Gaussian beam (Figure 1A) to produce 
a central minimum line (Figure 1B), yielding a robust 
1D-STED where the polarization of the STED light was par-
allel to the dividing line [15]. This pattern has been used 
for maximizing STED resolution down to a few nanom-
eters [16]. It was straightforward to attain a lateral (x, y) 
resolution enhancement by coherently or incoherently 
adding two orthogonal semi-circular π-shifting phase 
plates in a Mach-Zehnder interferometer [15].

Alternatively, a circularly polarized Laguerre-
Gaussian beam called a doughnut pattern was suggested 
to be used in STED microscopy [17, 18]. A Gaussian beam 
with a planar wavefront was converted to the doughnut 
pattern by applying a phase vortex to an SLM and then 
imaged at the BFP of objective lens [19]. The SLM was 
either directly imprinted with a vortex phase distribution 
ranging from 0 to 2π [19] (Figure 1C) or configured with 
an off-axis hologram that minimized the contribution of 
the unmodulated 0th order beam [20]. Interestingly, this 
approach was shown to be immune to spherical aberra-
tion caused by refractive index mismatch in the sample 
[17, 21] and has a high depletion efficiency [22]. The avail-
ability of a polymeric vortex phase plate made the dough-
nut pattern widely used in STED microscopy [23]. This 
compact and affordable device exhibited high transmis-
sion efficiency (>95%) and a strong resistance to a high 
power CW laser, making it a standard beam shaping 
module in two-dimensional (2D)-STED microscopy. Addi-
tionally, a liquid crystal device [24] and an optical vortex 
fiber [25] can also generate a doughnut pattern, which 

may facilitate the implementation of STED microscopy if 
the intensity at the doughnut center decreases further.

In contrast, an axial (z) resolution enhancement in 
STED microscopy was realized very early by using a phase 
plate that had been used in optical trapping [26]. The 
central region of the phase plate imparted a phase delay of 
π, which induced destructive interference along the optical 
axis leading to what is called z-STED  [27] (Figure  1H). 
While the z-STED technique primarily improves on-axis 
resolution, it also slightly improves the resolution in the 
lateral direction. Two incoherent de-excitation patterns, 
i.e. 2D-STED and z-STED can be superimposed upon each 
other [28] to yield a significantly reduced focal spot in 
three-dimensional (3D) imaging [29, 30].

More effective STED beams have been considered to 
improve the performance of STED microscopy in both 2D 
and 3D. The resolution of STED microscopy is described 
by an inverse square-root law, i.e. d ≈ λ/2NA(1 + β(Im/IS))1/2, 
where λ is the wavelength of fluorescence emission, NA is a 
numerical aperture of objective, Im is the maximum inten-
sity of the switch-off beam, and IS is a characteristic inten-
sity that can deplete half the fluorescence of fluorophores. 
Here, β is a geometrical factor and it displays a higher 
value when the slope near the center of the STED beam is 
steeper, i.e. it can deplete the fluorescence efficiently with 
a lower illumination intensity. Generally, the slope shows 
a quadratic dependence on x, y, and z [23, 31]. In particu-
lar, cylindrical vector beams [32, 33] have been extensively 
investigated. These beams have spatially varying polari-
zations, leading to polarization vortices in contrast to 
phase vortices. One suggested method to achieve a finer 
lateral resolution with less illumination intensity was by 
an azimuthally polarized beam (Figure 1D) [34], or by the 
superposition of two azimuthally polarized beams where 
a binary phase plate (Figure  1E) is applied to one beam 
and a quadrant 0/π phase plate (Figure 1F) is applied 
to the other [35]. However, the azimuthally polarized 
beam is undesirable to STED imaging because its deple-
tion efficiency is strongly affected by the orientation of 
molecules  [36], although this effect is often suppressed 
when the rotation of fluorophores is fast and/or many 
fluorophores reside within the subdiffraction spot. To 
generate uniform 3D de-excitation patterns, one approach 
was proposed by incoherently superimposing a radially 
polarized beam that is split and modulated with a quad-
rant 0/π phase plate (Figure 1G) along one path and with a 
π-shifted phase plate (Figure 1I) along the other path [37], 
but its effective PSF on the focal plane was non-uniform. 
Another approach was to use a higher-order radially polar-
ized transverse electromagnetic mode (Figure 1J) and its 
variant modulated with a vortex phase plate (Figure 1K). 
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This technique can potentially generate optical bottles or 
cages [38, 39] with isotropic 3D resolution.

Two interesting methods hybridized previous tech-
niques to provide new features and capabilities. The first 
is a coherent hybrid depletion pattern called CH-STED 
[40]. The phase pattern consisted of two vortices, a disc 
and a ring, which had a same helicity but were out of 
phase (Figure 1L). They were reminiscent of an enlarged 

2D-STED [41] and an annular vortex [42], respectively. 
CH-STED enabled high contrast STED imaging even at 
low or intermediate STED power by suppression of incom-
plete depletion of the out-of-focus background [43]. The 
second method is called easySTED and uses a different 
approach to create a 2D doughnut beam by using a quarter 
wave plate and a segmented half wave plate (Figure 1M) 
to manipulate the polarization of the STED beam [36]. 

