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Abstract: Chiral metamaterials provide a very convenient 
way to actively regulate the light field via external means, 
which is very important in nanophotonics. However, the 
very weak chiral response of a generally planar metama-
terial severely limits its application. Therefore, it is impor-
tant to design a system with large circular dichroism. Here 
we report an optical metamaterial with strong chirality in 
a bilayer gear-shaped plasmonic structure and consider 
this chiral response of such fields on tunable atom (87Rb) 
trapping. Simulation results show that maximum chiral 
response is observed when the two layers of the gear-
shaped structures are rotated from each other by an angle 
of 60° at λ = 760 nm. Also, we demonstrate an active tun-
able potential for three-dimensional stable atom-trapping 
with tunable range of position and potential of a neutral 
atom of ~58 nm and ~1.3N mK (N denotes the input power 
with unit mW), respectively. In addition, the trap centers 
are about hundreds of nanometers away from the struc-
ture surface, which ensures the stability of the trapping 
system. The regulation of neutral atom trapping broadens 
the application of chiral metamaterials and has potential 
significance in the manipulation of cold atoms.

Keywords: surface plasmons; atom-trapping; chiral 
metamaterials.

1  �Introduction
The configuration of metamaterials which can be designed 
and manipulated to obtain extraordinary properties has 
attracted considerable attention in recent years [1, 2]. A 
wide variety of functional devices can be realized in such 
systems [3], including but not limited to sensors [4, 5], 
polarizers [6–8], and photodetectors [9–12]. Among them, 
there is a class of metamaterials with a special structure, 
named chiral metamaterials, which shows different elec-
tromagnetic response, also called chirality, to right- and 
left-handed circularly polarized (RCP and LCP) light 
[13–15]. This unique optical response renders chiral met-
amaterials highly promising candidates for a variety of 
applications [16–30]. In general, chiral metamaterials are 
designed to be single-layered (planar chiral metamaterial) 
because of the relative ease of their fabrication [16–21]. 
However, the chiral responses are very weak and typically 
require oblique incidence. In order to obtain a large chiral 
response in the case of normal incidence, various novel 
chiral structures have been designed [31–34]. For instance, 
Cui et al. demonstrated a giant chiral optical response from 
a twisted-arc metamaterial [31]. Chen et al. realized strong 
optical chirality based on slanted plasmonic nanoap-
ertures [32]. Rodrigus et  al. proposed a double-layered 
ellipse hole to achieve intensity-dependent modulation 
[33]. Rajaei et  al. experimentally reported giant circular 
dichroism (CD) with ramp-shaped plasmonic nanostruc-
tures [34]. In the above-mentioned works [16–34], we find 
that all designs are based on structure-surface-confined 
field effects to realize a variety of applications while ignor-
ing spatial effects such as neutral atom trapping, an appli-
cation that requires a noncontact field to be implemented.

As is known, optically trapped atoms, e.g. 87Rb, 133Cs, 
have been used for precision metrology and quantum 
information processing because a neutral atom is an 
excellent frequency reference and atoms trapped in an 
optical field have long coherence times and long lifetimes 
[35]. At present, a common method of trapping neutral 
atoms is by using optical dipole traps [36]. This kind of 
trapping uses the potential well generated by the inci-
dent field to push/pull the atom into the potential dip 
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and is independent of the particular sublevel state of the 
trapped atoms. Much of the work on atom trapping has 
been achieved using optical nanofibers [37–42]. However, 
the optical nanofiber cannot enhance the light field and 
requires a large input power, which will reduce the life of 
the trapped atoms. On the other hand, in order to increase 
the stability of the trapping system, the surface poten-
tial must be overcome, which increases the complexity 
of the system and difficulty of the experiment [37–42]. To 
address this problem, neutral atom trapping based on 
surface plasmon (SP) was proposed [43, 44], and later a 
plasmonic nanohole-array-based stable 3D atom trapping 
was also achieved [45]. Nevertheless, creating tunable 
optical traps compatible with optical nanostructures is 
still a challenge, so it is essential to make such trapping 
tunable via external means at the nanoscale.

