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Abstract: In this work, a series of three and four-color
tandem white organic light-emitting diodes (WOLEDs)
are developed by using the optimized charge generating
unit (CGU) to connect two electroluminescence (EL) units
with symmetrical emitting layers, in which symmetrical
emitting layers are constructed based on the mixed hosts;
sandwiched between hole and electron-transporting
hosts and the light emitted from two EL units that are
absolutely complementary for forming white emission.
All resulting tandem WOLEDs realize good white emission
with maximum color rendering index (CRI) beyond 77 and
90 for three and four-color white devices and extremely
high EL spectra stability, and also achieve high device
efficiency with maximum external quantum efficiency
(EQE) exceeding 33.10%. For example, for the optimized
four-color tandem WOLED, the maximum CRI and EQE
of 91 and 34.78% are demonstrated and only very slight
CIE (Ax, Ay) variation of (0.002, -0.010) was observed at a
wide luminance range from 170.9 cd/m? to 13,870 cd/m?. To
the best of our knowledge, this is the first tandem WOLED
with only two EL units realizing such high device perfor-
mances. More importantly, the proposed tandem WOLEDs
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here avoid introducing carrier or exciton blocking layer
or using more EL units to realize high color quality white
emission that provides a novel approach to develop sim-
ple, but high-performance tandem WOLEDs.
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stability.

1 Introduction

White organic light-emitting diodes (WOLEDs) have
attracted great attentions owing to their unique merits
such as self-emitting, surface light source, flexibility,
transparency, low cost, and high efficiency etc., which
indicate that they have great potential applications in
full-color flat-panel display and solid-state lighting fields
[1-6]. In recent years, extensive efforts have been done on
WOLEDs for achieving high device efficiency, color ren-
dering index (CRI), and color stability that are required
for lighting applications [6-12]. These extensive research
works also contributed to great progress on WOLEDs, for
example, some papers reported WOLEDs with external
quantum efficiency (EQE) beyond 20% [6, 9, 11-14], which
is considered as a statistical upper limit value for flat
panel structure OLEDs [15]. A few research also demon-
strated WOLEDs with very high CRI of >90, which is well
above the threshold of 80 for WOLEDs applied in lighting
field [7-8, 16-18].

Typically, the single and multiple-emissive layers
(EMLs) device structures have been widely employed
to develop high-performance WOLEDs. The structure
for these devices is relatively simple and the total thick-
ness of organic layers in these devices is only about
100-150 nm, inducing a time-efficient fabrication process
[1-3, 5-12, 19-20]. However, these WOLEDs generally
show short device lifetime (L,), which can be ascribed
to; (i) The thin thickness of organic layers makes them
sensitive to the surface roughness and particles, and
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the materials in EMLs are more easily oxidized [20]; (ii)
The L, of OLEDs usually follows a power law depend-
ence with respect to the applied current density (J)
(L,~<JP 1.5<B<3)[21, 22], to reach a practical luminance
of 3000-5000 cd/m?, these white devices need higher
current density, which also drastically causes a reduced
device lifetime.

Another main issue for single and multiple-EMLs
white devices is poor color stability originated from spec-
tral variation with increasing operating voltage, especially
for three or more color WOLEDs [1, 3, 23, 24]. For example,
in single EML WOLEDs, different color emitters are doped
into a host with very precise doping ratios, where a slight
change in doping concentration will lead to an obvious
change in EL spectra, and the excitons in emitter sites of
low energy level are more easily saturated by energy trans-
fer from high energy level emitters with increasing operat-
ing voltage, making EL spectra variation under different
operating voltage [25, 26]. In multiple-EMLs WOLEDs,
carrier recombination zone shift in different EMLs also
leads to a huge EL spectra change with the increase of
operating voltage [20, 27, 28]. Indeed, the introduction of
carrier or exciton blocking layer can effectively improve
the color stability of multiple-EMLs WOLEDs, but such
device structures generally cause a decrease in device
efficiency [23, 27]. Especially, for three or more color white
devices, it is still hard to realize a good trade-off between
device efficiency and color stability.