Figure 1: PSF engineering of tightly focused STED beams.
Beam intensity distributions in the xy and xz planes with various phases and polarization states at a pupil plane of objective. (A) Gaussian 
beam with circular polarization. (B) Linearly polarized 1D-STED pattern generated by a semi-circular π-shifting phase plate, where the 
linear polarization is parallel to the dividing line of the phase plate. (C) A doughnut pattern (2D-STED) through a phase vortex using a 
circularly polarized beam. (D–G) Depletion patterns using cylindrical vector beams. Azimuthally polarized beams through a clear aperture 
(D), binary phase plate (E) or quadrant 0/π phase plate (F). A radially polarized beam through a quadrant 0/π phase plate (G). (H,I) Axially 
confined patterns through a π-shifter with a circularly (H) or radially (I) polarized beam. 3D de-excitation patterns can be generated by 
incoherently superposing C and H as well as G and I. (J,K) Optical cage patterns for isotropic 3D-STED using a higher-order radially polarized 
transverse electromagnetic mode (TEM11) in (J) combined with a vortex phase plate (K). (L) Coherent hybrid depletion pattern generated by 
two out-of-phase vortices. (M) Alignment-free easySTED using an achromatic quarter waveplate and a chromatic segmented half waveplate. 
Polarization states are displayed at two different wave cycles. A wavelength of STED beam = 775 nm, objective NA = 1.4, refractive index  
(n) of medium = 1.518. Scale bar, 500 nm.
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The beam then becomes radially polarized by a quad-
rant 0/π phase plate for φ = 0 (Figure 1G) and azimuthally 
polarized for φ = π/2 (Figure 1F), where φ is the phase of 
STED beam. The segmented half wave plate was designed 
to be chromatic so the excitation beam was unaffected. 
easySTED facilitated the use of pre-aligned excitation 
and STED beams emanating from a single fiber without a 
degradation of the imaging performance, which made it 
possible to have an alignment-free STED system. A similar 
approach was demonstrated for easy z-STED [44].

A sharper excitation beam can also enhance the 
performance of STED microscopy. A radially polarized 
annular beam [45] or a circularly polarized beam with a 
binary amplitude filter [46] was known to show a later-
ally or axially tighter focus, respectively (Figure 2A,B,C). A 
recent study applied the former to STED microscopy and 
demonstrated that less STED power was required than the 
conventional approach to attain a similar resolution [47]. 
However, as this beam shows a significantly elongated 
excitation profile along the optical axis, it may suffer from a 
poor contrast due to incomplete depletion for 3D samples. 
Similar problems are expected if a super-oscillation based 
excitation beam [48, 49] is used in STED microscopy.

For imaging thick biological samples, it is crucial to 
properly manage aberrations that can reduce the resolu-
tion and signal-to-noise ratio (SNR) of images. To attain 
high quality STED images, it is important to keep the 
intensity at the center of the STED pattern close to zero; 
otherwise, the residual STED light adversely depletes the 
fluorescence. Typically the center needs to be <0.3% of 
the peak intensity of STED beam [16, 23]. z-STED has been 

known to be susceptible to aberrations, as contrasted 
with 2D-STED [17, 21]. For example, aberrations induced 
by a refractive index mismatch in the sample yield a 
considerable amount of residual light at deeper imaging 
depths with z-STED (Figure 3). A simple remedy is to use 
glycerol [50], silicone or water immersion objectives [51] 
for tissues or aqueous samples to minimize the refractive 
index difference between the immersion fluid and the 
sample. Adaptive optics has been used to fully compen-
sate for specimen induced aberrations. For example, two 
SLMs have been used to correct the excitation and z-STED 
beams [52], and fluorescence detection was improved by 
an SLM and a deformable mirror [53]. This enabled the use 
of STED microscopy for imaging thick, strongly aberrating 
samples [54]. Furthermore, a single SLM has provided a 
convenient way to realize 3D-STED [55] and correct both 
the excitation and STED beams [56].

2.2  �Structured illumination microscopy 
(SIM) and parallelized reversible 
saturable optical fluorescence 
transitions (RESOLFT) microscopy

SIM can achieve two-fold enhancement of the spatial 
resolution in a wide-field fluorescence microscope and is 
compatible with most standard fluorophores [57, 58]. The 
sample is illuminated with a series of known excitation 
patterns, such as sinusoidal grids with a corresponding 
phase shift for each different pattern orientation [59, 60]. 

Figure 2: Sharper excitation beams for STED microscopy.
Excitation and confocal PSF of a circularly polarized beam through a clear aperture (A), a radially polarized annular beam for lateral 
resolution enhancement (B), and a circularly polarized beam through a binary amplitude filter for axial resolution enhancement (C). 
(D) Lateral profiles of confocal PSF with the clear aperture (black) and radially polarized annular beam (red). (E) Axial profiles of confocal PSF 
with the clear aperture (black) and binary amplitude filter (red). 1 Airy unit is used as a confocal pinhole size. Scale bar, 500 nm.
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The high spatial frequency information is encoded into the 
observed images and can be recovered in post-processing.

