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Abstract: This review article discusses progress in surface
plasmon resonance (SPR) of two-dimensional (2D) and
three-dimensional (3D) chip-based nanostructure array
patterns. Recent advancements in fabrication techniques
for nano-arrays have endowed researchers with tools to
explore a material’s plasmonic optical properties. In this
review, fabrication techniques including electron-beam
lithography, focused-ion lithography, dip-pen lithogra-
phy, laser interference lithography, nanosphere lithog-
raphy, nanoimprint lithography, and anodic aluminum
oxide (AAO) template-based lithography are introduced
and discussed. Nano-arrays have gained increased atten-
tion because of their optical property dependency (light-
matter interactions) on size, shape, and periodicity. In
particular, nano-array architectures can be tailored to
produce and tune plasmonic modes such as localized sur-
face plasmon resonance (LSPR), surface plasmon polari-
ton (SPP), extraordinary transmission, surface lattice
resonance (SLR), Fano resonance, plasmonic whispering-
gallery modes (WGMs), and plasmonic gap mode. Thus,
light management (absorption, scattering, transmission,
and guided wave propagation), as well as electromagnetic
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(EM) field enhancement, can be controlled by rational
design and fabrication of plasmonic nano-arrays. Because
of their optical properties, these plasmonic modes can
be utilized for designing plasmonic sensors and surface-
enhanced Raman scattering (SERS) sensors.
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1 Introduction

Light interaction with metal nanostructures demon-
strates unique properties that have drawn the attention
of researchers, giving rise to an emergent field called
plasmonics. Over the past two decades, advancements in
both understanding physical phenomena and fabrication
techniques have motivated and guided plasmonic nano-
structure research and development. Because of recent
advancements in fabrication and characterization tech-
niques, plasmonic modes and their relationship to nano-
architectures can be extensively studied. Understanding
of the fundamental and optical properties is facilitating
engineering of plasmonic nanostructures to meet techni-
cal needs and overcome challenges in medicine, biosens-
ing, imaging, solar energy, catalysis, and optoelectronics.

Nanostructured materials have tunable physico-
chemical characteristics such as light absorption, color
change, and electrical and thermal properties, whereas a
bulk material is limited to its inherent material properties
[1]. When light interacts with free electrons, the electron
cloud is collectively excited as a plasmon [2]. Plasmon
and light interaction allows for breaking the diffraction
limit of light so it is localized in subwavelength dimen-
sions. This localization of light in subwavelength dimen-
sions produces enhanced optical near-field and strong
electromagnetic (EM) field enhancement. If the localiza-
tion of light takes place at the metal-dielectric interface
as propagating waves, the excitation is known as surface
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plasmon polaritons (SPP), while if it takes place within the
nanostructure, it is known as localized surface plasmon
resonance (LSPR) [3]. Interestingly, these plasmonic
phenomena have been applied for centuries without an
understanding of the fundamental physical principles
such as in dyes and optical windows.

A plasmon is typically excited on two types of sub-
strates: (i) free-standing individual nanoparticles [4, 5]
and their random aggregates [6], or (ii) chip-based two-
dimensional (2D) or three-dimensional (3D) nano-array
patterns. Colloidal particles and 2D and 3D nano-arrays
differ in terms of their local EM field enhancement factors,
fabrication, and use in real-world applications. Local EM
field enhancement factors can reach 10%-10° with metal
nanospheres [7] while for colloidal aggregates, the EM
field enhancement factors can reach high as 10* [6, 8].
For colloidal nanoparticles, the plasmonic properties are
tunable based on the dielectric environment, size, and
morphology. Because of their large enhancement factors,
colloidal nanoparticles have been extensively used in a
variety of plasmonic-enhanced applications including
solar energy conversion, photocatalysis, nanomedicine,
and surface-enhanced Raman scattering (SERS) sensors.

Unlike colloidal nanoparticles, a 2D or 3D nano-array
pattern is an ordered, periodic nanostructure geometry
over a solid-state chip or substrate [9]. In 2D nano-arrays,
the nano-array pattern is fabricated on a planar sub-
strate. The coupling properties of the 2D nanostructure
are analyzed by varying the distance between nanostruc-
tures. Therefore, in 2D arrays, coupling is restricted only
in the horizontal direction and with a similar nanostruc-
ture which surrounds it, which permits coupling of same
plasmon mode. Whereas in 3D nano-arrays, the pattern
is fabricated on the top of another pattern or a film with
a spacer layer in between. This allows 3D nano-arrays
to exhibit additional plasmon resonance modes that are
result of both horizontal and vertical coupling. Plasmonic
coupling can also occur between the nano-array patterns
in the top layer and bottom layer. 3D nanostructure cou-
pling not only exhibits new plasmon modes, but also
interesting optical phenomenon. Many nano-array pat-
terns have been reported to generate tunable plasmonic
properties such as: nanohole [10], nanorod [11], nanopyr-
amid [12], nanoring [13], nanocube [14] and pyramid array
coupled film [15]. In particular, the collective behavior
of plasmons in nano-arrays produces a coherent optical
response, which leads to strong and narrow spectral fea-
tures [16]. The optical spectrum of a nano-array depends
on size, shape, and periodicity of the structures, which
provides great flexibility and tunability of plasmon and
optical properties. The tailorable plasmonic properties
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in nano-arrays have opened ample opportunities for EM
enhancement and light management with nano-arrays,
making nano-arrays applicable in photovoltaic devices,
photocatalysts, biosensors, nano-medicine, and optoelec-
tronic devices.

Plasmonic nanostructures have been extensively used
for two types of sensors [17]: surface plasmon sensors and
SERS sensors. In surface plasmon sensors, the plasmon
resonance is sensitive to changes in environmental refrac-
tive index induced by adsorption or binding of molecules
on the material surface. Surface plasmon sensors result in
a change in the plasmon resonance frequency, which can
be used to generate calibration curves for sensing applica-
tions. SERS sensors operate by plasmonic amplification of
Raman signals. Raman scattering is the result of inelas-
tic light scattering and is used to detect vibrational and
rotational properties of a molecule. The induced electric
dipole moment for a Raman molecule is given by [18, 19]:

u=aE W

where « is the molecular polarizability and E is the elec-
tric field strength. The induced electric dipole moment
of a molecule is directly proportional to the electric field
strength of the medium where the molecule is present.
Raman scattering intensity is directly proportional to the
square of the induced dipole moment; therefore, when a
Raman molecule is placed in a medium with a high elec-
tric field, the Raman signal is enhanced through a phe-
nomenon called SERS [20]. When nanostructures are
irradiated with light, the light can be confined in subwave-
length dimensions and produce a large EM field for SERS
enhancement. Because of the high enhancement factors,
SERS is a very promising technique for sensing applica-
tions to overcome poor sensitivity and high background
interference. Since SERS was first realized for single mole-
cule detection in 1997 [21, 22], its application in the bio-
sensing and nanomedicine fields has grown considerably.
Over the past 20 years, the vast majority of SERS sensors
have been engineered using colloidal nanoparticle SERS
systems. Colloidal nanoparticles in SERS sensors systems
are limited for use as in-solution detection probes, which
can be subject to unwanted aggregation in biological
matrices. Additionally, colloidal nanostructures, such
as silver (Ag) and gold (Au) nanorods, have challenging
synthesis methods that are difficult to reproduce. Com-
pared to nanoparticles, nano-arrays are highly stable and
ordered structures, and can extend the space for light
management and EM enhancement. To further improve
sensor performance and diversify material design, 2D
and 3D nano-arrays have gained interest for SERS sensing
substrates.
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The increasing interest and application of plasmonic
nano-arrays have motivated manufacturing nano-arrays
with different architectures using traditional and emerg-
ing fabrication techniques. Electron-beam lithography,
focused-ion lithography, dip-pen lithography, laser inter-
ferencelithography, nanosphere lithography, nanoimprint
lithography, and anodic aluminum oxide (AAO) template-
based lithography have been used for nanofabrication.
The availability of these lithography techniques endows
researchers with powerful tools to create nano-arrays to
support different plasmon modes that are excited and
decayed in different manners, such as LSPR, SPP, Fano
resonance, plasmonic whispering-gallery modes (WGMs),
surface lattice resonance (SLR), and plasmonic gap mode.
Each plasmonic mode has characteristic optical proper-
ties, unique distribution, and amplitude of an EM field.
It is essential to understand the origin of plasmon exci-
tation and decay, the optical responses of the plasmon,
and the associated effects such as hot electron emission
in order to fabricate and utilize plasmonic nano-arrays
in a fashion of “device-by-design”. Compared to colloids,
nano-arrays exhibit unique advantages for sensing appli-
cations including long-range order and more advanced
plasmonic optical modes for sensing.

This review article begins with introduction to lithog-
raphy and fabrication techniques for 2D and 3D chip-based
nano-array structures. Next, the origin and properties of
plasmonic modes are discussed based on the nanoarchi-
tecture. “Device-by-design” strategies using nano-arrays
are examined for plasmonic and SERS sensor applications
based on each plasmon mode. The goal of this review is
to introduce the basic concepts and principles of each
plasmon mode, and then demonstrate how plasmonic
principles are used to design nano-array patterns and
tune the optical responses, which provide a basis for light
management and sensing applications.