Tandem OLEDs, with two or more individual EL units
vertically stacked and electrically connected using charge
generation unit (CGU), can effectively suppress the above-
defined issues in the single and multiple-EMLs WOLEDs
[20, 29-33]. On the one hand, tandem OLEDs possess a
thicker thickness of organic layers and exhibit a lower
current density reaching the same luminance relative to
the single emitting unit devices, which contribute to a sub-
stantially improved device lifetime [29, 30]. On the other
hand, in traditional tandem WOLEDs, every color EML is
usually located at individual EL unit, which completely
eliminates the problems of energy transfer in different
emitters and carrier recombination zone shift in different
EMLs, inducing obviously improved color stability [31-33].
To obtain high CRI, three or more individual EL units need
to be incorporated in the same tandem WOLED. Recently,
Kwon et al. fabricated three-color tandem WOLEDs con-
taining blue, green, and red three-individual EL units by
using two CGUs, and as expected the device demonstrated
a maximum CRI of 93 [20]. However, this white device has
a number of functional layers beyond 15, indicating very
complicated device structure and long-time preparation
process. Thus, making tandem WOLEDs with only two
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EL units to simultaneously achieve extremely high effi-
ciency/CRI/color stability is still a challenge.

In this work, we have proposed a novel tandem white
device structure, where the tandem white devices contain
only two EL units with complementary symmetrical EMLs
(the colors emitted from EMLs are absolutely symmetri-
cal), and a series of three and four-color tandem WOLEDs
based proposed novel device structure were developed.
All resulting tandem WOLEDs realize good white emis-
sion with maximum CRI beyond 77 and 90 for three and
four-color white devices, respectively, and also exhibit
extremely high EL spectra stability at a wide luminance
range from hundreds to tens of thousands. In addition, all
resulting white devices also achieve high device efficiency
with maximum EQE exceeding 33.10%. For example, for
the optimized four-color tandem WOLED, the maximum
CRI and EQE of 91 and 34.78% are demonstrated, and
only very slight CIE (Ax, Ay) variation of (0.002, —0.010)
is observed at a wide luminance range from 170.9 cd/m? to
13,870 cd/m?>.

2 Experimental

2.1 Material information

All materials involved in device fabrication were pur-
chased through commercial sources and directly used for
device fabrication without further purification. The chem-
ical structure of organic materials and energy levels of all
materials are shown in Figure 1.

2.2 Device fabrication and characterization

All OLEDs are fabricated on the pre-patterned indium tin
oxide (ITO)/glass substrates, and ITO film shows a sheet
resistance of 15 Q/O. All OLEDs have an active emissive
area of 3 mm x 3 mm, defined by the overlap between the
front ITO anode and the rear Al cathode. The detailed
device fabrication and performance test processes are
displayed in Section S1 in Supporting information, which
are consistent with the work, previously reported by our
group [9, 17, 18]. The films transmittance was recorded
by a U-3900 spectrophotometer. The EQE was calculated
using the current density-voltage-luminance (J-V-L)
characteristics and spectra data. All devices and films
were immediately characterized after the fabrication
without encapsulation in ambient atmosphere at room
temperature.
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Figure 1: The chemical structure of organic materials and energy levels of all materials involved in this work.

3 Results and discussion

3.1 Optimization of charge generation unit

To realize high performance tandem OLEDs, an effective
CGU is the prerequisite [29, 30, 32]. We have noted that
recently, Ma et al. reported a novel CGU composition
consisting of 1,4,5,8,9,11-hexaazatriphenylene hexacar-
bonitrile (HAT-CN) and 4,40-cyclohexylidenebis[N,N-
bis(p-tolyl)aniline] (TAPC), and demonstrated a series
of highly efficient tandem monochrome and white
OLEDs [34, 35]. Here, we employed the similar CGU of
LiF/Al/HAT-CN/HAT-CN:TAPC as in the work reported