The sinusoidal pattern is typically generated by a 
transmissive phase grating with an order selection mask, 
and the ±1 diffraction orders are focused onto the BFP of 
the objective (Figure 4A) [59, 60]. The illumination pattern 
is projected on the sample as the grating is translated 
and rotated. For high contrast SIM images, it is crucial 
to have a full modulation depth of the pattern, which is 
ensured by a linearly polarized beam whose direction is 
parallel to the stripe (s-polarization) [61]. This minimizes 

the residual light at the trough and prevents unwanted 
background noise. When total internal reflection fluo-
rescence (TIRF) illumination was used to image near the 
surface (Figure  4B), SIM readily demonstrated ~100  nm 
resolution [62–64] and even sub-100 nm resolution with 
a high NA objective [65]. The principle has been extended 
in 3D-SIM to double the axial resolution as well as the 
lateral resolution, where a 3D interference pattern was 
generated by the 0 and ±1 diffraction orders (Figure 4C) 
with different illumination intensities [66]. It is desirable 
to use a slightly (spatially) incoherent light source to help 

Figure 3: Aberration in STED beams.
Influence of the aberration induced by refractive index mismatch in the sample for 2D-STED (A) and z-STED (B). Intensity distributions in the 
xy and xz planes, and line profiles for an aberration-free case and different imaging depths indicated by d. Clearly, compared to 2D-STED, 
z-STED is more susceptible to aberrations, including the degradation of the symmetricity of PSF shape and considerable amount of the 
residual intensity at the center as the increasing imaging depths. As the index mismatch causes the focus shift, for better comparison, all 
profiles are shifted accordingly to keep the minimal intensity at the origin. Scale bar, 500 nm.

Figure 4: Beam shaping for SIM and parallelized RESOLFT.
Comparison of beam positions at the back focal plane (BFP) and intensity distributions on the xy and xz planes for each method. At the 
BFP, the dashed circle denotes the critical angle position assuming a glass/water interface. The red dots indicate focused beams at BFP. 
(A) 2D-SIM with a sinusoidal illumination pattern on the xy plane. (B) TIRF-SIM, SIM with total internal reflection fluorescence illumination. 
(C) 3D-SIM, 3D illumination pattern generated by interference of three beams. (D) LS-SIM, SIM with a line-scan pattern generated by 
interference of two lines. (E) mSIM with multiple focused spots. (F) 2D-pRESOLFT microscopy. Two orthogonally structured illumination 
patterns are incoherently superimposed on the sample plane. (G) 3D-pRESOLFT, three dimensional parallelized RESOLFT generated by 
interference of five coherent beams. All the beams are s-polarized except E and G, which are circularly polarized. Scale bar, 500 nm.
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time-average the speckle pattern and to phase out the 3D 
SIM pattern along the z-axis. This was accomplished by 
coupling light sources to a multimode fiber with a phase 
scrambler. Whereas random speckle patterns showed 
several merits in SIM [67, 68], they demanded a substan-
tially large number of raw images compared to the stand-
ard SIM pattern and were not suitable to 3D biological 
imaging.

The mechanical movement of the physical grating 
slows down the imaging speed of SIM. However, this 
problem was solved by employing an SLM [69]. This could 
rapidly generate, translate and rotate the pattern, and a 
liquid crystal device was used to change the polarization 
state of the output beam from the SLM [64]. This approach 
demonstrated video-rate 2D-SIM [64] and fast volumetric 
SIM [70] in living cells. Recently, a segmented azimuthal 
polarizer was proposed to replace the liquid crystal phase 
retarder to provide a more viable method of preparing the 
s-polarization for all illumination patterns [71].

When imaging a thick fluorescent sample, wide-field 
SIM illumination generates considerable out-of-focus light 
which highly increases the background noise. As a result, 
the reconstructed images suffer from strong noise artifacts. 
Recently, SIM with sparse illumination patterns has been 
proposed to reject out-of-focus fluorescence, including 
line-scanning [72] (Figure 4D) and multifocal illumination 
[73, 74] (Figure 4E) systems. The latter was conveniently 
generated by a digital micromirror device or a spinning 
disk system without considering polarization state, and 
moreover enabled video-rate imaging [75, 76]; however, its 
resolution was not as good as traditional SIM [58]. Adaptive 
optics has seen limited use in SIM [77], but will enhance 
the resolution and contrast of multifocal SIM, especially 
when combined with two-photon excitation [78].