2 Fabrication of nanostructure
arrays

Conventional cleanroom-based photolithography (PL) is
one of the most widely used and established fabrication
techniques in the semiconductor and microfabrication
industry. However, its spatial resolution is limited by the
diffraction limit of light. The angle of diffraction depends
on the wavelength of light used and the gap between the
photomask and substrate. For these reasons, conven-
tional photolithography is unable to produce high-quality
nanoscale features, especially 2D and 3D hierarchical
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nanostructures. New nano-fabrication techniques have
emerged to overcome the challenges associated with pho-
tolithography. These lithography techniques include elec-
tron-beam lithography, focused-ion lithography, dip-pen
lithography, laser interference lithography, nanosphere
lithography, nanoimprint lithography, AAO template-
based lithography, and molecular stamping. An ideal
nanofabrication technique is inexpensive, high through-
put, high resolution, and provides great flexibility for tai-
loring nanostructure size and shape.

2.1 Electron-beam lithography (EBL)

EBL utilizes a modified scanning electron microscope
(SEM) to write a custom nanoscale pattern by focusing
an electron beam on an electron sensitive resist. EBL was
first developed in 1967 [23] and has undergone technical
development to achieve higher spatial resolution. Projec-
tion printing and direct writing are two schemes followed
in EBL systems [24]. The primary difference between
these methods is that the projection scheme uses a larger
electron beam projected on to the mask, while in direct
writing, an electron-beam spot is used to pattern the
shape directly on the resist. There are two sub-categories
of direct writing EBL systems based on the type of elec-
tron beam used. One is a Gaussian beam electron-beam
system and the other is a shaped electron-beam system
[25]. Gaussian electron-beam systems are commonly used
because of their flexibility and fine spatial resolution [26].
This section will focus on the direct writing EBL system.

In a direct writing EBL system, a fine electron beam is
focused on a wafer coated with an electron-beam resist.
The electron-beam is focused using raster or vector scans
and controlled with a blanker to turn the beam on and off.
Once the pattern is transferred on to the resist, depend-
ing on the type of resist (positive or negative) the exposed
part of the resist is etched using a developer. This leaves
a nanostructure pattern that can be further processed
with metal deposition and lift-off techniques. Because
the electron-beam diameter is at the angstrom scale, the
resolution of the EBL is very high for fabrication of 10-nm
structures [27]. As the electron-beam is focused on a single
point of pattern at a time, EBL requires a long processing
time to transfer a full pattern onto the resist. This limits
EBL throughput for large-scale production and large-
area device fabrication even though EBL has high spatial
resolution and is good for creating nanostructures with
complex geometric shapes. Another drawback to EBL
systems for commercial purposes is their high operating
costs [28].



2068 —— S.Kasanietal.: 2D and 3D plasmonic nanostructure array patterns

2.2 Focused ion beam (FIB) lithography

Similar to light, beams of electrons and ions can be used
to alter the properties of resists for patterning. FIB are
advantageous in nanostructure fabrication because of
their high resolution [29]. Focused ion beam lithography
uses a focused beam of ions to write the pattern instead
of electrons, like in the case of EBL. FIB uses heavier ions
such as He*, Bet and Ga* for direct writing of the pattern,
providing a stable and fine beam spot [30]. Whereas in
EBL, electrons in the beam have larger Debroglie wave-
lengths and enlarged beam sizes due to scattering. In spite
of these issues rectified in FIB, the heavier ions have less
penetration depth, which reduces the high aspect ratio of
the produced nanostructures [29]. FIB uses larger energies
around 100 KV to 200 kV [31] to focus the ion beam and
increases the energy deposition rate on the resist. This
leads to higher exposure sensitivity [32]. Despite of the
higher resolution, throughput and large area fabrication is
still a challenge for the commercial production using FIB.

2.3 Dip-pen lithography (DPN)

DPN is a type of scanning probe lithography, where an
atomic force microscope (AFM) tip is used to directly write
a pattern by delivering chemical reagents directly on to the
substrate. DPN was first introduced in 1999 as a tool for fab-
ricating nanostructures [33]. Since then, it has been devel-
oped to pattern inks including organic molecules, colloidal
particles, metal ions, and biological polymers [34]. A variety
of substrate surfaces can be patterned using DPN, such as
metals, insulators and semiconductors. DNP lithography is
conducted in an inert environment making this technique
an ideal candidate for pattering biological and soft organic
structures. DPN offers high resolution as shown in the pat-
terning of alkylthiols on gold substrate to achieve a 15-nm
resolution with sharp tips [35]. Recently, parallel writing
DPN has been developed, which addresses the complexity
of engineering cantilever arrays by using a passive pen array
[36] One disadvantage of DPN is its throughput because it
requires an inherent serial fabrication process and single
pen configuration. Even though efforts have been made
to use multi-pen configuration, DPN is an expensive, low
throughput nano-fabrication technique, with a limited
number of materials can be used in the ink for DPN.

2.4 Laser interference lithography (LIL)

LIL is similar to mask-less photolithography for fabricating
nanostructures and is an effective method for large areas
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and high throughput fabrication [37, 38]. In conventional
photolithography, monochromatic light is illuminated
through a mask, and transfers a pattern on to the photore-
sist. In LIL, instead of using a mask to form a pattern, the
pattern is formed from the superposition of multiple laser
beams exposed onto a photoresist [39]. The interference
pattern and electric field intensity is formed during the
superposition of multiple laser beams. Because LIL does
not use photomask, the patterns of different sizes and
shapes can be easily modified by an interference princi-
ple. Also, the resolution of the feature size is not limited by
diffraction of light that is commonly seen with mask tech-
niques. The resolution is only limited by the wavelength of
light being used during the pattern transfer [40]. However,
not all shapes can be patterned using LIL, and the
minimum period of nanostructures is limited to the half the
wavelength of light. This requires the usage of deep ultra-
violet (UV) light for smaller features [41], which makes LIL
very expensive. For large exposure areas, the laser source
should have a long coherence length and for higher resolu-
tion [42], lower wavelengths of light are needed. The light
source specifications required for desired patterns makes
the LIL challenging for large-scale fabrication.

2.5 Nanosphere lithography (NSL)

NSL is a flexible, inexpensive, high throughput technique
for fabricating 2D and 3D nanostructures. In NSL, spheri-
cal colloids are transferred on to a substrate and dried to
form a hexagonally closed pack (HCP) monolayer [43].
The monolayer is transferred on to substrate by various
methods like dip coating [44, 45], spin coating [46, 47] and
Langmuir-Blodgett [48]. This monolayer is used as a mask
and the subsequent processing steps are performed to fab-
ricate different nanostructure array patterns [13, 49]. Mate-
rial is deposited through the interstitial spaces of the HCP
beads and then the mask is removed by sonication leaving
an ordered array of nanostructures on a substrate. The size
and shape of the nanostructure can be easily changed by
changing the bead size. NSL is a hybrid of a top-down and
bottom-up approach, which offers a flexible fabrication
[47, 50, 51]. Lithographic techniques like EBL, LIL and IBL
are low throughput and have high sample costs making
these techniques impractical for large-scale fabrication.
Because of these challenges, many parallel lithographic
techniques have been developed, with NSL among them.
However, as an HCP monolayer is used as the mask for
lithography, the shape and size of the angstrom scale
nanostructure features are limited, so it is challenging to
generate versatile nanostructure geometries and features.
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2.6 Nanoimprint lithography (NIL)

NIL is a low-cost, high-resolution, and high-throughput
technique for fabricating nanostructures. It was first
developed by Chou in 1995 [52], and since then it has over-
come many challenges to meet the practical industrial
requirements. NIL demonstrated sub 10 nm imprinting in
1997 [53] and 2-nm structures fabrication [54], making it
a promising technique for next generation lithography. It
has been added to the International Technology Roadmap
for Semiconductors (ITRS) for 32-nm and 22-nm nodes [55].

NIL uses molds to form nanostructures. In this tech-
nique, a stamp (or mold) with a specific pattern is mechan-
ically pressed into the imprint fluid already coated on a
substrate. The mechanical deformation causes the pattern
to be transferred into the imprint fluid. After the harden-
ing process, the stamp is removed and leaves the nano-
structure pattern on the substrate. The resolution of NIL is
limited by the mold pattern, and is not due to the diffrac-
tion limit of light such as in the case of photolithography.
Therefore, the minimum feature size of the nanostructure
pattern depends on the mold pattern feature size. Based
on the type of imprint curing, there are two commonly fol-
lowed nanoimprint processes: thermal NIL and ultraviolet
(UV)-NIL [56]. Thermal NIL, the earliest form of NIL, uti-
lizes a thermoplastic polymer as the imprint fluid. During
the hardening step, the polymer is heated above the glass
transition temperature to transfer the pattern. In the case
of UV-NIL, a UV sensitive polymer is used as an imprint
fluid. After the mechanical contact, the required dosage of
UV light is illuminated on to the polymer to complete the
hardening process. The applications of NIL are categorized
into pattern transfer and polymer device applications. Its
main applications are in optical storage devices, hard disk
media devices, light emitting diodes, biosensors, micro-
fluidic devices, and functional polymer devices.