by Ma et al. [35], and demonstrated a series of tandem
blue OLEDs by optimizing the thickness of Al film in the
CGU. The detailed device structure is ITO(180 nm)/HAT-
CN(5 nm)/TAPC(40 nm)/4,4",4”-Tris(carbazol-9-yl)triph-
enylamine (TCTA):1,3,5-Tri[(3-pyridyl)-phen-3-yl]benzene
(TmPyPB) (1:1): 15wt% bis(3,5-difluoro-2-(2-pyridyl)
phenyl -(2-carboxypyridyl) iridium(III) (FIrpic) (20 nm)/
TmPyPB(15 nm)/TmPyPB: 10wt%LiF(25 nm)/LiF(1 nm)/
Al(y nm)/HAT-CN(10 nm)/HAT-CN: TAPC(2:1, 80 nm)/
TAPC(40 nm)/TCTA:TmPyPB (1:1): 15wt%FIrpic(20 nm)/
TmPyPB(15 nm)/TmPyPB: 10wt%LiF(25 nm)/LiF(1 nm)/
Al(100 nm), where y =1, 3, 5, and 7 corresponding to
devices B1, B2, B3, and B4, respectively, and the device
structure diagrams are shown in Figure S1 in Supporting
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Figure 2: (A) The J-V-L curves of tandem blue devices B1-B4; (B) The CE-L (B) and EQE-L (C) curves of all single unit and tandem blue
devices BO—B4; (D) The EL spectra and CIE coordinates of all single unit and tandem blue devices BO-B4 at 1000 cd/m?2. The single unit
reference device BO is ITO(180 nm)/HAT-CN(5 nm)/TAPC(40 nm)/TCTA:TmPyPB (1:1): 15 wt%Flrpic(20 nm)/TmPyPB(15 nm)/TmPyPB:

10 wt%LiF(25 nm)/LiF(1 nm)/Al(100 nm).

Table 1: The EL performance parameters summary of all blue OLEDs involved in this paper.

Device V.2 (V) Maximum CIE® Peak®
CE (cd/A) PE (Im/W) EQE (%)

BO 3.0 43.33 45.37 20.52 (0.163, 0.346) 472

B1 12.0 72.52 16.25 33.44 (0.165,0.367) 476

B2 6.0 90.16 39.51 38.38 (0.177, 0.407) 476

B3 6.0 68.41 33.06 27.81 (0.193,0.422) 476

B4 6.0 57.88 28.92 23.59 (0.200, 0.417) 476

aTurn-on voltage estimated at a brightness of >1 cd/m?2.
°CIE and peak values measured at a luminance of 1000 cd/m?2

information. These devices are used to further opti-
mize the charge generation and extraction ability of
CGU, and the objective is to obtain an optimal CGU
applied in tandem WOLEDs fabrication later. In these
devices, except for the CGU of LiF(1 nm)/Al(y nm)/HAT-
CN(10 nm)/HAT-CN: TAPC(2:1, 80 nm), 5 nm-thick HAT-CN
layer is used as a hole injection layer; 40 nm-thick TAPC
layer is used as a hole transporting layer; 20 nm-thick
TCTA:TmPyPB(1:1): 15wt%FIrpic layer is used as a blue

EML; 15 nm thick TmPyPB layer and 25 nm thick TmPyPB:
10wt%LiF layer together used as an electron transporting
layer; 1 nm thick LiF layer is used as electron injection
layer; ITO(180 nm) and Al(100 nm) are used as anode and
cathode, respectively.