Structured illumination patterns can be applied in 
parallelized RESOLFT microscopy. RESOLFT uses fluores-
cent probes exhibiting reversible photoswitching between 
a bright and a dark state, and STED is one of its mecha-
nisms [79, 80]. As RESOLFT requires much lower light 
intensities than STED, it is possible to adapt a parallel-
ized scanning scheme that fully benefits from fast, large 
field-of-view (FOV) imaging. Initially an 1D sinusoidal 
pattern was generated by an interferometer for proof-of-
principle experiments of RESOLFT [81]. Recently, parallel-
ized RESOLFT with more than 100,000 donuts has been 
achieved [82]. To implement this scheme, two orthogo-
nally structured illumination patterns were incoherently 
superimposed on the sample plane (Figure 4F), serving 
as a fluorescence depletion pattern. Similar to SIM, the 
pattern was generated by a diffraction grating and it was 
suitable for multi-color imaging due to the independence 

of the grid pattern from the illumination wavelengths [83]. 
Parallelized STED microscopy with a 2D grid pattern was 
also demonstrated [84, 85] and in this case each stand-
ing wave pattern was formed from the interference of two 
inclined plane waves which is more efficient than a dif-
fraction grating. Selective photoactivation by TIRF [86] or 
multifocal illumination [87] (Figure 4E) can enhance the 
contrast of parallelized RESOLFT images. A donut array 
[88] and a 3D depletion pattern based on the interference 
of five coherent beams (Figure 4G) [89] are likely to extend 
applications of parallelized STED/RESOLFT to fast 3D 
nanoscopy.

2.3  �Single-molecule localization microscopy 
(SMLM)

A single fluorophore can be localized with high preci-
sion proportional to the inverse of the square root of the 
collected photons from the isolated single emitter [90]. 
Several techniques are able to isolate individual single-
molecules within biological samples that are densely 
labeled with many fluorescent probes so that localization is 
possible. For example, a sparse subset of fluorophores can 
be activated by light that switches fluorophores between 
a fluorescent state and a dark state [91–93], or a subset of 
molecules can be sparsely targeted via the binding and 
unbinding of fluorescently labeled molecules [94, 95]. The 
SMLM image is then reconstructed from numerous subset 
images with nanometer localization accuracy [96].

In SMLM, the sample is typically illuminated by a 
large area beam such as epi- or TIRF-illumination. Other 
excitation schemes to guarantee high SNR in 3D single-
molecule samples will be discussed in detail in Section 3. 
A few SMLM studies have used adaptive optics in the 
detection path to correct sample-induced aberrations [97, 
98] and recent studies reported a significant increase of 
the localization precision in thick brain samples [99, 100].

Numerous SMLM studies have focused on the detection 
path, aiming to improve the axial localization precision by 
encoding the fluorescent emitter’s depth information into 
the shape of PSF using phase aberrations. This includes 
an astigmatic PSF [101], rotating double-helix PSF (DH-
PSF) [102], tetrapod PSF [103], and self-bending PSF [104]. 
The features of these PSFs vary distinctly as a function of 
defocusing depth [105]. The lateral and axial position of 
emitters can be extracted and characterized based on para-
meters specific to the tailored PSFs. For example, the vari-
ation of PSF width along the x and y axes for the astigmatic 
PSF (Figure 5A), the angle of two main lobes of the DH-PSF 
(Figure 5B) or relative stretching of the two lobes along the 
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lateral direction for the self-bending PSF. The axial posi-
tion of the emitter is then determined by a calibration curve 
linked to these parameters, and the lateral position is cal-
culated in the same manner as other localization methods. 
One should carefully select the proper PSF for their applica-
tion according to the wide-ranging performance in terms of 
size and axial range. For instance, the astigmatic PSF has 
much smaller axial range than that of the DH-PSF (~2–3 
μm), and the Tetrapod PSF has even larger range up to 6 
μm at the expense of a larger footprint [105].

3  �Background suppression for fast 
and high contrast imaging with 
epi-illumination

3.1  �Widefield and total internal reflection 
fluorescence (TIRF) microscopy

Epi-illumination widefield fluorescence microscopy has 
been the most common imaging technique for biologi-
cal and clinical applications. For example, many super-
resolution imaging methods discussed in Section  2 
including SIM, parallelized RESOLFT and SMLM indeed 
use a widefield approach. While for confocal microscopy 
a collimated beam is tightly focused by an objective 
(Figure 6A), for widefield microscopy the whole volume of 
the sample is uniformly illuminated (Figure 6B) by focus-
ing a beam to the center of objective’s BFP or pupil plane. 

This allows fast imaging with relatively gentle illumina-
tion. The main drawback of widefield microscopy is the 
lack of optical sectioning capability. Although its depth of 
field is <1 μm when a high NA objective is used, the out-
of-focus background greatly degrades the SBR of targets 
of interest. Deconvolution [106] and incoherent struc-
tured illumination [107] are efficient means to achieve 3D 
imaging capability with widefield microscopy, but they 
are not suitable to study weakly fluorescent samples and 
thus limitedly used for thin and bright specimens.