2.7 Fabrication with AAO and other
templates

The AAO template is a template assisted nano-patterning
technique for low cost and high resolution [57] over a large
area. The subsequent deposition of material through the
template allows for the fabrication of nanostructures.
The template is made by metal anodization in an acidic
solution to form periodic metal oxide nanopores [58]. The
thickness of the membrane and the periodicity of pores
depend on the time of anodization and the voltage applied
[59]. The flexibility of fabricating pore size which ranges
from 7 nm to more than 300 nm make AAO a suitable
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template-assisted pattering for high-resolution fabrica-
tion [60]. This technique is applied to fabricate several
nanostructures such as nanodots, nanorings, nanopillars,
and nanotubes over a large area. Besides aluminum, tita-
nium and zirconium metals can also be used to generate
pore patterns by anodic etching. However, it is difficult to
generate long-range-ordered periodic nano-array patterns
in a large area. Furthermore, the geometry and layout of
the nanostructure feature are limited by the fixed the AAO
template because the template pores are round-shaped
and laid out in a hexagonal pattern.

2.8 Outlook of development in
nanofabrication techniques

Fabrication is a critical step for developing materials
with tunable plasmonic properties. When designing
nanostructures, the available fabrication techniques to
produce and modulate the desired geometry and optical
properties must be considered. A brief comparison of the
fabrication techniques in terms of minimum feature size
and throughput discussed are given in (Table 1). However,
not one technique can meet all the needs for practical,
large-scale production. An ideal fabrication technique
should be low-cost, high-throughput, material and sub-
strate independent, provide long-range order and have a
sufficient minimum feature size. For example, techniques
such as AAO templating and NSL produce high-through-
put sub-100 nm features; however, long-range order
remains a challenge. The drawbacks of each lithography
technique inherently limit applications and the types of
nanostructures that can be produced. These limitations
need to be considered when designing plasmonic materi-
als, as plasmon modes are highly dependent on the archi-
tecture. In the following sections, the origins of plasmon
modes are discussed in terms of nanoarchitecture, design
and fabrication.

3 Plasmonic modes and optical
properties of nano-arrays

Similar to photons in a light wave, plasmons are quasipar-
ticles composed of oscillating conduction electrons at the
boundary between a metal and a dielectric and are gener-
ated by the electric field vector of incident light [68-71].
When the excitation light frequency matches the electron
oscillations in materials with negative real and positive
imaginary dielectric constant, SPR occurs. Understanding
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Table 1: Summary and comparison of feature size and throughput by a fabrication technique [61].
Fabrication technique Minimum feature size Throughput Reference
Photolithography (PL) 2-3 um (contact and proximity) Very high [62]
37 nm (projection printing) High [63]
Electron beam lithography (EBL) Around 5 nm Very low [64]
Focused ion beam lithography (FIB) 20 nm with 5 nm lateral dimension Very low [63]
Dip pen lithography (DPN) 15nm Serial (low) [35]
Parallel (high)
Laser interference lithography (LIL) 35nm High [65]
Nanosphere lithography (NSL) Sub 100 nm Very High [66]
Nanoimprint lithography (NIL) 2nm High [54]
Anodic aluminum oxide (AAO) template 5nm High [67]

and exploring the relationship between material proper-
ties such as size, shape, periodicity, and the dielectric
with the optical response has resulted in a wide range
of nanoarchitectures and applications including SERS
[72, 73], sensors [74, 75], fluorescence enhancement [76],
and refractive index measurements [77]. Because surface
plasmon oscillations and their optical properties vary with
the architecture and local environment, different types of
surface plasmon oscillations, called plasmon modes, can
arise. These plasmon modes are modulated based on the
physical properties needed for the suited applications.
Plasmon modes differ in fundamental properties such
as near-field electric fields, mode volume, and band-
width. SPR occurs in two fundamental modes, i.e. LSPR
and SPP. Other plasmon modes, such as Fano resonance,
plasmonic WGM, SLR, and the plasmonic gap mode, can
be excited from the coupling and interaction of LSPR and
SPP modes by controlling the nanoarchitecture.

3.1 LSPR

LSPR is a surface phenomenon generated by metal nano-
particles in which electrons oscillate collectively in reso-
nance with incident light [5] (Figure 1A). The electric field
around the localized plasmons is multiplied by several
orders of magnitude, and intensity decays exponentially
with distance. These resonances create a sharp optical
absorption or scattering along with strong EM fields.
When metal nanoparticles are illuminated with light,
the oscillating electric field induces coherent oscillations
of conduction electrons and causes polarization of charge
on the surface of nanoparticles [79, 80]. When the size of
nanoparticles is small (<15 nm), resonance is dominated
by absorption (Figure 1B) and when the size is larger
(>15 nm) resonance is dominated by scattering (Figure 1C).
The Mie solution based on Maxwell’s equations explains
the absorption and scattering cross-section by spherical

particle whose diameter is less than wavelength of inci-
dent light [81].
e (w)
o =9—¢ 2
7T g ()26, T e, () @

where x=2 for sphere, V =(4n/3)R’, w is the angular fre-
quency of the extinction radiation, ¢ _is the dielectric func-
tion of the medium surrounding the metal nanoparticles,
and ¢, and ¢, are the real and imaginary parts of the dielec-
tric function of the metal nanoparticles, respectively.

The LSPR peak is highly dependent on the material,
dielectric constant of surrounding medium, and size of
nanostructure as given by Equation (2). The real part of
the dielectric function determines the LSPR extinction
peak position, while the imaginary part plays a role in the
damping and resonance peak broadening. When ¢, =-2¢,
polarization attain singularity and EM field is enhanced.
Mie’s theory is limited only to spherical particles. In 1912,
Richard Gans generalized Mie’s equation based on small
particle approximation and found the absorption cross-
section for prolate spheroid as [82]

(]
_ 783/2
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This gives extinction spectrum from both transverse
plasmon mode and longitudinal plasmon mode. This
equation shows the dependency of shape on LSPR peak
wavelength, by incorporating shape dependent dielectric

J

function . For the shapes other than spheres and

spheroids, tll'le LSPR spectrum is studied numerically
with finite difference time domain (FDTD) calculations.
For noble metals such as Ag and Au nanoparticles, sin-
gularity condition (e,=-2¢, ) is met in visible region and
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Figure 1: LSPR oscillation and optical properties.
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(A) LSPR exists when the electron oscillations are in phase with the incident light frequency at the nanoscale (< wavelength of light). The
collective oscillations result in enhancement of local EM field and sharp spectral response (scattering and absorption). (B) For nanoparticles
smaller than 15 nm, spectral response is dominated by absorption. (C) For nanoparticles larger than 15 nm, spectral response is dominated
by scattering (A, B and C reproduced from [78] with permission from The Royal Society of Chemistry).

near-infrared (NIR) where optoelectronic devices are oper-
ated and many biological applications are conducted.
This gives noble metals an advantage over other materials
for sensing devices. The sharp optical response and local
EM field of LSPR phenomenon are used in many applica-
tions like biomolecule sensing, imaging, metamaterials,
and resonance energy transfer.

The local EM field from the LSPR is directly proportional
to the SERS enhancement. Thus, to improve the sensing
performance, an SERS substrate is optimized with large
density of localized plasmons known as plasmonic “hot
spots” [83, 84]. Hot spots are areas of the plasmonic nano-
structures where the local EM filed is enhanced enormously
in comparison to its surroundings. Typically, hot spots are
formed at the sharp tips and edges of nanostructures where
there is a large charge density. As the distance between the
metal nanostructures decreases, the EM enhancement at
the hot spot increases exponentially [85]. When a Raman
molecule is located in the hot spot, there is a tremendous
enhancement in Raman signal as SERS. Typically, SERS
enhancement is in the order of 10*-10® colloidal nano-
particles, but nano-array substrates with high-density hot
spots have enhancement ranging from 108 to10* [86, 87].
This overall SERS enhancement from nano-arrays makes
nano-arrays interesting for SERS sensing applications.

There are a variety of 2D and 3D nano-arrays that
support plasmonic hot spots and LSPR modulation.