Figure 2 reveals the J-V-L (except for device
BO shown in Figure S2), current efficiency — luminance
(CE-L), and EQE-luminance (EQE-L) characteristic
curves and EL spectra of all single unit blue device BO and
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Figure 3: (A) The J-V curves of carrier-only devices based the CGU with different Al film thickness of 1, 3, 5, and 7 nm; (B) the transmittance

curves of ITO(180 nm) and ITO(180 nm)/Al(1, 3, 5, and 7nm) layers.

tandem blue devices B1-B4. The detailed performance
parameters for all blue devices are also summarized in
Table 1. Clearly, with the increase of thickness for Al film
from 1 to 7 nm, the current density for corresponding
blue devices B1-B4 shows an increasing trend under the
same voltage, which is attributed to an enhanced elec-
tron extraction ability from CGU to adjacent TmPyPB:LiF
layer because of thicker Al film [35]. This is further veri-
fied by the carrier-only devices of ITO/TmPyPB(15 nm)/
TmPyPB: 10wt% LiF(25 nm)/LiF(1 nm)/Al(1, 3, 5, and
7 nm)/HAT-CN (10 nm)/HAT-CN:TAPC (2:1, 80 nm)/
TAPC(40 nm)/AI(100 nm), where the current density for
these devices reveals a highly consistent increasing trend
as the case in devices B1-B4 as increasing Al film thick-
ness, shown in Figure 3A. However, from Figure 2B—C and
Table 1, the maximum device efficiencies [CE, EQE, and
power efficiency (PE)] for devices B1-B4 exhibit a trend of
increasing first and then decreasing. This is because the
increasing thickness of Al film leads to a reducing trans-
mittance of CGU, which is also confirmed by the transmit-
tance testing of ITO and ITO/AI(1, 3, 5, and 7 nm) layers
in Figures 3B and 2D, it is observed the EL spectra from
devices BO to B4 present relatively increased shoulder
peak at about 496 nm, which is attributed to the enhanced
micro-cavity effect because of the reducing transmittance
for CGU as the increasing thickness of Al film [36, 37]. In
terms of the above comparison, the tandem blue device
B2 with 3 nm thick Al film in CGU, realizes the best EL per-
formance. For example, the device B2 shows a relatively
low turn-on voltage of 6 V and the maximum CE, EQE,
and PE reach 90.16 cd/A, 38.38%, and 39.51 Im/W, where
the CE for device B2 is higher than the 2-fold of CE for the
reference device BO. Such results indicate the optimized
LiF(1 nm)/Al3 nm)/HAT-CN(10 nm)/HAT-CN:TAPC(2:1,
80 nm) unit is a very effective CGU, which can be well

employed to develop high-performance tandem WOLEDs
later.

3.2 Single unit WOLEDs with symmetrical
EMLs

In the previous work, we demonstrated the sandwich host
structure, with mixed hosts sandwiched between hole
and electron-transporting hosts, can well limit carrier
recombination zone in the mixed-host layer located at
the middle, and the carrier recombination zone is inde-
pendent on the driving voltage, which are beneficial for
structuring WOLEDs [38]. If two different emitters are
doped in the middle and sides of sandwich host layer to
form symmetrical EMLs WOLEDs, for example, the typical
yellow/blue/yellow (Y/B/Y)-symmetrical EMLs WOLED,
which can realize high efficiency and high color stability
two-color white emission. Further, using CGU to connect
two complementary single unit WOLEDs with symmetri-
cal EMLs [e.g. Y/B/Y- and red/yellow/red (R/Y/R)-symmet-
rical EMLs single unit WOLEDs or Y/B/Y- and red/green/
red (R/G/R)-symmetrical EMLs single unit WOLEDs], the
resulting tandem OLEDs with only two EL units can theo-
retically realize three-color or four-color white emission
for high color quality, and they also could combine the
advantage of high efficiency and color stability for sym-
metrical EMLs single unit WOLEDs. Based on the above
analysis, we first prepared the Y/B/Y (device S1)-, R/G/R
(device S2)-, and R/Y/R (device S3)-symmetrical EMLs
single unit WOLEDs and investigate their EL performance,
and their device structure diagrams are shown in Figure 4.

In these devices, except for symmetrical EMLs located
in the middle of the devices, other layers serve the same
function as the above blue devices. In symmetrical EMLs,
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Figure 5: (A) The EL spectra of Firpic, Ir(ppy),, Ir(BT),(acac), and Ir(pig),(acac) based monochrome OLEDs; (B-D) The EL spectra of all single
unit white devices S1-S3, and luminance, CIE coordinates, CCT, and CRI of these device at different voltages are also listed.
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Table 2: The EL performance parameters summary of single unit white devices S1-S3.

