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Abstract: The high demand for energy consumption in 
everyday life, and fears of climate change are driving 
the scientific community to explore prospective materi-
als for efficient energy conversion and storage. Perovs-
kites, a prominent category of materials, including metal 
halides and perovskite oxides have a significant role as 
energy materials, and can effectively replace conventional 
materials. The simultaneous need for new energy mate-
rials together with the increased interest for making new 
devices, and exploring new physics, thrust the research 
to control the structuring of the perovskite materials at 
the nanoscale. Nanostructuring of the perovskites offers 
unique features such as a large surface area, extensive 
porous structures, controlled transport and charge-car-
rier mobility, strong absorption and photoluminescence, 
and confinement effects. These features together with 
the unique tunability in their composition, shape, and 
functionalities make perovskite nanocrystals efficient 
for energy-related applications such as photovoltaics, 
catalysts, thermoelectrics, batteries, supercapacitor and 
hydrogen storage systems. The synthesis procedures of 

perovskite nanostructures in different morphologies is 
summarized and the energy-related properties and appli-
cations are extensively discussed in this paper.

Keywords: perovskite nanocrystals; energy conversion 
devices; energy storage devices; thermoelectrics.

1  �Introduction
The high demand for energy consumption in everyday life 
activities along with fears of the climate changes highlight 
the importance to develop efficient energy conversion 
and storage devices. Thus, sufficient energy conversion 
and storage together with low-cost energy materials are 
the most important requirements. In order to design such 
devices, it is crucial to study and understand the under-
lying principles and mechanisms of renewable energy 
conversion and storage. Each of these technologies has its 
own characteristics, requirements, and efficiency limits 
or constraints. Different mechanisms take place in each 
technology and this is the main reason for dealing them 
independently.

The design and engineering of novel materials with 
a suitable range of properties for the effective utilization 
for such applications is a basic requirement. The design of 
new energy-related materials is at the forefront of different 
sciences such as the material science, chemistry, physics, 
and engineering. It is important to reveal the relationship 
between the material structure and the device perfor-
mance if we wish to propose new energy-related materials 
[1–3].

In the quest to find prospective energy materials for 
high performance energy devices, the perovskite com-
pounds hold a prominent role due to their unique tunable 
properties [4–8]. Perovskites are a family of materials with 
the formula ABX3 and have a similar structure to the pro-
totype CaTiO3 mineral. The cation “A” occupies the corner 
positions of the unit cell and the cation “B” is located at 
the center of the cell, while the anion “X” is on the unit 
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cell faces [9]. This family comprises oxides and halide per-
ovskite material. Some representative oxides are the ferro-
electric BaTiO3 and PbTiO3, the dielectric (Ba,Sr)TiO3, the 
piezoelectric Pb(Zr,Ti)O3, the electro-strictive Pb(Mg,Nb)
O3, the magneto-resistant (La,Ca)MnO3, and the multifer-
roic BiFeO3. In the case of metal-halide perovskites, M is 
a divalent metal from group 14 (Pb, Sn) or a rare earth 
element (Eu), and X is a halogen (X=F, Cl, Br, I, or a com-
bination of them). According to the nature of the cation, 
the metal halides can be divided in two groups, the all-
inorganic and the hybrid organic-inorganic metal halides. 
In the first category the cation A is a monovalent alkali 
metal (like Cs, K) while in the second it is a small organic 
cation (such as CH3NH3) [10, 11].

The exploitation of new synthesis methods for the 
fine control of the structural characteristics and improved 
stability is important in the design of perovskite energy-
related materials. Furthermore, the progress on the syn-
thesis strategies for nanoparticulate systems of high 
quality in terms of homogeneity and crystallinity, has led 
the research community to search whether these materi-
als could replace conventional energy materials. Differ-
ent morphologies and chemical structures have been 
introduced for both metal halide and perovskite oxide 
nanocrystals for such purposes [1, 12, 13].