Jung et al. [88] showed the fabrication of a well-ordered
Ag nanodot array (Figure 2A) using an AAO template with
uniform through-holes. The LSPR for an Ag nanodot array
exists at the maximum extinction wavelength at around
500 nm (Figure 2B) and varies with the dot diameter. In
this array, each dot acts as a hot spot. By using the AAO
template, the diameter of the nanodots could be care-
fully controlled to tune LSPR. Nanotriangle [10] arrays
were fabricated by NSL, which provided great control on
periodicity and feature size. The fabrication of a nanotri-
angle is simple, where metal is deposited on to a mon-
olayer of polystyrene (PS) beads. The SEM image and
transmission spectra of a nanotriangle array is shown in
(Figure 2C) and (Figure 2D), respectively. For nanotrian-
gle arrays, the LSPR is due to the scattering of the light
and exhibits a strong dip in the transmission spectrum.
The hot spots in triangles reside at corners of the nano-
structures. In another case, an Au nanodisc array [89]
is fabricated by a combination of colloidal lithography
and a nanoimprinting method as shown in (Figure 2E). A
PDMS hemisphere stamp was fabricated and coated with
a thin layer of Au to obtain the Au nanodisc array. The
thickness of the Au disc was controlled by applied com-
pression pressure during printing. By having control of
the nanodisc thickness, the LSPR of the nanodisc could
be tuned during fabrication (Figure 2F). The fabrication
of nanopyramid [49] arrays is similar to the nanotriangle
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Figure 2: SEM images and optical properties of select nano arrays supporting LSPR.

(A) SEM image of Ag nanodot array on a glass substrate; (B) extinction spectra of Ag nanodot array on glass with different dot diameters
(D=42 nm (purple), D=60 nm (orange) and D=80 nm (blue), A and B reproduced from [88]); (C) SEM image of nanotriangle array; (D)
transmission spectrum of triangles made from 500 nm polystyrene spheres (C and D reproduced from [10] with permission from the PCCP
Owner Societies); (E) nanodisc array fabricated by combination of colloidal lithography and nano transfer printing (inset: magnified image);
(F) extinction spectra of Au nanodisc array for different compression pressures (E and F reproduced from [89] with permission from The
Royal Society of Chemistry); (G) SEM image (side view) of an Ag nanopyramid array (inset: top view); (H) Extinction spectra of Ag (red) and
Au (blue) nanopyramid arrays (G and H reprinted with permission from [49]. Copyright (2013) American Chemical Society); (I) Au nanoring
array (periodicity: 600 nm, outer radius: 500 nm, thickness: 50 nm, and height: 120 nm; (J) experimental (P500-exp) and FDTD-simulated
(P500-FDTD) reflection spectra of Au nanoring arrays with periodicities of 500 nm and 600 nm, respectively; (K) gap-dependent EM field
enhancement of a pair of Au rings; (L) EM field distribution of a pair of rings with a gap of 2 nm (I, J, K and L reprinted with permission from

[13]. Copyright (2017) American Chemical Society).

array except for the thickness of the metal deposition.
Thin metal deposition forms a triangle, while thick metal
deposition forms a pyramid shape shown in (Figure 2G).
The hotspots in pyramids reside along the edge and
the corner of the structure, elucidating that there are
two plasmon modes at different wavelengths as shown
in Figure 2H. The longer wavelength plasmon mode is
excited by the four corners and the shorter plasmon mode
is due to the edge of the pyramid. Hot spots not only exist
on the sharp areas of a structure they can also exist at
the gaps between structures and are much more intense
in confining EM fields. This is shown in an Au nanor-
ing [13] array (Figure 2I). The EM field enhancement of
an individual ring is around 5 x 10> whereas the EM field
at the nanogap between two coupled nanorings has an
EM field as high as 4.3 x10* at a gap of 2 nm. NSL allows
for the careful control of the optical reflection response

and nanoring periodicity (Figure 2J). Using FDTD simula-
tions, the nanogap between the nanorings exhibit varied
EM field enhancements as shown in Figure 2K and L.
Because of advanced nanofabrication techniques, these
nanostructures can be fabricated and tuned in order to
meet the desired optical properties. LSPR is the most
commonly studied plasmonic mode for biosensor devices
because LSPR generates strong near-field EM fields for
SERS [90-92]. By utilizing plasmonic nanostructures,
SERS enhancement factor can reach 10", which is suffi-
cient for single molecule detection and highly sensitive
SERS sensors [90, 93]. Conventionally used sensing tech-
niques such as colorimetry and fluorescence are subject
to high background interference, which reduces sensor
sensitivity and performance. SERS can overcome inter-
ference from the sample matrix and water, as the Raman
excitation wavelength and scattering wavelength can be
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selected in the biological transparency window, where
biological materials are not optically excited [94].

Over the past 20 years, SERS sensors have been
extensively designed wusing colloidal nanoparticles
coupled with Raman molecules as the signal transducer
or “detection probe”. In colloidal SERS sensing systems,
recognition elements are bound to a nanoparticle probe
either free in solution or over a substrate such as paper
or plastic. SERS sensors using nanoparticles of various
morphologies [90] have demonstrated good performance
in clinical applications. To further improve performance
and advance sensor material design, nano-arrays have
emerged as SERS substrates. Compared to nanoparticles,
nano-arrays provide long-range order, large surface
area for sensing, and support a wider range of plasmon
modes to enhance sensing performance [92]. For SERS
sensors, the nano-array serves as a solid-state sensing
substrate, where analyte recognition can occur on the
material surface. When designing nano-array-based
LSPR modes, it is critical to control the LSPR frequency
via the fabrication technique. Additionally, morphology
and nanostructure design should be chosen on the basis
of maximizing the SERS enhancement factor. Because
of the advancement in fabrication techniques, complex
nano-arrays can be tuned to the desired optical prop-
erties. For sensors driven by LSPR modes, EM coupling
between nano-array features is utilized to generate hot
spots [91, 92]. In the nano-array sensors, nano-arrays can
be used alone or coupled with colloidal nanostructures
that serve as recognition elements. Systematic studies
of LSPR and nanostructure morphology have been dem-
onstrated in the importance of plasmonic modes and
device design. For example, an Au nanotriangle array
coupled with sandwich nanoparticles as reporter probes
were investigated for SERS sensor performance. Three
configurations of plasmonic nanostructures were inves-
tigated including: an Au nanosphere@MGITC@SiO, par-
ticles coupled on a planar Au film, an Au nanosphere@
MGITC@SiO, particles coupled on an Au nanotrian-
gle array, and an Au nanostar@MGITC@SiO, particles
coupled on an Au triangle nano-array, where malachite
green isothiocyanate (MGITC) is a Raman label. It was
found that the greatest SERS enhancement factor of 10°
was exhibited in the Au nanostar@MGITC@SiO, parti-
cles coupled on an Au triangle nano-array structure. The
complexity of the structure results in strong confinement
of the EM field into hot spots, which then can be coupled
between local nanostructures. This design was applied
for SERS detection of breast cancer biomarkers, vascular
endothelial growth factor (VEGF), with a limit of detec-
tion (LOD) of 7 fg/ml [95].
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Similar configuration designs have also been explored
using coupling between Ag nanopyramid arrays and Au
nanostars [96], nanohole arrays and Au nanostars [97]
and Au nanotriangle array@graphene [98] and 3D dimen-
sional Au nanoparticle-monolayer graphene-Ag hexagon
nano-arrays [99]. Complex structures such as nanostars
[100, 101], nanocubes [102], nanotriangles [103], and
nanorods [101, 104] are advantageous over simple struc-
tures such as nanospheres because of concentrated EM
fields at edges and tips of the structure [92]. In these struc-
tures, the coupled nanoparticle and nano-array are both
optically tuned and optimized to generate hot spots for
sensing.

3.2 SPP

SPPs are surface EM waves that propagate along the
metal-dielectric interface as shown in (Figure 3A). These
waves are visible or infrared waves whose EM field decays
with distance into both mediums (Figure 3B) [106-108].
Unlike LSPR, SPP cannot be excited directly by incident
light due to the high momentum requirement. The classic
example of SPP is the Kretschmann configuration, where
an Au film is coupled to a prism and demonstrates optical
excitation of SPP on a metal surface [109, 110]. The large
refractive index prism enables an evanescent field through
attenuated total reflection to excites plasmons (Figure 3C).
The prism makes the horizontal wave vector components
of the incident light couple to the propagating SPP wave
vector, as long as the two wave vectors match at a certain
incident angle (Figure 3D).

From Maxwell equations, the SPP dispersion relation
can be expressed as [111, 112]

€&
K =k |~ (4)

8d+€m

The nonlinear characteristic nature of SPP results in
a momentum mismatch between light and SPP. This mis-
match can be overcome by coupling light and SPP modes
at the condition

+e =0 5)

At this condition, the real part of the dielectric con-
stant is negative and denominator in the above equation

is zero resulting in a resonance condition with resonance
D)

——L2—  where w,is the bulk plasma frequency.
1+e,

This resonance generates a surface plasmon propagat-
ing wave along the metal-dielectric interface and decays

frequency
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(A) SPP wave is propagating charge wave, generated along the metal dielectric interface which couples with an EM field. The amplitude of
SPP wave exponentially decreases away from the interface. The SPP can only be excited (B) at certain wave vectors and exists as a field that
decays evanescently from the surface. The momentum matching condition leads to the SPP resonance (D) only existing at certain incident
angles (A, B and D reproduced from [78] with permission from The Royal Society of Chemistry). (C) Illustration of SPP wave, comparing
relative penetration depth of SPP into metal and dielectric medium (reproduced from [105]).

exponentially with distance. The penetration depth of an
EM field in a dielectric is longer than the depth in metal
and this difference is more prominent at longer wave-
lengths [113].