Device V.2 (V) Maximum CIE(x, y)© CCT(K)< CRI®
Lb (cd/m?) CE (cd/A) PE (Im/W) EQE (%)

S1 2.8 19,620 58.06 60.80 22.11 (0.439, 0.452) 3316 60

S2 2.7 54,380 24.86 28.34 16.68 (0.520, 0.449) 2278 67

S3 2.8 56,150 40.80 47.45 19.89 (0.551, 0.444) 1990 55

aTurn-on voltage estimated at a brightness of >1 cd/m?2.
°L is the abbreviation of luminance.
¢CIE, CCT, and CRI values measured at5 V.

TACT serve as hole-transporting hosts; TmPyPB (in device
S1) and Bis(2-(2-hydroxyphenyl) -pyridine)beryllium
(Bepp,) (in device S2and S3) serve as electron-transporting
hosts; Bis(3,5-difluoro-2-(2-pyridyl) phenyl-(2-carboxypyri-
dyl)iridium(III) (FIrpic), tris(2-phenylpyridine)iridium(III)
(Ir(ppy),), bis(2-phenylbenzothiazolato)(acetylacetonate)
iridium(III) (Ir(BT),(acac)), and bis(1-phenylisoquinoline)
(acetylacetonate)iridium(III) (Ir(piq),(acac)) are employed
as blue, green, yellow, and red emitters, respectively. In
Figure 5A, it can be seen that the EL spectra for Flrpic,
Ir(ppy),, Ir(BT),(acac), and Ir(piq),(acac) based mono-
chrome OLEDs cover almost all visible wavelengths from
380 to 780 nm, indicating the device, using four emitters,
can obtain the broad spectrum white emission for high
color quality [4, 8].

Figure 5B-D shows the EL spectra of all single unit
white devices S1-S3, where the luminance, CIE coordi-
nates, correlated color temperature (CCT), and CRI of
these devices at different voltages are also listed. The EL
spectra for devices S1-S3 all contain two emission peaks
which are well consistent with the individual EL emission
peak of two emitters employed in corresponding individ-
ual device. As the voltage increases from 4 V to 7 V, the
corresponding EL spectra for all devices S1-S3 are almost
completely overlapping, exhibiting extremely high color
stability, which is ascribed to the strictly limited carrier
recombination zone by the sandwich host structure [38].
In addition, from Figure S2 in Supporting information
and Table 2, all devices S1-S3 also achieve excellent EL
performance. For example, all devices S1-S3 show a rela-
tively low turn-on voltage of 2.7-2.8 V, and the maximum
luminance, CE, PE, and EQE reach 19,620 cd/m?, 58.06
cd/A, 60.80 Im/W, and 22.11% for device S1, 54,380 cd/m?,
24.86 cd/A, 28.34 Im/W, and 16.68% for device S2, and
56,150 cd/m? 40.80 cd/A, 4745 lm/W, and 19.89% for
device S3, respectively. The variation in EQE for three
devices S1-S3 is attributed to the difference of EL per-
formance for different emitters. Here, the achievement
of high efficiency and color stability for Y/B/Y(device
S1)-, R/G/R(device S2)-, and R/Y/R(device S3)-single unit

WOLEDs can be ascribed to the precise management of
carrier recombination zone by the sandwich host struc-
ture and they also provide the basis for developing high
efficiency/CRI/color stability tandem WOLEDs later.