In this article, we report a novel type of chiral meta-
material for atom-trapping based on plasmonic, bilay-
ered, gear-shaped nanoapertures, with the layers rotated 
from each other by an angle of 60° in silver films. The 
basic design principle is to obtain the largest transmit-
ted power difference between RCP and LCP at the blue 
detuned trap wavelength for 87Rb. Simulation results show 
that the maximum differential transmittance is observed at 
λ = 760 nm. Also, an active tunable potential for 3D stable 
optical trapping at the nanoscale is demonstrated. By 

changing the phase of the circularly polarized light (RCP 
to LCP or LCP to RCP), the tunable range of position and 
potential of the trapped atoms is about ~58 nm and 1.3N 
mK because of the different near-field scattering intensi-
ties. Our structure is very compact and easy to fabricate by 
the focused ion beam milling process. Combining neutral 
atom trapping with chiral metamaterial plasmonic struc-
tures would open the possibility of achieving ultracompact 
functional optical components in highly integrated optics.

2  �Designed chiral plasmonic 
structure

The schematic diagram of our setup is illustrated in 
Figure  1A. The unit cell of the novel chiral plasmonic 
structure consists of two thin silver layers (h = 90 nm) each 
of which has been perforated in the shape of a gear, and 
which are rotated from each other by an angle α = 60°. The 
point O in Figure 1A denotes the origin of coordinate, and 
the direction of the arrow is positive. The second film layer 
is grown on a silica (refractive index nsilica = 1.45) substrate 
and is separated from the first layer by a thin silica layer 
of d = 350 nm. The silica layers are continuous without any 
hole in their structure, and the silica does not fill the chiral 
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Figure 1: Schematic of chiral metamaterial.
(A) A single unit cell of the gear-shaped metamaterial array and the geometrical parameter symbols. (B) The top view of the silver film: the 
two layers of the gear-shaped structure are rotated from each other by an angle α = 60°.
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opening at the bottom metal. Figure 1B shows the top view 
of the first and second silver films. The proposed structure 
can be made by plasma-enhanced chemical vapor depo-
sition (PECVD) and focused-ion-beam (FIB) writing. The 
relative permittivity of silver is taken from the literature 
[46] and expanded using the method of interpolation by 
1  nm. The module Wave Optics (Electromagnetic Waves, 
Frequency Domain) in COMSOL Multiphysics 5.2a is used 
to investigate the optical response of the proposed struc-
ture. Here, the periodic boundary conditions are set to the 
x- and y-direction of the unit cell, and perfectly matched 
layer absorbing conditions are set on the top (with Port 2 
“off”)/bottom (with Port 1 “on”) sides. Then, the S-param-
eters of abs(ewfd.S21)2, which can be extracted from the 
model, express the transmission spectrum of the system. 
The CP light port modes are set as the electric mode field: 
Ex = exp(–j × k0 × nsilica × z), Ey = exp(–j × k0 × nsilica × z + ja), 
and Ez = 0 (k0 = 2π/λ denotes free-space wave vector, a ε (0, 
2π) represents the phase of CP light, and a = π/2 or 3π/2 cor-
responds to LCP or RCP, respectively). The other optimized 
parameters are set as follows: P = 700 nm, L = 300 nm, and 
w = 150 nm. The purpose of optimizing the parameters is 
to obtain the maximum chiral response at the trapping 
wavelength so as to adjust the position and potential 
energy of the trapped atoms to the maximum extent. The 
calculated transmission spectra for RCP (black curve) and 
LCP (red curve) incidences are shown in Figure 2A. It is 
clearly observed that a pronounced plasmonic resonance 
is present at λ = 760 nm under RCP incidence, whereas the 
transmission under LCP incidence is strongly suppressed, 
leading to a large differential transmittance. In order 
to distinguish it from circular dichroism (CD), a typical 
feature of a chiral response, which is defined as the 