The distinct behavior of SPP, which allows the control
of light at the nanometer scale, which has opened poten-
tial applications in photonics [114, 115], SERS [20, 116, 117],
spectroscopy [118], data storage [119] and sensors [120,
121]. Extraordinary optical transmission (EOT) is a phe-
nomenon where transmission of light is greatly enhanced
through an opaque metallic film due to the excitation of
SPP in a nanohole array pattern on the film [114]. Laser
interference lithography was used to fabricate an Au nano-
hole array [122] as shown in Figure 4A. The transmission
peak is very sensitive to the hole periodicity and dielectric
medium. When molecules are adsorbed on the substrate
with a nanohole array, the transmission peak shifts due
to change in the dielectric properties of the surface from
newly adsorbed molecules [123] as shown in (Figure 4B).

Spectrum filtering is one of the applications of SPP.
Liang et al. [124] has demonstrated an ultra-thin bandpass
filter with high angular tolerance and transmission effi-
ciency. The periodic metal-dielectric-metal geometrical
design (Au-Si,N,-Au) was fabricated by FIB as shown in
Figure 4C, and exhibits narrow optical transmission. The
incident light is coupled to the plasmon mode through the

slits on the top layer. The bottom Au grating converts the
confined plasmon to propagating waves and transmits the
incident light to far field. The transmission wavelength
can be tuned by changing the geometrical parameters of
the slit for filter applications (Figure 4D). Likewise, an Au
film evaporated onto NSL silica spheres forms a periodic
corrugation to the Au layer (Figure 4E). This corrugation
acts as a grating which couples the far field to SPP modes
[125]. In this work, the SPP-assisted visible light emission
is detected and SPP extraction efficiency is evaluated by
studying the polarization properties (Figure 4F).

SPP modes have been employed in sensing applica-
tions for label-free biomolecule detection. SPP differs from
LSPR for sensing because SPP propagates hundreds of
micrometers along surface. This gives a unique advantage
where the incident laser can avoid direct exposure on the
measured sample. This reduces interference from strong
background noise and damage from the high energy laser
on the sample [127]. For example, a plasmonic narrow
groove gratings have been used in a miniaturized SPR
sensor (Figure 4G) [126]. The incident light is coupled
into surface plasmons without the use of prism-cou-
pling (Kretschmann configuration). The further rigorous
coupled wave analysis simulation was done to determine
the wavelength at which the plasmon resonance occurs
with changes in the groove parameters (Figure 4H). The
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Figure 4: SEM images and optical properties of nano arrays supporting SPP.

(A) SEM image of gold nanohole array fabricated by LIL (reproduced from [122]); (B) transmission spectra and the effects of molecular
adsorption on EOT (reprinted with permission from [123]. Copyright (2004) American Chemical Society); (C) plasmonic bandpass filter by
MDM stack array. Inset: cross-section view; (D) measured transmission spectra for various periodicity (P), (800 to 1100 nm) and slit width (L)
(Cand D reproduced from [124]); (E) SEM image of thick gold film on silica spheres, inset: image after silica spacer deposition; (F) polarized
reflectivity spectra of plasmonic sample at different incidence angles (20°-70°), top figure: s-polarized. Bottom figure: p-polarized (E and F
reproduced from [125]); (G) schematic showing narrow groove plasmonic nanograting structure with groove width “w” and periodicity “p”;
(H) effect of nanograting dimensions “w” on the plasmon resonance dips in the reflectance spectra for narrow groove Au nanogratings (G
and H reprinted with permission from [126], © 2011 Optical Society of America).

narrow groove nano-could potentially lead to the devel-
opment of more robust SPR sensors as it does not require
angular dependence. In a study by Kalachyova et al. [117],
an SERS substrate composed of a sinusoidal Ag grating
is used to excite SPP modes. Experimental and theoreti-
cal results demonstrate an SERS enhancement factor up
to 10° was achieved by tuning the structural parameters.
Although this work did not demonstrate SERS sensing, the
enhancement factor is sufficient for SERS sensing appli-
cations [117]. A similar structure, a 1D Ag/SiO, sinusoidal
nanograting, has been applied for SERS detection of trace
TNT. EM field enhancement was calculated as 10°, while
experimental evaluation demonstrated a 10* enhance-
ment and TNT detection with an LOD at 10° M [128].

SPP and LSPR coupled sensor designs are based
on the understanding on plasmonic coupling to create
local hot spots, enhancing the near-field intensity in the
nanostructure to improve SERS LOD and sensor perfor-
mance [129, 130]. For example, LSPR and SPP modes were
coupled in an Au nanodisc array patterned by EBL on an
SiO, spacer and Au film. SERS enhancement factor exper-
iments demonstrated the factors were 7.2 x10” for Au and
8.4 %108 for Ag [129]. SPP and LSPR coupling has been
also demonstrated in other structures such as 2D metal-
coated dielectric gratings with SERS enhancement of

2x10° [130]. In this study, a combination of experimental
work and FDTD simulation demonstrated how morphol-
ogy affects plasmon coupling, hot-spot regions, and SERS
enhancement factor FDTD simulation among other calcu-
lations. This serves as a very useful tool when designing,
optimizing, and characterizing nano-array architectures,
especially with SPP and LSPR modes. When design-
ing nanostructures for SPP and LSPR coupling, the two
modes must be carefully controlled by morphology,
periodicity, local refractive index, and angle in incident
illumination. The resulting coupling causes a repulsion
in the resonances and enhancement of the near-field and
is evident in the extinction cross section by two primary
resonances [131].

3.3 Fano resonance

Fano resonance is the interaction between a narrow dis-
creet state (Figure 5A) and a broad continuum (Figure 5B),
producing a narrow asymmetric spectral shape with reso-
nant suppression and enhancement [133-135]. Construc-
tive interference of the two modes results in enhancement
of the resonance, while destructive interference results in
the suppression of the resonance. The resulting optical
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Continuum C  Fano resonance

(A) Lorentzian line shape of discrete level; (B) flat continuous background; (C) superposition result of two levels (discrete and continuum) to
form a Fano resonance line shape (A, B and C reprinted with permission from [132]. Copyright (2010) by the American Physical Society).

spectrum is given by the Lorentzian formula, which
describes the superposition of the two modes. The absorp-
tion spectrum shape of Fano resonance is given by [136]:

(g+ &y

1+&%)
where E is the energy, t, is the non-resonant transfer
amplitude, g is the shape parameter that determines the

2(E-Eo)

o(E)=(t,)? (6)

asymmetry of the profile, §= where E  and f are

the energy and resonance width, respectively.

A Fano resonance can be derived from the Mie theory
for a single spherical plasmonic particle. The magnetic
and electric amplitudes depend on size parameter. Con-
sidering a small size g<<1 and non-magnetic particle
(u=1), Rayleigh scattering yields [137]:

sca =§|e_1|2 q4
3|e+2|

)

With increase in size (g>1), eigen modes increases
creating extra resonances. When ¢ >1, all the resonances
are broad and there is no possibility of Fano resonance.
When ¢ <0 the resonance is broad at the same time for
£<0 and g>1, the resonance is weakly damped for dis-
sipative materials (noble metals) and have a narrow res-
onance. These two resonances coexist over a window of
“¢”, forming Fano resonance.

The Fano resonance phenomenon exists in plasmonic
nanostructures [138-140] where the continuum plasmon
resonance couples with a discrete state to form a Fano res-
onant mode (Figure 5C). The discrete state can be the exci-
tation of a molecule [141], excitation of a dark plasmon
mode [142], or excitation of a diffraction channel [143].
Fano-like resonance is present in a nanoring cavity array
(Figure 6A), where there is coupling between LSPR of the
nanostructure and the Bloch wave-SPP of the periodic
array. The coupling results in a sharp Fano resonance cen-
tered at 698 nm (Figure 6B) [144]. In a hexamer structure
(Figure 6C), there exists only dipolar plasmon resonance

(Figure 6D), but when a central Au nanoparticle is brought
into close proximity of the six nanoparticles, the hybridi-
zation of central particle dipolar plasmon with hexamer
dipole resonance generates Fano resonance [147]. The
Fano resonance is formed from the destructive interfer-
ence between the broad supper-radiant mode and the
narrow sub-radiant mode. The high Q factor of the Fano
resonance in a binary silicon nanohole array (Figure 6E)
has been used in high-performance optical modulators
[145]. In a binary nanohole structure, each hole array has a
lattice collective resonance mode with different resonant
energies, and they hybridize to generate a bright mode
and a dark mode [148]. The interaction of the bright and
dark mode forms the sharp asymmetric Fano resonance as
shown in (Figure 6F). Unusual Fano resonance is found in
plasmonic nanograter fabricated by the direct writing FIB
technique (Figure 6G and H) [146].