3.3 Tandem WOLEDs stacked with two
symmetrical EL units

On the basis of obtaining optimized CGU of LiF(1 nm)/
Al(3 nm)/HAT-CN(10 nm)/HAT-CN:TAPC(2:1, 80 nm) at
Section 3.1 and combining the advantage of single unit
WOLEDs with symmetrical EMLs, we have first devel-
oped a series of tandem three-color WOLEDs, where the
devices are fabricated by using the optimized CGU to
connect Y/B/Y- and R/Y/R-single unit WOLEDs, shown in
Figure 6. The detailed device structure is ITO(180 nm)/
HAT-CN(5 nm)/TAPC(40 nm)/TCTA: 6wt%Ir(piq),(acac)
(x nm)/TCTA:Bepp,(1:1): 8wt%Ir(BT),(acac) (15 nm)/
Bepp,:  6wt%lr(pig),(acac)(y  nm)/Bepp,(15 nm)/
Bepp,: 10 wt% LiF(25 nm)/LiF(1 nm)/Al(3 nm)/HAT-
CN(10 nm)/HAT-CN:TAPC(2:1, 80 nm)/TAPC(40 nm)/
TCTA: 6wt% Ir(BT),(acac) (y nm)/TCTA:TmPyPB(1:1):
15wt%FIrpic(15 nm)/TmPyPB: 6wt% Ir(BT),(acac)(x nm)/
TmPyPB (15 nm)/TmPyPB: 10 wt%LiF(25 nm)/LiF(1 nm)/
Al(100 nm), where y = 2, 3, and 5 nm corresponding to
tandem white devices W1, W2, and W3, respectively. In
these devices, the change (x =2, 3, and 5) of thickness
for hole and electron-transporting hosts doped with emit-
ters layer is used to tune the EL spectra of tandem white
devices for obtaining high quality white emission.

From the EL spectra of tandem WOLEDs W1-W3
in Figure 7A-C, as we expected the tandem devices
W1-W3 successfully realize white emission, and the EL
spectra are obviously the combination of the spectra for
Y/B/Y- and R/Y/R-single unit WOLEDs, having three main
emission peaks at about 476 nm, 568 nm and 616 nm, which
are well originated from emissions of Firpic, Ir(BT)z(acac),
and Ir(piq),(acac), respectively [8, 38]. In addition, as x
increases from 2, 3, to 5, the corresponding white devices
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Figure 6: The device structure diagram of all tandem three-color (W1-W3) and four-color (W4—-W6) WOLEDSs involved in this work, where the

CGU is LiF(1 nm)/Al(3 nm)/HAT-CN(10 nm)/HAT-CN:TAPC(2:1, 80 nm).

show gradually reducing blue and yellow emission inten-
sity in EL spectra, and the reason is that the excitons
generated in the middle mixed hosts EMLs can transfer
more energy to the thicker yellow and red-doped EMLs
on both sides. The weakened yellow intensity is because
of the energy transfers from mixed hosts yellow EML to
adjacent red-doped EMLs is more effective than that from
the mixed hosts blue EML to adjacent yellow-doped EMLs.
The reduced blue and yellow intensity contributes to an
increasing CRI value, reaching 80 and 82 for device W2
and W3 in the measurable ranges [8, 17, 18]. More impor-
tantly, these tandem WOLEDs inherit well the advantages
of color stability of Y/B/Y- and R/Y/R-single unit WOLEDs
[20, 29, 33]. Under a wide voltage range of 7-13 V (corre-
sponding hundreds to tens of thousands of luminance),
all devices W1-W3 exhibit extremely high color stability
with CIE (Ax, Ay) coordinates change of < +0.007, £0.011.

Figure 7D-F and Table 3, the tandem white devices
W1-W3 show a slightly lower turn-on voltage of 5.5 V than
the sum (5.6 V) of turn-on voltage for Y/B/Y- and R/Y/R-
single unit WOLEDs owing to the effective CGU [29, 30,
34, 35]. These devices also achieve excellent EL perfor-
mance with the maximum luminance, CE, PE, and EQE
up to 45,010 cd/m?, 76.37 cd/A, 39.87 Im/W, and 35.40%
for device W1; 42,210 cd/m?, 66.06 cd/A, 33.94 Im/W, and
33.42% for device W2; and 37,670 cd/m?, 60.67 cd/A, 31.29
Im/W, and 33.10% for device W3, respectively. The slight

reduced EQE from device W1 to device W3 is mainly due
to a relatively lower exciton radiation efficiency for red
Ir(pig),(acac) [39].