A confined illumination near the sample surface 
can be provided by TIRF microscopy [108]. When the 
incidence beam reaches to a critical angle, total internal 
reflection (TIR) occurs at the glass/water interface which 
generates an evanescent wave that excites fluorophores 
within the penetration depth of ~100–200  nm. This 
feature makes TIRF illumination an ideal tool for monitor-
ing cellular dynamics with high contrast at the cell surface 
[109] and performing single-molecule experiments [110]. 
For TIR generation, a beam is tightly focused close to the 
edge of the pupil of a high NA objective (Figure 6C). As 
the available annulus width for TIR generation at the BFP 
is relatively small, a light source with high spatial coher-
ence is needed for objective type TIRF imaging. Note that 
there are other methods to generate TIRF, e.g. prisms [111] 
or waveguides [112, 113].

TIRF microscopy often suffers from inhomogeneous 
spatial illumination attributed to two main causes. The 
first is a speckle fringe produced by interference from the 
laser light that is scattered or reflected from the sample and 
optical components. This unevenness can be eliminated 

Figure 5: PSF engineering for encoding the fluorescent emitter’s depth information.
(A) Astigmatic phase mask on the back focal plane and PSF intensity distribution at the different imaging depths, where the PSF widths 
along x and y axes vary as a function of defocusing depth. (B) Double-helix phase mask and PSF intensity distribution, where the angle of 
two main PSF lobes is characterized as a distinguishable parameter for encoded imaging depths. Scale bar, 1 μm.
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by rotating a focused beam along the annulus of the BFP 
(Figure 6D) [114–116]. In this way, the illumination is time-
averaged. The second cause is a Gaussian-shaped beam. 
Many approaches that improved the illumination flatness in 
epi-illumination [117, 118] are inadequate to be used in TIRF 
microscopy because of their poor spatial coherence. This 
has recently been resolved by refractive optics-based beam 
shaping tools [119, 120]. This showed significant improve-
ments in quantitative single-molecule analysis [119] and 
uniform resolution in SMLM with large imaging areas [121].

Another challenge of TIRF is a nonevanescent excita-
tion that comes from scattering of the evanescent wave 
due to the nonuniform refractive index in cellular envi-
ronments [122]. To suppress background fluorescence by 
far-field excitation, it was suggested to monitor supercriti-
cal angle fluorescence (SAF) [123] which used the fact that 
the fluorescence emission near the sample interface pref-
erentially orients to high angles on the BFP [124]. SAF is 
regarded as a counterpart of TIRF illumination [108]. As 
the PSF of the SAF is broader laterally, it is undesirable to 

use it directly. Instead, image subtraction of undercritical 
light from all the emission components provides high res-
olution TIRF, so-called virtual SAF microscopy (Figure 6E) 
[125]. Another approach to obtain clear TIRF images is to 
apply incoherent structured illumination patterns, yield-
ing widefield microscopy with improved optical section-
ing [126].

3.2  �Highly inclined illumination

As TIRF microscopy has a limited excitation depth, it is 
highly desirable to seek alternatives that enable imaging 
inside cells and tissues with single-molecule sensitivity. 
When the focused spot under a TIRF condition is slightly 
shifted at the BFP such that the illumination gets very 
close to the critical angle, a pseudo TIRF or grazing inci-
dence illumination is generated (Figure 6F) [127, 128]. Its 
illumination depth (~1 μm) is particularly useful to study 
structures and dynamics of subcellular organelles that are 

Figure 6: Background suppression schemes for different imaging systems.
(A) CLSM, confocal laser scanning microscopy. (B) Epi, epi-illumination widefield microscopy. A beam focused at the center of BFP excites an 
entire imaging volume. (C) TIRF, total internal reflection fluorescence microscopy. A beam is focused to the edge of BFP. (D) s-TIRF, spinning 
TIRF generates uniform illumination by rotating the focused spot. (E) vSAF, virtual supercritical angle fluorescence. TIRF-like imaging 
is achieved by the subtraction of undercritical angle fluorescence (UAF) from all emission components. (F) Pseudo-TIRF with a deeper 
penetration depth of ~1 μm. (G) HILO, highly inclined and laminated optical sheet. Inclined illumination with a small FOV is typically used for 
minimizing out-of-focus background. (H) HIST, highly inclined swept tile microscopy. Inclined tile beam ensures a thinner illumination and 
larger FOV than HILO. Full FOV imaging is achieved by sweeping the tile together with a confocal slit detection. (I) LS, line-scanning confocal 
microscopy. Out-of-focus background fluorescence is rejected by a slit. (J) iLS, inclined line-scanning confocal microscopy. Inclined focused 
line is used for sample illumination with much lower illumination intensity than LS.
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positioned near the surface. Basically, this approach uti-
lizes a leaky far-field evanescent wave for excitation. To 
obtain a deeper imaging depth, for example, to visualize 
the entire nucleus of mammalian cells, the focused spot is 
further shifted toward the center of the BFP. In this case, 
a collimated beam refracted at the glass/water interface is 
propagated with an inclined angle (θ) with respect to the z 
axis (Figure 6G). Specially, if the inclined angle is high, for 
example, θ > 75°, a thin off-axis light sheet is generated, 
which significantly reduces out-of-focus background. This 
technique, called highly inclined and laminated optical 
sheet (HILO) microscopy [129, 130], has been widely used 
for 3D super-resolution imaging [131] and single-molecule 
analysis [132]. It is also possible to switch between TIRF 
and HILO illuminations by rapidly changing the beam 
position at the BFP [133]. Interestingly, despite its simple 
working principle, HILO imaging was reported more than 
two decades after TIRF microscopy was first demonstrated.