Fano resonance has been applied in the fields of bio-
logical sensing, lasing, medicine, metamaterials, and
optoelectronic devices. This is because of the unique
nature of Fano resonance to efficiently confine light and
it having a narrow optical feature [149]. Sensors utilizing
Fano resonance are based on the weak coupling and inter-
ference between sub-radiant and radiant LSPR modes or
SPP modes, and use peak shift for sensing recognition
[150]. Fano resonance is typically used to enhance the sen-
sitivity of conventional LSPR and SPP sensors by amplify-
ing the EM fields [150, 151]. Unlike SPP and LSPR modes,
Fano resonance exhibits very narrow, asymmetric reso-
nant peaks with large EM field enhancement [151]. This
feature of Fano resonance is sensitive to changes in the
local environment so that the Fano resonant materials can
be applied as optical sensing substrates [151].

In terms of design, Fano resonance originates from
symmetry breaking in nanostructures, which promotes
interference between the sub-radiant and radiant modes.
This understanding guides nanostructure designs for Fano
resonance. For nano-arrays, the metallic elements gener-
ate broad radiant plasmonic modes while sub-radiant
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Figure 6: SEM images and optical properties of nano arrays supporting Fano resonance.

(A) SEM image and (inset) AFM topography of a nanoring cavity array; (B) comparison of simulated and measured reflection spectra of
nanoring cavity (A and B reproduced from [144] with permission from The Royal Society of Chemistry); (C) SEM image of gold heptamer
sample fabricated by electron-beam lithography; (D) a normal view of the heptamer structure (top), extinction spectra (bottom) of a gold
heptamer with interparticle gap <60 nm (C and D reprinted with permission from 142]. Copyright (2010) American Chemical Society); (E) SEM
image of binary silicon nanohole array; (F) measured transmission with bigger hole radius=50 nm and smaller hold radius=110 nm of a
binary silicon nanohole array (E and F reproduced from [145]); (G) schematic (top), high magnification SEM image (bottom) of (H) SEM image
(large area) of Fano resonances from vertical U-shaped SRRs standing along horizontal rectangular hole arrays in a free-standing metallic

film (G and H reproduced from [146]).

modes exist by near-field coupling of the nanostructures.
Both of these elements can be tuned by geometric and
structural variation. Fano resonance sensors for LSPR
mode enhancement have been designed with Ag nano-
cubes [152], nanorings coupled with nanodisks [153], and
nanoclusters [154]. Figure 7A shows the plasmonic sensor
structure based on a metal-dielectric-metal waveguide.
The upper cavity couples weakly and the lower cavity
couples strongly with the input wave, exciting subradi-
ant and superradiant modes, respectively [149]. Thus,
Fano resonance is achieved by coupling between these
modes. The resulting transmission peak is sensitive to the
local refractive index, allowing for refractive index-based
sensing applications (Figure 7B). Due to the narrow reso-
nance window, sensors based on refractive index changes
are highly sensitive. Figure 7C shows the experimental
demonstration of detecting biomolecule with the naked
eye and Fano resonance [142]. The plasmonic chips with
Fano resonance are functionalized with a biomolecule and
a notch filter is tuned to filter light outside the resonant
transmission peak. The blue curve shows the transmission
spectra of the functionalized chip. When the monolayer of
mouse immunoglobulin (Ig)G antibody is captured, there

is a 22 nm shift in the plasmonic resonance, allowing
the overlap with a notch filter. This results in the drastic
reduction of transmission (Figure 7D), which can be
noticed with the naked eye. Although Fano resonance has
not been demonstrated in SERS sensors, Fano resonance
enhancement of SPP and LSPR modes is of interest for
SERS. As the peak shift typically associated with Fano res-
onance sensors and refractive index change is very small,
the EM field enhancement via Fano resonance could still
be utilized for SERS without great changes to the plasmon
peak. Fano resonance using a nanograter structure was
also applied for refractive index sensing. The Fano reso-
nance exhibited in this structure demonstrated sensitivity
at 2040 nm per RIU and Fano resonance extending into
the NIR region [146].

3.4 Plasmonic WGM

WGM resonances occur when an EM field becomes trapped
at the surface of a structure due to total internal reflection
[156-159]. They are gallery modes specific to a cavity and
highly dependent on the geometry of the cavity [160, 161].
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Figure 7: Select MIM nano arrays supporting Fano resonance for sensing applications.

(A) Schematic layout of a metal-dielectric-metal based plasmonic resonator; (B) the sensing response of Fano resonance peak shift

with change in refractive index, inset: corresponding FOM variation (A and B reproduced from [149]); (C) comparison of CCD images

with transmitted light obtained from detection and control sensors. Transmitted light intensities drop with capturing antibody; (D) (left)
transmission spectra of before (blue curve) and after (red curve) capturing of the antibody. Spectral characteristic of the notch filter (green
curve) is shown. (right) Transmitted light intensities in the presence of the notch filter is given before (blue curve) and after (red curve) the

capturing of the antibody (C and D reproduced from [155]).

WGM resonators have a high-quality factor (Q), making
them a potential candidate for biosensors. When the
length of the optical path matches the integer number
of the wavelength, a standing wave is formed inside the
cavity. At this resonance condition, the mode is confined
in the dielectric medium, and a small portion extends
outside, which is very sensitive to the surrounding envi-
ronment. The change in the resonant frequency with
molecule is sensitive and used as WGM sensors. The per-
formance of a WGM resonator is measured by a quality
factor (Q), defined as:

w
Q=30 — (8)
Aa)FWHM
where o is the angular resonance frequency and Aw ... is

linewidth of the frequency (full width at half maximum).
However, for single molecule detection the resonance
shift is not sensitive enough. The resonance shift is given
by [162]:
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where r represents molecular binding site, E is the WGM
electric field strength, « is the polarizability of the mole-
cule, A_is the laser wavelength, ¢ is the permittivity of the
cavity. From Equation (9), the wavelength shift is propor-
tional to the electric field strength |E(r)I2. Plasmonic nano-
structures with high electric field strength are thus used in
WGM resonators to excite a hybrid plasmonic WGM mode,
which has higher sensitivity compared with a normal
WGM resonator.

WGM resonators can be made in various shapes,
including spheres [163-165], rings [166], disks [167, 168],
and toroids [169] and they can be composed of various
materials, including polymers, metal oxides and silicon
[161]. To improve sensitivity, a hybrid plasmonic WGM is
designed by incorporating plasmonic nanostructure in
a WGM resonator. Plasmonic WGM is a hybridized mode
between surface plasmons and WGMs, which exhibits the
combined benefits of plasmonic localization with high
Q-factor microcavities. However, the incorporation of
plasmonic structures in a random way may not support
the WGM mode itself. Hence, periodic arrays of plasmonic
nanostructures were coupled, which allows a constructive
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Figure 8: WGM resonator configurations and associated optical properties.

(A) SEM image of an Ag-coated SPP whispering-gallery microdisk resonator; (B) Schematic of SPP microdisk resonator with a tapered
optical fiber passing under its edge; (C) Q-factor measurements for Ag-coated microdisk resonators. Normalized transmission spectrum
showing the highest measured SPP Q factor of 1376 + 65 and a dielectric resonance with a Q factor of 4025 + 262 (A, B and C reproduced
from [170]); (D) illustration of an oblate spheroidal WGM resonator with functionalized periodic nano-plasmonic epitopes, that is driven at
a frequency that produces a symmetric standing wave (reprinted with permission from [171] © 2012 Optical Society of America); (E) SEM
image of FIB-fabricated ring groove in single-crystal Au. Top view (top image), side view (bottom image); (F) spatial mapping of modes by
cathodoluminescence plasmon microscopy (reprinted with permission from [172]. Copyright (2009) American Chemical Society).

interference, improving the sensitivity of sensor.
Figure 8A shows a plasmonic microdisk cavity structure
composed of a core silica disk microcavity covered with
a thin layer of Ag (cladding), which has demonstrated a
Q value as high as 1376 [170]. Initially disk-shaped pho-
toresist pads were fabricated by photolithography, and
etched in buffer oxided etch (BOE). Acetone is used to
remove the photoresist, and the remaining silicon disk
is suspended by an undercut formed during the iso-
tropic etch. Figure 8D shows that the periodic plasmonic
epitopes are attached to the surface of WGM microcavity
to improve the performance of the sensor [171]. The addi-
tion of regular plasmonic epitopes on the diameter of the
WGM resonator form a hybrid mode which boosts the fre-
quency shift enhancement. Figure 8E shows a ring-shaped
nano-resonators fabricated by FIB patterned in a single-
crystalline Au, which is used to analyze the resolution of
the WGM of a plasmon ring cavity [172]. Scanning cathode
luminescence spectroscopy and EM modeling has been
used to obtain the spatial and spectroscopic information
(Figure 8F).

WGM sensors typically operate by realizing changes
in the resonant frequency or linewidth. These changes
arise from changes in the local refractive index induced
by the analyte of interest. This form of sensing requires
the device to be highly sensitive to changes in the refrac-
tive index [161, 163]. Examples of sensors operating in
this manner include viral [164] or protein detection [173],

refractive index sensing [166], and environmental moni-
toring [168]. Even though WGM sensors have high sensi-
tivity, it is challenging in achieving high signal-to-noise
ratio due to the presence of noise in the optical measure-
ment [174] The performance of the WGM resonators can
be improved by incorporating plasmonic nanostructures,
where both the Q factor of the WGM and the EM field of
the plasmonic structure are completely utilized for appli-
cations. In this way, extremely low photon loss rate is
achieved in plasmonic structures, opening new research
in the areas of nonlinear optics and quantum optics [175,
176]. Because of the high enhancements from WGMs, plas-
monic WGM sensors have the potential for single-mole-
cule and label free detection [161, 163].