Considering relatively poor color quality for tandem
three-color WOLEDs, we further prepared tandem four-
color WOLEDs by using the optimized CGU to connect
Y/B/Y- and R/G/R-EMLs single unit WOLEDs, shown in
Figure 6. The detailed device structure is ITO(180 nm)/
HAT-CN (5 nm)/TAPC (40 nm)/TCTA: 6 wt%Ir(piq),(acac)
(x nm)/TCTA:Bepp,(1:1): 8 wt% Ir(ppy),(15 nm)/
Bepp,: 6 wt%lIr(piq),(acac)(y nm)/Bepp,(15 nm)/
Bepp,: 10 wt%LiF(25 nm)/LiF (1 nm)/Al (3 nm)/HAT-CN
(10 nm)/HAT-CN:TAPC(2:1, 80 nm)/TAPC (40 nm)/
TCTA: 6 wt% Ir(BT),(acac)(y nm)/TCTA: TmPyPB(1:1):
15 wt%FIrpic(15 nm)/TmPyPB: 6 wt% Ir(BT),(acac)(y nm)/
TmPyPB(15 nm)/TmPyPB: 10 wt%LiF(25 nm)/LiF(1 nm)/
Al (100 nm), where Y is set to 2, 3, and 5, corresponding
to devices W4, W5, and W6, respectively. Here, the func-
tion for change of ; value is the same like in tandem three-
color devices W1-W3.

AsshowninFigure 8A-C, compared withabovedevices
W1-W3, the tandem devices W4-W6 realize better white
emission, where the EL spectra for devices W4-W6 visibly
contain blue, green, yellow, and red emission peaks from
Flrpic, Ir(ppy),, Ir(BT),(acac), and Ir(pig),(acac), respec-
tively, and cover a large part (450-750 nm) of visible light
band. The broad EL spectra coverage and the dominated
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Figure 7: (A-C) The EL spectra of tandem white devices W1-W3, and luminance, CIE coordinates, CCT, and CRI of these devices at different
voltages are also listed; (D—F) The J-V-L (D), CE-L-EQE (E), and PE-L curves of tandem white devices W1-W3.

Table 3: The EL performance parameters summary of three- and four-color tandem white devices W1-Wé.

Device V. (V) Maximum CIE* CCT (K)* CRI¢
L (cd/m?)® CE (cd/A) PE (Im/W) EQE (%)
w1 5.5 45,010 76.37 39.87 35.40 (0.508, 0.421) 2213 77
W2 5.5 42,210 66.06 33.94 33.42 (0.528, 0.415) 1997 80
W3 5.5 37,670 60.67 31.29 33.10 (0.536,0.411) 1910 82
W4 5.5 39,070 76.16 40.16 34.78 (0.459, 0.438) 2914 91
W5 5.5 35,930 74.61 40.37 34.72 (0.480, 0.434) 2610 92
wé 5.5 27,170 66.83 34.87 33.43 (0.495, 0.425) 2382 94

aTurn-on voltage estimated at a brightness of >1 cd/m?2.
°L is the abbreviation of luminance.
¢CIE, CCT, and CRI values measured at 13 V.

long band emission contribute to extremely high color
quality with CCT of <3000 K and maximum CRI value of
>90 for devices W4-W6 [2, 8, 24]. As  increases from 2, 3,
to 5, the corresponding devices W4-W6 present the same
trend of gradually reducing emission of short-wave light
(blue, green, and yellow) with an increasing CRI value,
reaching 92 and 94 for device W5 and W6 at a voltage of
13V [8, 17, 18]. The reason is consistent in the above expla-
nation in devices W1-W3. Moreover, all devices W4-W6
also show high color stability with only very slight vari-
ation in yellow waveband in their EL spectra, especially
for device W4 with CIE (Ax, Ay) coordinate change of only
(0.002, —-0.010) at aluminance range of 170.9-13,870 cd/m?.
Such repeatable striking results further demonstrate the

proposed device structure and can be generally employed
to develop tandem three-color or four-color WOLEDs with
high color quality and color stability.