difference in absorption of RCP and LCP [13–15], we named 
the differential transmittance as CD_T, which is shown in 
Figure 2B. The maximum value in Figure 2B means that 
the difference in electric intensities between RCP and 
LCP is the largest, which provides a basis for subsequent 
adjustment of potential and position for trapped neutral 
atoms. Figure 2C,D displays the electric field intensity 
distributions (the positions of the first and second layer 
correspond to the plane z = 0 and z = –440  nm for one 
unit cell, respectively.) under RCP and LCP illumination 
at the resonant wavelength λ = 760 nm. The distributions 
of the hot spots related to the enhancement of the electric 
field show a clear dependence on the polarization of the 
incident light, resulting in a large difference in transmit-
tance of RCP and LCP light. Beyond that, the circular state 
of polarization is perfectly preserved in the transmitted 
wave, with a conversion ratio less than 0.16% between 
RCP and LCP, shown as the inset in Figure 2A. The appear-
ance of the CD_T spectrum can be attributed to the broken 
mirror symmetry due to the index mismatch between the 
superstrate and the substrate [47].

3  �Analysis of atom-trapping for 87Rb
According to previous literature [44, 45, 48], we know that 
the near-field scattering effect of the periodic plasmonic 
structure can produce a local electric field minimum in 
the spatial extent of the system. In our system, RCP and 
LCP light incidence cause different scattering intensi-
ties, which in turn make the local electric field minimum 
adjustable. Here, we consider this phenomenon in neutral 
atom (87Rb) trapping. To better understand the advantages 
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Figure 2: The circular dichroism of the structure. 
(A) Simulation results of the normalized zero-order transmission spectrum for RCP (black curve) and LCP (red curve) incidences. (B) The CD_T 
spectrum corresponding to (A). Electric field intensity maps under (C) RCP and (D) LCP excitations at λ = 760 nm. Inset: simulated circular-
polarization-conversion spectra.
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of the system in terms of atom-trapping, we plot the spatial 
electric field intensity (|E | 2) distributions of the proposed 
structure at λ = 760 nm at x = 0 or y = 0 plane for one unit 
cell, which are shown in Figure 3A,B for RCP and LCP exci-
tations, respectively. (It is to be noted that the electric field 
distributions are the same at x = 0 or y = 0 plane only when 
LCP or LCP light excites because of the peculiarity of the 
structure.) The resonant wavelength λ = 760 nm is selected 
to be blue-detuned to the D2 line of 87Rb atoms [45, 48]. 
By the way, the proposed trapping platform is suitable for 
trapping neutral atoms with all the transition wavelengths 
greater than 760 nm, e.g. 133Cs. Apparently, a trap center 
(local electric field minimum) emerges at each plot, which 
is about hundreds of nanometers away from the structure 
surface. Here, ds (ds = 379 nm for LCP and ds = 321 nm for 
RCP) denotes the distance between the structure surface 
(z = 0) and the trap center. A neutral atom, i.e. 87Rb atom, 
can be trapped in the trap center via optical dipole forces 
with blue-detuned light [36].

As is known, a neutral atom in an electric field will 
be affected by two kinds of potentials [36]. One is the 
optical dipole potential, Uopt, which can be expressed 

as α= −
2

opt
1 .
4

U E  Here, α is the reduced polarizabil-
ity and its expression is taken from [49]. We considered 
eight transition wavelengths of 87Rb, and the calculated 
value is α ≈ –7.87 × 10e−38 F · m2 at the trapping wave-
length λ = 760  nm. Therefore, according to the electric 
field intensity distribution, we can easily get the optical 
dipole potential of the trapped atom. The other is the 
surface potential Usur, which can play an important role 
in the trapping characteristics when the atom is close to 
the structure surface (less than 100 nm) [50]. Notably, in 
our system the newly emerged trap center is about hun-
dreds of nanometers (321 nm for RCP and 379 nm for LCP) 