One drawback of HILO is that its beam thickness (Δz) 
is closely related to the imaging FOV. If aberrations are 
neglected, the beam thickness is roughly calculated as 
Δz = D/tan(θ), where D is the beam diameter. It means that 
a thinner illumination unavoidably results in a smaller 
illumination area, which greatly limits its applications. 
Therefore the commonly used HILO beam is relatively 
thick, about 5–7 μm. This problem has been recently 
resolved by highly inclined swept tile (HIST) microscopy 
[134]. An elongated beam prepared by a pair of cylindri-
cal lenses is focused on the BFP of the objective similar 
to HILO. Then a virtual light sheet is generated by later-
ally sweeping the tile beam and a confocal slit removes 
out-of-focus fluorescence (Figure 6H). In this way, HIST 
decoupled the beam thickness from the FOV and suc-
cessfully demonstrated large area 3D single-molecule 
imaging in the presence of high background [134]. Note 
that an instantaneous illumination intensity of HIST is 
just 5–10 times higher than TIRF so it can be considered 
as gentle illumination. It is feasible to further decrease the 
beam thickness and extend the imaging depth by utilizing 
adaptive optics [9] and PSF engineering [105], which will 
enhance contrast and minimize unwanted excitation.

3.3  �Parallelized illumination and line-
scanning confocal microscopy

Confocal microscopy provides tightly focused illumina-
tion and its pinhole effectively removes out-of-focus back-
ground [135]. Nevertheless, due to its high illumination 
intensity, confocal microscopy has been used mostly when 
the sample is strongly fluorescent and relatively insensitive 

to photobleaching and photodamage, which depend on 
the peak excitation intensity given the same light dose 
[136]. To lower the excitation intensity and speed up the 
imaging acquisition time, it was proposed to use paral-
lelized illumination instead of single-spot scanning. One 
approach called spinning disk confocal microscopy gener-
ates multifocal spots [137, 138] by a Nipkow-type pinhole 
array disk and a microlens array [139], and the generated 
signal is projected onto a camera. Its pattern is similar to 
multifocal SIM shown in Figure 4E, but has an equal-pitch 
spiral shape to ensure the beam uniformity. Video-rate 
imaging is accomplished by illuminating the sample with 
more than a few hundred foci [140]. Contrary to expecta-
tions, the optical sectioning of spinning disk system is 
substantially degraded by inevitable crosstalk between 
adjacent pinholes [141] unless multiphoton excitation is 
applied [142]. This drawback was mitigated by increasing 
the pitch between foci and decreasing the pinhole size, but 
this worsened the degree of parallelization [143].

Line illumination is another way to parallelize the 
excitation beam [144, 145]. A beam focused in one direction 
is scanned over the sample (Figure 6I), and a slit instead of 
a pinhole renders moderate optical sectioning, i.e. its out-
of-focus background scales with ~1/z as contrasted with 
~1/z2 for the single spot scanning confocal microscopy. 
Because of this, line-scanning (LS) confocal microscopy 
has not been popularly used in fluorescence imaging. 
However, a systematic comparison between spinning disk 
and LS revealed that LS indeed showed higher sensitiv-
ity and better depth discrimination (Figure  7) [146, 147]. 

Figure 7: Optical sectioning of confocal microscopy and its variants.
z-Responses of a fluorescent sample with 10 μm thickness for 
point-scanning (CLSM, solid black), line-scanning (LS, solid red), 
spinning disk (SDC, dashed blue) and inclined line-scanning (iLS, 
dashed green) confocal microscopy. SDC shows the highest offset 
background level due to a strong crosstalk between pinholes.
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Since then many applications have been demonstrated, 
including SMLM in cells and thick tissues [148, 149] and 
fast imaging of large specimens for histopathology [150, 
151]. The biggest advantage of LS is its simplicity [152]. 
Line illumination was also used in real-time two-photon 
imaging [153].

When the line illumination is titled with respect to the 
z-axis (Figure 6J), the excitation area gets wider, which 
slightly degrades spatial resolution but results in similar 
effects as parallelization. This technique showed reduced 
photobleaching while maintaining a similar optical sec-
tioning to conventional LS [154]. The instantaneous inten-
sity required to maintain the same SBR can be lowered by 
using multiple inclined beams distantly spaced from each 
other. This inclined line-scanning confocal microscopy 
can be regarded as a special case of HIST microscopy with 
a very thin illumination beam.