Sensing by changes in resonant frequency and
linewidth is difficult as calibration and data analysis are
more complex [161]. However, when WGM resonators are
coupled with plasmonic nanostructures, the plasmon
can enhance the local EM field remarkably. Because of
this, WGMs paired with nanostructures can be applied
in high-sensitivity SERS sensors. In a computational
work, the SERS enhancement factor is calculated for a
microsphere plasmonic WGM structure. Because Raman
scattering radiation overlaps with WGM resonance, micro-
spheres have made an SERS enhancement factor as high
as 108 [165]. In order for the WGMs to be enhanced by the
plasmon, an EM field should be tangent to the resonator
surface.
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3.5 SLR

SLR arises from optical coupling of LSPR modes in arrays
of metallic nanoparticles (Figure 9A) [178, 179]. Compared
the optical absorption of LSPR (Figure 9B) from single
nanoparticles, SLR from nanoparticle arrays has much
narrower optical spectrum features (Figure 9C), making
this mode desirable for light absorption applications and
sensing [180]. Like LSPR, the SLR modes can be tuned
along the UV-Vis and NIR spectrum by variation in mor-
phology, particle size, material, refractive environment,
and periodicity [178, 179].

The coupled dipole approximation (CDA) is instru-
mental in understanding the difference in extinction
cross-section between LSPR and SLR. In this approxima-
tion for SLR, the dipole sum provides an additional degree
of freedom (dependent on periodicity, particle size, etc.)
to govern the width of the SLR mode [178]. The effective
polarizability («,;) and the extinction cross section (C_)
are given by:

.
eff
R (10)
aS
C,, =4nNkim(c ) (11)

where «_is the isolated nanoparticles polarizability, S is
the retarded dipole summation from other particles, N is
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Figure 9: Electric field distribution and optical transmission of SLR.
(A) Orthogonal and parallel coupling in SLR (A reproduced from [177]
with permission from The Royal Society of Chemistry). Comparison
of LSPR and SLR in calculated transmission spectra schematic of
structures considered: (B) single particle; (C) a periodic 1D chain
(reproduced from [178], https://pubs.acs.org/doi/abs/10.1021/
acs.chemrev.8b00243 further permissions related to the material
excerpted should be directed to the ACS).
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the number of particles, and k is the wavenumber of inci-
dent light.

Nano-arrays are designed with assistance from CDA
to support SLR. The primary control parameters to realize
SLRs are the particle size and the lattice constant as they
control the coherent interaction of the plasmons [178, 179,
181]. An increasing lattice constant results in a more nega-
tive dipole sum, which redshifts the resonant frequency
and decreases FWHM, while decreasing diameter will blue
shift the resonant frequency. SLR supports both orthogo-
nal and parallel EM coupling, which is dependent on the
relationship between incident light propagation and dif-
fraction wave propagation [179, 181]. Orthogonal or paral-
lel coupling occurs when the light polarization is either
vertical or parallel to the diffraction wave [181]. These
characteristics allow for SLR modes to be easily tuned to
desired wavelengths along the EM spectrum.

Many nano-array structures and materials have been
investigated for SLR modes. Symmetric and asymmetric
nanodisc dimers [182], nanoparticle arrays, and square,
hexagonal, and honeycomb [180] configured nanoparticle
arrays have been shown to support SLR. Lattice constant,
morphology, and size are primarily studied to elucidate
the origin and magnitude of SLR. Interestingly, spatial
arrangement of arrays has no effect on SLP magnitude
and position. Nanoparticles arranged in square, hexago-
nal, and honeycombs configurations exhibited similar
SLR wavelength and diffraction edge, which demon-
strates periodicity and lattice constant is a factor driving
EM coupling [180].

Because of the strong narrow plasmon resonance, SLR
is an appealing mode for optical sensing, photovoltatics,
and photocatalysis. For light harvesting applications, the
SLR of nanoparticle arrays enhances photoelectron emis-
sion in solar cells. The nano-array structure can achieve
comparable photocurrent density to densely packed nano-
arrays, therefore a much lower density of nanoparticles is
needed. Additionally, photoelectron emission can be con-
trolled by tuning the size, shape, and periodicity of the
nanoparticle array [183]. Coupling metallic nano-arrays
with semiconductor materials is promising for improving
the optical absorption efficiency [184] and excitation of
electrons [185] for photocatalysis.

For sensing, the sharp spectral feature of SLR can
improve LOD and figure of merit (FOM) for optical sensors
compared to using LSPR modes for plasmonic sensors.
Single nanoparticles for sensors are limited by the high
FWHM of the plasmon resonance. Broad plasmon modes
are subject to lower sensor performance because it is
more difficult to resolve small changes in plasmon fre-
quency [179]. SLR modes of nanodisks [186, 187] and
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nanoparticle [188] arrays have been developed for poten-
tial sensing applications. Sensors operating with SLR
modes typically utilize shifts in the plasmon position for
chemical or biological recognition [178]. For SLR sensor
application, there are practical design considerations
that must be optimized and considered. Refractive index
mismatch between substrate and the surrounding envi-
ronment, such as buffer, can adversely affect the EM field
symmetry, and cause the increased linewidths [178, 179].
To overcome such challenges, architectures have been
designed to include additional contributions from Fabry-
Perot cavities. Nano-bowtie metal-insulator-metal (MIM)
substrates [189] demonstrate excellent enhancement of
6 x and 24 x for parallel and orthogonal coupling, respec-
tively (Figure 10A). This structure contributes to SLR
enhancement by confining light in the MIM cavity and
forming Fabry-Perot resonances. The nano-bowtie MIM
structure is highly sensitive to local changes in refractive
index as shown in Figure 10B and C, with sensitivity to a
thousandth RIU. In addition, nano-mushroom arrays have
been developed for detection of cytochrome C, achieving
a LOD of 200 pM (Figure 10D) [190]. Like the nano-bowtie
structure, the nano mushroom array is also highly sensi-
tive to changes in the local environment when composi-
tion of water-glycerin mixtures are varied as shown in
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Figure 10E and F. Hybrid structures such as nanowire,
nanoring arrays [191] and nanodot arrays [192] in micro-
cavities have a high FOM for biological sensing, while
reducing SLR substrate effects.

3.6 Gap plasmon

Surface plasmons that exist and confine high EM energy
between two metal structures in a small gap are called
gap plasmons (Figure 11). When the metal structures are
in close proximity, the near-field coupling dominates and
confines the EM field in the nanogap [193, 194]. When the
gap increases, the coupling weakens and the properties
of the individual metal structures are displayed. Recently,
nanostructure arrays coupled with metallics films sepa-
rated by a spacer layer [195, 196, 15] have gained increas-
ing attention because of their controlled EM over a large
tunable wavelength range. The high enhancement of
plasmon intensity at the gap is of interest because of its
applications in metamaterials, energy transfer, sensors,
and solar energy harvesting.

There are two prominent multilayer configurations
where gap plasmon can be realized. One is MIM and the
other is insulator-metal-insulator (IMI). Both structures
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Figure 10: Configuration and optical properties of nano arrays supporting SLR.
(A) Schematic of the Au BNAs with MIM configuration; (B) normalized reflection spectrum of the BNAs as a function of the superstrate

refractive index ranging from 1.0 to 1.4; (C) zoom-in reflectance spectr

a when superstrate refractive index changes from 1.0 to 1.001 (A, B

and C reproduced from [189]); (D) SEM image showing cross section of gold nano-mushroom arrays (GMRA); (E) refractive index sensing
using the GMRA. Reflectance spectra of the GMRA immersed in glycerin water mixture solutions with varying compositions; (F) relationship
between the wavelength of D1 (solid squares) and the refractive index. The line is a linear fit, with the refractive index sensitivity and FOM
value determined to be 1015 nm RIU 1 and 80 108, respectively (D, E and F reproduced from [190]).
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A

Gap plasmon

Figure 11: Excitation and optical properties of gap plasmon.
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Reflection

(A) Gap plasmon standing wave exists when two metal structures are closely separated by a spacer layer; (B) gap plasmon leads to large
absorption and amplified EM field, depending on the spacer layer thickness.

confine the gap plasmon; however, an MIM configuration
is superior in terms of mode volume, strong confinement,
and quality factor [197, 198]. In a simple MIM structure, the
metal on the illumination side should be thin enough to
allow the incident light to enter through the system. Once
the light passes through the metal strip, light is trapped
in the dielectric layer, forming a standing wave known as
a gap plasmon shown in Figure 11A. This shows a strong
absorption peak in the spectrum. The gap plasmon can be
explained by Fabry-Perot (FP) formula [198, 199]:

WZTnneff =pr+e (12)
where w is the strip width, p is an integer, A is the wave-
length, n . is the effective refractive index where gap mode
is formed, ¢ is an additional phase shift due to reflec-
tion. By tuning the spacer layer thickness, the refractive
index absorption peak is tuned over a large wavelength
range (Figure 11B). When the space layer is very thin (typi-
cally <8 nm), the gap plasmon is very intense due to the
strong light confinement. The EM field strength of the gap
plasmon decreases with an increase in the thickness of
the spacer layer. Thus, there is a range of thickness where
an MIM can support a gap plasmon mode.