away from the structure surface, so Usur can be negligible 
relative to Uopt in our calculations. This is why our trap-
ping system is very stable. Thus, in this article, we use Uopt 
as the total potential of the trapped atom. For quantita-
tive description of the trapping properties, we calculate 
Uopt along the pink dashed line in Figure 3A,B, shown in 
Figure 3C with input power P0 = 1  mW. Here, ∆s = 58  nm 
denotes the movable range of the trapped atom during 
RCP and LCP conversion. Namely, we can tune the posi-
tion of the trapped atoms by only changing the phase 
difference a. The absolute value |Ueff−RCP – Ueff−LCP |  is the 
potential tunable factor, and for input power P0 = N mW, 
the tunable nanopotential is Δtrap = N × | Ueff−RCP – Ueff−LCP | = 
1.3N mK. Figure 3D quantitatively shows the position of 
the trapped atom at any phase difference a within one 
phase cycle. Here, the phase difference a ε (0, 2π/40, 2π), 
therefore, a(11) denotes LCP (B) and a(31) stands for RCP 
(D). It is clear that the maximum range of movement of 
the trapped atom is ∆s = 58 nm (B→D or D→B). Although 
the trapped atom has the same position at points A and C, 
the potential is different in the same plane because of the 
fourfold rotation symmetry only of the structure. In order 
to visually observe the movement of the trapped atoms, 
the animation graphics of the trap centers is displayed in 
Supporting Information. It can be clearly observed that the 
trap centers are moving back and forth with the change in 
a. In addition, we can find that the field distributions at 
a(1) (point A) and a(21) (point C) are obviously different. 
Compared to our previous work [48], the proposed struc-
ture is relatively compact, the CD_T response is larger, and 
one single unit cell can realize all the features. Although 
the movable range of the trapped atom is similar, the 
tunable potential is increased by about 2.6 times, which 
greatly increases the practicability of the system.
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Figure 3: Quantitative description for the trapping ability of the system. 
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In order to further analyze the 3D trapping property 
of the system, we plot the distributions of Uopt in the x-y 
plane at the trapping wavelength λ = 760 nm, as shown 
in Figure 4A. Figure 4B shows the corresponding optical 
dipole potential (Uopt) distributions for RCP (black line) 
and LCP (red line) through the x or y centering direction. 
It can be easily seen that the trap depths are about 1.1 mK 
and 0.42  mK for RCP and LCP incidences, respectively, 
with input power P0 = 1  mW. The full width at the half-
maxima (FWHMs) are both about 225  nm for RCP and 
LCP, which can be used to confine and trap a single atom 
[49]. Manipulation of a single atom can be used to verify 
basic physical laws and for accurate measurements of 
physical constants. Figure 4C shows the trap centers of 
periodic arrays at z = ds in the x-y plane. (Here, we use 
4 × 4 unit cells to represent an infinitely extended array. 
However, due to limitations of computer memory and 
because the Comsol Multiphysics software mesh cannot 
be evenly divided, the trap centers show a small asym-
metry.) The periodic structure guarantees the uniformity 
of trap depths in each unit cell, which greatly reduces 
the detection error due to the variance of cooling effi-
ciency and the photon scattering rate from each atom 
[38–42, 45, 48]. In addition, atom array trapping can 
be used to realize resonance fluorescence. Through the 
above analysis, a tunable, stable 3D atom array trap-
ping independent of the surface potential based on a 
plasmonic chiral metamaterial is demonstrated. The 
ability to regulate neutral atoms at the subwavelength 
scale would enable quantum network capabilities and 
large-scale quantum communications. In addition, our 
systems can also enable refractive index sensors, as well 
as circular polarization detectors, which are very impor-
tant in nanophotonics.

4  �Conclusion
In conclusion, we have demonstrated tunable and stable 
3D atom array trapping based on the large circular dichro-
ism in a plasmonic chiral metamaterial made up of a 
double-layer gear-shaped structure. Simulation results 
showed that under RCP excitation, there is a transmission 
resonance peak at λ = 760  nm, while the transmission is 
almost completely suppressed by LCP excitation. Because 
of the near-field scattering, a trap center, about hundreds 
of nanometers (321 nm for RCP and 379 nm for LCP) away 
from the structure surface, emerges, which guarantees 
the stability of the trapped atoms. Different electric field 
intensities make the trapped atoms tunable by altering the 
phase of the CP light. The proposed structure can be easily 
fabricated and integrated on a chip. This type of atom-
trapping method, based on the regulation of LCP and RCP 
light, holds promise for atomic on-chip integration, which 
will have great significance in quantum information pro-
cessing and nanophotonics.
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