4  �Fast volumetric imaging

4.1  �Extended FOV and high resolution in 
light-sheet fluorescence microscopy 
(LSFM)

Confocal microscopy and other epi-illumination 
approaches provide good sectioning capability; however, 
they excite fluorophores in unwanted volumes, which 
leads to unavoidable photobleaching and phototoxicity 
in living biological samples. LSFM selectively excites the 
target of interest in the vicinity of imaging plane with an 
additional orthogonally placed objective lens [155–157], 
which maximizes the usable excitation photons for 3D 
time-lapse imaging [158]. Due to its capability of fast, 
gentle and long-term imaging [157], LSFM has shown 
remarkable success in diverse areas.

Typically a cylindrical lens was used to shape the 
Gaussian beam into a light-sheet for the sample excitation 
(Figure 8A), and the emitted fluorescence was detected 
by a large FOV camera [157]. To get a more uniform illu-
mination a focused laser beam was digitally scanned to 
form a time-averaged virtual light-sheet (Figure 8B) [159], 
but this approach required at least two orders of magni-
tude higher instantaneous illumination intensity than the 
former. In LSFM, non-uniformity due to strong absorption 
and scattering often occurs in the illumination, result-
ing in image artifacts such as stripes and shadows. This 
problem was alleviated by multidirectional illumination 
and reconstruction of these images [160, 161]. Another 
shortcoming of LSFM is that the available FOV, governed 

by the Rayleigh length of a propagating Gaussian beam, is 
coupled with the thickness of the illumination beam, i.e. 
yR = π · ω0

2/λ, where yR denotes the Rayleigh length, ω0 the 
beam waist and λ the excitation wavelength. Therefore, 
it is not feasible to conduct high-resolution subcellular 
imaging across a large FOV with a tightly confined Gauss-
ian beam (Figure 8A).

To overcome this problem an extended and uniform 
light-sheet was generated by scanning a Bessel beam 
[162], projected by an annular illumination at objec-
tive’s BFP [163, 164] using an SLM or an axicon [165, 166] 
(Figure 8C). The Bessel beam features an invariant trans-
verse profile as well as self-reconstruction that suppresses 
artifacts from scattering. Nevertheless, its narrow center 
peak is accompanied by strong side lobes, which gener-
ates substantial out-of-focus background [164]. This was 
reduced by structured illumination, two-photon excita-
tion or a confocal slit [164, 167, 168]. Later, a lattice light-
sheet was introduced by dithering a Bessel beam array 
that was carefully designed to be destructively interfered 
[169] to effectively suppress the side lobes (Figure 8D) 
[170]. Due to its thin illumination across large FOV, lattice 
light-sheet microscopy enables high-resolution long-term 
live-cell imaging with an extremely low light dose and 
is regarded as an ideal fluorescence imaging system for 
many biological studies. Alternatively, it was proposed to 
use pseudo-nondiffracting beams featuring attenuated 
side lobes by superimposing two coaxial Bessel beams 
[171, 172] (Figure 8E) or two cosine-Gauss beams [173, 174] 
(Figure 8F). However, they showed either a rather limited 
FOV or a relatively thicker beam as contrasted with the 
lattice light-sheet. Similarly, an Airy beam [175] was also 
used for LSFM with a cubic phase mask [176] but it is 
unlikely to be suitable to high-resolution imaging [158]. 
The second strategy to attain high contrast LSFM imaging 
with a large FOV is to sweep or tile Gaussian beams. For 
example, in axially swept light-sheet microscopy, a light-
sheet with a small Rayleigh length was rapidly scanned 
over large specimens by defocusing the beam in conjunc-
tion with a confocal slit for background rejection, result-
ing in a thin virtual light-sheet [177]. Another approach is 
to stitch multiple images generated by light-sheets via the 
Gaussian beam [178].

Many LSFM techniques use virtually generated light-
sheets. As discussed earlier, they require much higher 
peak excitation power. Similar to epi-illumination, paral-
lelization of the beam can lower the peak power without 
sacrificing imaging speed [179]. Recently, a new approach 
called field synthesis was demonstrated which can gen-
erate any scanned or dithered light sheet [180]. Whereas 
conventional methods scanned the beam laterally on 
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the sample plane, for field synthesis a focused line was 
scanned over the objective BFP, which generated instan-
taneous light-sheet patterns accordingly (Figure 8G). As 
the illumination profile at any moment covers almost 
the same excitation area, field synthesis ensured a much 
lower peak illumination intensity, or in other words, less 
photobleaching and photodamage to samples [180]. Simi-
larly, it was also reported to use a line Bessel sheet using a 
slit and annular ring mask [181].