From Figure 8D-F and Table 3, it can be easily seen
that tandem white devices W4-W6 also accomplish the
common EL properties for universal tandem OLEDs. A low
turn-on voltage of 5.5 V is obtained, which is just the sum
of the turn-on voltages for above Y/B/Y- and R/G/R-single
unit WOLEDs. The maximum luminance, CE, PE, and EQE
reach 39,070 cd/m?, 76.16 cd/A, 40.16 Im/W, and 34.78%
for device W4, 35,930 cd/m?, 74.61 cd/A, 40.37 Im/W, and
34.72% for device W5, and 27,170 cd/m?, 66.83 cd/A, 34.87
Im/W, and 33.43% for device W6, respectively. Further,
these devices also reveal relatively low efficiency roll-off.
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Figure 8: (A-C) The EL spectra of tandem four-color white devices W4-
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W6, and luminance, CIE coordinates, CCT, and CRI of these device

at different voltages are also listed, and the inset in (A-C) are the photos of corresponding devices W4-W6 at a luminance of 3000 cd/m?;
(D-F) The J-V-L (D), CE-L-EQE (E), and PE-L (F) curves of tandem four-color white devices W4-Wé.

For example, at a practical luminance of 3000 cd/m?,
the CE and EQE are still up to 61.40 cd/A and 28.13%
for device W4, 58.10 cd/A and 27.04% for device W5,
and 49.06 cd/A and 24.73% for device W6, respectively.
The optimized tandem white device W4 simultaneously
achieves superior device efficiency (76.16 cd/A)/CRI (91)/
color stability, which, is the first tandem white OLED
with only two EL units realizing such high device perfor-
mance, to the best of our knowledge [29, 34, 35, 40-48]
and the detailed comparisons are shown in Table S1 in
Supporting information. The achievement for such high
device performance is attributed to i) an excellent charge
generation ability for the optimized CGU; ii) the good
management of carrier recombination zone and precise
manipulation and efficient utilization of generated exci-
tons by symmetrical EMLs [38]. It is worth mentioning
that the proposed tandem white devices avoid introduc-
ing carrier or exciton blocking layer or using more EL
units to realize high color quality white emission, which
provides a new approach to develop simple but high-per-
formance tandem WOLEDs.

4 Conclusions

In this work, we have proposed a novel tandem white
device structure containing only two EL units with

symmetrical EMLs, in which symmetrical EMLs are con-
structed based on the mixed hosts, sandwiched between
hole and electron-transporting hosts and the light
emitted from two EL units are absolutely complementary
for forming white emission. Based on the above proposal
novel device structure, a series of three- and four-color
tandem WOLEDs are developed by using the optimized
CGU to connect two EL units with symmetrical EMLs.
All resulting tandem WOLEDs realize good white emis-
sion with maximum CRI beyond 77 and 90 for three and
four-color white devices, respectively, and also exhibit
extremely high EL spectra stability at a wide luminance
range from hundreds to tens of thousands. In addition,
all resulting white devices also achieve high device
efficiency with maximum EQE exceeding 33.10%. For
example, for the optimized four-color tandem WOLED,
the maximum CRI and EQE of 91 and 34.78% are dem-
onstrated, and an only very slight CIE (Ax, Ay) varia-
tion of (0.002, —0.010) is observed at a wide luminance
range from 170.9 cd/m? to 13,870 cd/m?. To the best of our
knowledge, this is the first tandem WOLED with only two
EL units realizing such high device performance. More
importantly, the proposed tandem WOLEDs here avoid
introducing carrier or exciton blocking layer or using
more EL units to realize high color quality white emis-
sion, which provides a new approach to develop simple
but high-performance tandem WOLEDs.
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5 Supporting information

The detailed OLEDs fabrication and testing process, the
structure diagram of blue device BO-B4, the J-V-L curves
of device BO, the J-V-L, CE-L-EQE, and PE-L curves of singe
unit white devices S1-S3.
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