MIM structures with periodic ordered patterns coupled
with a film separated with an insulator are called quasi-3D
nanostructure arrays. These materials have much sharper
optical peaks and intense EM fields because this pattern
creates interactions between SPR modes and gap modes.
In conventional LSPR, the EM field decays exponentially
with the distance away from the structure. In contrast, the
gap mode causes the EM energy to oscillate between mag-
netic and electric counterparts inside the gap. This feature
enables almost same EM field intensity over the entire
gap, and the mode volume is the physical size of the gap.

Gap plasmon modes are used in wide variety of
applications including total light absorption, solar water
splitting, and plexiton generation. Total light absorption

and broadband absorption are highly demanded in solar
energy harvesting applications. An Ag hole array coupled
with an Ag film with a silica space layer acts like a perfect
absorber at visible light region for solar energy harvest-
ing (Figure 12A) [200]. The reflection dip can be easily
tuned by changing the parameters of the nanohole array
and spacer layer thickness (Figure 12B, C). It is well known
that the emission efficiency of plasmonic hot electrons
is dependent on the local EM field; thus, the strong EM
field in the plasmonic gap mode can be used to enhance
the hot electron generation [201]. When a hematite film is
sandwiched between the Au nanodisc array and the Au
film (Figure 12D), a strong plasmon gap mode is gener-
ated and is dependent on the thickness of the hematite
film (Figure 12E). This structure has been successfully
used for solar water splitting [201]. The increase in the
IPCE enhancement (Figure 12F) is due to the enhancement
of hot electron generation by the plasmonic gap mode.
In addition to the applications in energy harvesting, gap
plasmons allow designing nonlinear photonic and optoe-
lectronic devices. In an Au film-coupled Au nanopyramid
array (Figure 12G), the gap plasmon was tuned by varying
the thickness of the nanogap (Figure 12H). Because of its
strong EM field over a large area throughout the gap, it can
be used to couple SPPs with quantum emitters (QEs) in
the strong coupling regime to generating plexitions [15].
Plexitons are coherently coupled plasmons and excitions
and produce new optical excitation levels [202]. Figure 121
shows a strong coupling of gap mode with QE (J-aggregate)
in the quasi-3D nanostructure array in leading to the for-
mation of a plexiton. This eliminates the high energy loss
and weak nonlinearity in the optoelectronic devices.
Plasmonic gap modes are advantageous for SERS
sensors due to their high EM enhancement as compared to
conventionally used colloidal nanostructures. In a study
by Sivashanmugana et al. [203], a hexagonal Au nanorod
array fabricated by FIB was coupled with Ag nancubes on
the surface, generating gap mode enhancement regions.
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Figure 12: SEM and optical properties of select nano arrays supporting gap plasmon.

(A) Schematic and SEM image (inset) of Ag nanohole array on Ag film with SiO, spacer layer; (B, C) experimental reflectance for hole radius
changing from 30 to 80 nm. A perfect absorber (99% absorbance) is realized when the hole radius is 50 nm and clear spectral splitting is
observed for radius 60 ~80 nm (A, B and C reprinted with permission from [200]. Copyright (2012) by the American Physical Society); (D)
SEM images of the fabricated Au nanodisks for the gap-plasmon arrays with four different disk diameters (dia: diameter, per: period); (E)

experimentally measured absorption spectra of nanodiscs with differ
photon conversion efficiency (IPCE) comparison between gap plasmo

ent disk diameters at 20° incidences for all the arrays; (F) incident
n electrode and bare hematite electrode, Inset: IPCE in the near IR

wavelengths (D, E and F reproduced from [201] with permission from The Royal Society of Chemistry); (G) SEM image of the fabricated

film-coupled Au nanopyramid array (the inset shows the size compari

son of quarter coin with sample and schematic nanostructure;

(H) experimental reflection spectra of gap plasmon mode with various silica thicknesses the inset shows the side view of schematic

nanostructure; (1) experimentally measured spectral profiles of J-aggr

egates, plasmonic gap modes, and the hybridized upper and lower

plexciton states (G, H and | reproduced from [15] with permission from The Royal Society of Chemistry).

A large SERS enhancement of 9.11 x 108 resulted from the
plasmonic coupling between the nanogaps of hexagonal
edges on the nanorod and nanogap. When applied as an
SERS sensor for lung cancer exosomes, an LOD of 10-10°
was achieved, which is lower than that of traditional bio-
chemical analysis. The nanogap modes were optimized by
tuning the gap size for maximum EM field enhancement
[203]. A 3D SERS substrate [204] inspired by bio-scaffold
arrays of cicada wings has been developed with hierar-
chical nanogaps for viral detection. The Ag nano-islands
and Ag nano-flowers with nanogaps on chitin nano-
pillars have generated high density of hot spots with an
enhancement factor of 5.8 x10”. As mentioned, plasmonic

gap mode sensors are as not as common. However, funda-
mental work continues to drive exploration of plasmonic
gap modes for sensors. In particular, the LSPR plasmonic
gap modes can be tuned into the infrared region with high
FOM, showing a potential for SERS application [205].

4 Remarks

The availability of fabrication techniques as well as the
discovery and understanding of plasmonic modes are the
key to the success of plasmon research. In the past two
decades, many fabrication methods have been developed
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to overcome the limitation of conventional photolithog-
raphy. However, significant challenges remain for the
massive fabrication of nano-arrays at nanoscale-resolu-
tion and low-cost with excellent repeatability, controlla-
bility, and great flexibility in tuning optical properties. In
many cases, simulation shows that hierarchical structures
could exhibit extraordinary optical properties. However,
no fabrication method is available to make real nano-
structures. In particular, there are still technical barriers
for the fabrication of large-area, long-range-ordered peri-
odic nano-array patterns. Additionally, when plasmonic
nano-arrays are used in practical application such as
photovoltaics, photoelectrochemical cells (PECs), and
optoelectronics, plasmonic metal-semiconductor het-
erojunctions are required to enable plasmonic coupling
between metals and semiconductors. Fabrication of the
integrated metal-semiconductor heterojunctions often
require high-temperature processing, which may destroy
the metal nanostructure at high temperature. This puts a
constraint on fabrication routes and techniques.

Plasmonic nano-arrays are finding various applica-
tions in sensors, photovoltaics, PECs, photodetectors,
and other optoelectronics, which require coupling of
plasmonic nano-arrays to other components of devices.
Unfortunately, plasmonic nano-arrays sometimes are ran-
domly assembled into devices, in which the plasmonic
effect has not been utilized effectively. Consequently, this
leads to a false image that plasmonics is interesting sci-
entifically but useless in practical applications. To solve
this problem, plasmonic applications should be imple-
mented in a manner of “device-by-design”. In many cases,
the plasmonic effects of nanostructures are not known
or understood thoroughly. Theoretical calculation and
simulation of EM fields and optical responses are needed
to assist the design of plasmonic devices. The “device-by-
design” strategy must be built on the prerequisite of full
understanding of the concepts and principles of various
plasmonic modes and acquaintance of the fabrication
techniques of nanostructures.

Rapid progress has been made in 2D and 3D plas-
monic nano-arrays in the following aspects [78, 206]: (i)
Introduction of new fabrication techniques has made it
possible to create new 2D and 3D plasmonic nano-arrays
with desirable optical properties; (ii) new plasmonic
modes have been discovered; (iii) existing plasmonic
modes have gotten better understanding; and (iv) 2D and
3D plasmonic nano-arrays have been finding increasing
applications in various fields. One can forecast the con-
tinuing growth in these aspects.

In the past two decades, the majority of SPR studies
were focused on the nanostructures typically larger than
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10 nm. The near-field and far-field plasmonic properties of
these relatively large nanostructures are attributed to the
classical behaviors of both electrons and EM fields. That
is, the dynamics of valence electrons in these nanostruc-
tures are considered as a collective harmonic oscillation
of the electron charge density; and the corresponding EM
fields are described by the framework of Maxwell’s equa-
tions. Rapid development of fabrication and synthesis
techniques has enabled the fabrication and manipulation
of particles and other structures down to the molecular
and even atomic level. The plasmonic properties of these
quantum-sized particles and structures are governed by
the complex quantum interactions and dynamics of the
electrons other than the classical behaviors of both elec-
trons and EM fields. This has resulted in the emerging of
the “quantum plasmonics” field. It is interesting to study
the quantum properties of plasmon excited in 2D and 3D
periodic array patterns under the quantized condition.
Fundamental understanding of the light-matter interac-
tions at the quantum level in these downscale structures
will result in new quantum-controlled plasmonic devices.
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