Other illumination schemes can be combined 
with LSFM to increase spatial resolution, such as SIM 
[65, 170, 182] and STED/RESOLFT [183, 184]. Adaptive 

optics has also been shown to be useful for correcting 
illumination and/or detection to clearly visualize thick 
specimens [185–187]. On the other hand, the require-
ment of two closely placed objectives has greatly limited 
the available NA for both the excitation and fluores-
cence detection, especially preventing the observation 
of single-molecules with high SNR [188, 189]. Many 
approaches have solved this problem by introducing new 
excitation arrangements [190], for example, the addi-
tion of a small reflective device in the sample chamber 
[191], the design of special sample holders [192–195], or 
the usage of auxiliary optics [174, 196] for delivering a 

Figure 8: Beam shaping for light-sheet fluorescence microscopy.
(A) SPIM, selective plane illumination microscopy. A thicker beam is required to generate a larger FOV light-sheet with a low NA objective. 
(B) DSLM, digital scanned laser light-sheet fluorescence microscopy. A pencil-like excitation beam is scanned across FOV. (C) Bessel, Bessel 
beam light-sheet microcopy for generating thin illumination and large FOV. (D) Lattice, lattice light-sheet microscopy. (E) Bessel droplet, 
Side lobes of the Bessel beam are minimized by the interference of two beams. (F) LITE, lateral interference tilted excitation. (G) Universal 
light-sheet generation. Any scanned or dithered light-sheet illumination can be synthesized by scanning the aperture of BFP with a focused 
line. An example here is a synthesized Bessel beam. Scale bars, 2 μm (xz and yz planes), 5 μm (xy plane).
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thin light-sheet into the sample. Alternatively, single 
objective-based LSFM has emerged to circumvent this 
issue. This approach used inclined illumination in a 
standard microscope, but an additional two objectives 
were used to relay an intermediate image with minimal 
spherical aberration and to set the image on the focal 
plane by tilting the last objective [197, 198]. Recently, the 
low detection efficiency of single objective LSFM has 
been significantly improved by extending the collection 
angle [199, 200].

4.2  �Extended imaging depth for in vivo 
imaging

Although LSFM enables fast volumetric imaging with 
a minimal light dose, it has limitations when studying 
opaque samples, such as mammalian brains and when 
interrogating awake mice [201]. In this case, two-photon 
excitation laser scanning microscopy has provided a solu-
tion to suppress the strong scattering and facilitate its 
implementation to study freely behaving animals [202, 
203]. However, as this is still a point scanning technique, 
various beam shaping approaches have been developed to 
achieve fast volumetric imaging, particularly toward less 
or no serial z-scanning.

One approach is to use an elongated excitation by 
generating a Bessel beam and collecting the fluorescence 
signal from the illuminated volume [204, 205]. As targets of 
interest in neuroscience are usually sparsely distributed, 
it is unlikely that each feature is excited by the elongated 
beam at the same time. Scanning the Bessel beam on the 
x-y plane gives a 2D projected image of the 3D sample at 
a video rate, which makes it unnecessary to obtain mul-
tiple z-stacks. Instead of the axially extended beam, it is 
possible to acquire several 2D images simultaneously at 
different focal planes by generating multiple beamlets at 
different depths [206]. In this case, slightly different tem-
poral profiles of each beamlet made them distinguishable.

Other approach is to use temporal focusing [207, 208]. 
When ultrafast pulses broadened by a diffraction grating 
are imaged on the sample through a lens and objective, 
two-photon excitation occurs dominantly on the focal 
plane. This effectively sharpens the excitation beam along 
the z-axis and the depth of field can be tuned irrespec-
tive of the lateral PSF by changing the temporal profile of 
the pulses [207]. In addition, the temporal focusing has 
shown resistance to scattering in tissues [209, 210]. These 
great features have been combined with line-illumination 
[211–213] and wide-field illumination [207, 214] for fast vol-
umetric two-photon imaging. If high spatial resolution is 

not required, for example, when observing mouse brains 
with a single neuron resolution, the excitation beam can 
be shaped to an isotropic PSF with a few microns in size, 
which was not attainable by a Gaussian beam [215]. This 
illumination extends the imaging depth and achieves con-
siderable lateral parallelization.

An extended imaging depth can also be achieved by 
engineering the detection PSF. One simple implementa-
tion is to encode the wavefront in the BFP using a cubic 
phase mask which shows a defocus invariance [216]. The 
whole volume excited by epi-illumination [217] or light-
sheet illumination [218] was projected to a single 2D image 
by this phase mask. However, the resulting images con-
tained a substantial amount of side lobes, necessitating 
careful deconvolution and making the images immensely 
dim. Alternatively, it was proposed to image multiple 
focal  planes in a single exposure of the camera [219]. 
A distorted diffraction grating [220] was designed to split 
fluorescence light depending on the degree of defocus. 
Whereas it enabled one to monitor nine focal planes 
simultaneously, the divided fluorescence signal lowered 
the SNR [221].

5  �Conclusions
Myriads of new fluorescence imaging techniques have 
advanced imaging performance in terms of spatial 
resolution, SNR, 3D contrast, imaging speed and pho-
todamage. Unfortunately, there are no magic bullets 
in fluorescence microscopy. Each method has its own 
pros and cons, and thus one needs to choose the proper 
imaging tool depending on their specific application. 
Notably, tailored beams have been critical drivers to 
success and often provided a breakthrough. Tailored 
beams have gained notable attention and have played 
important roles in other research areas [222], includ-
ing material fabrication [223, 224], optical manipula-
tions [225], microfluidics [226], optogenetics [227], etc. 
We envision that novel structured beams will provide 
fluorescence imaging with new functions and extend its 
applications to new research areas.
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