Metal halide nanocrystals can be effectively used in 
energy conversion, due to their strong optical absorption, 
low non-radiative recombination rates, tunable band 
gaps, relatively high charge-carrier mobility, and long dif-
fusion lengths coupled with solution processability [14]. 
These nanocrystals have been utilized as the absorbing 
material in perovskite solar cells [15, 16] or placed at the 
interface between the absorbing and the hole transport 
layer (HTL) in order to improve carrier transport and sta-
bility [17, 18]. They are also used as down-converters in 
silicon solar cells due to their excellent quantum-cutting 
properties giving efficiencies of 21.5% [19]. In contrast, 
perovskite oxide nanocrystals have been utilized as elec-
tron transport layers (ETLs) in perovskite solar cells, 
as these materials are characterized by high electron 
mobility, wide band-gap, and a well-aligned conduction 
band with the absorbing layer [20]. Furthermore, perovs-
kite nanocrystals have been tested for catalytic carbon 
dioxide (CO2) reduction in solar fuel cells. By mimick-
ing the natural photosynthesis in green plants, artificial 
conversion of CO2 into chemical fuels offers a promising 
approach to simultaneously mitigate the levels of green-
house gas and produce renewable energy [21]. Artificial 
solar-driven CO2 reduction results in the partial reduction 
of the carbon monoxide (CO), methane (CH4), methanol 

(CH3OH), etc., which are common chemical fuels. Single-
phase metal halide nanocrystals have shown promising 
results in CO2 reduction [22, 23], but enhanced perfor-
mance when these are coupled with graphene oxide (GO) 
or palladium nanosheets [24, 25]. Besides, the perovskite 
materials are promising materials for thermoelectrics for 
the conversion of thermal energy to electricity [26, 27]. 
Compared to the traditional materials used for thermo-
electric applications (metal chalcogenide materials like 
Bi2Te3 and PbTe), perovskite materials are less expensive 
and can be processed by low energy cost methods and can 
be used for flexible thermoelectric devices [27]. The fairly 
ionic, polar character with a large dielectric constant and 
the remarkable conduction band anisotropy of the metal 
halides convey robust thermopower and moderate room 
temperature electrical conductivity [28].

Perovskite nanocrystals have been utilized in energy 
storage in batteries or supercapacitors due to their excel-
lent catalytic activity, electrical conductivity, and dura-
bility. Ion migration through perovskite lattices allows 
the use of such materials as electrodes for batteries. Elec-
trochemical measurements of the nanoparticulate per-
ovskite systems displayed superior catalytic activity for 
oxygen reduction, as well as a higher discharge plateau 
and specific capacity compared to the bulk materials of 
the same crystal structure [29]. Metal halide nanocrys-
tal films have been formed for application as anodes, 
for stable Li-based batteries [30–32]. Furthermore, in 
the case of the perovskite oxides, the size and the mor-
phology of the nanocrystals are two factors that affect 
their electrochemical performance. Factors such as the 
structural nanocrystal quality, the existence of defects 
in the lattice [33], the doping in of the A and/or B site 
of the perovskite lattice [34–37], the nanocrystal poros-
ity [38–41], and the existence of synergetic effects in the 
bifunctional morphologies [42–46] play an important role 
in the final electrochemical behavior. In addition, in the 
case of supercapacitor storage, it was found that struc-
turing perovskite oxides and forming nanocrystals lead 
to remarkably enhanced, specific capacitance, rate capa-
bility, and cycle stability compared to the corresponding 
bulk materials [47–49]. Finally, perovskite nanocrystals 
offer improved electrochemical performance, low cost 
production in hydrogen storage and energy sustainabil-
ity for transportation, electricity generation, and heating. 
Perovskite oxide nanocrystals show a higher discharge 
capacity compared to the bulk counterpart of the same 
stoichiometry [50] and in some cases is comparable to 
that of common materials that have been used for hydro-
gen storage to date [51].
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Several review articles have been published on the 
application of nanocrystals in energy conversion and 
storage in the last couple of years [52–57]. This review article 
seeks to summarize the colloidal methods of the perovskite 
nanocrystals both for metal halides and perovskite oxides 
but mainly focuses only on the applications of the nano-
particulate structures (Figure 1). This review is structured 
in three main sections: Section 2 deals with the synthesis 
strategies, morphology, and size control of the single-
phase perovskite nanocrystals, Section 3 looks at perovs-
kite nanocrystals for energy conversion, and Section  4 
deals with perovskite nanocrystals for energy storage. In 
all these sections, we have summarized the literature for 
both metal halide and perovskite oxide nanocrystals and 
discuss the effect of structure, morphology, and size in the 
performance of these devices. This review article concludes 
with some open issues that require attention to succeed in 
designing efficient and low-cost devices.

2  �Synthesis strategies, morphology, 
and size control of the single-
phase perovskite nanocrystals

Different methods have been introduced for the success-
ful synthesis of perovskite nanocrystals. Metal halides 
have been synthesized by template-assisted methods and 
colloidal-based reactions, while perovskite oxides are 
created by solid-state or molten-salt reactions and col-
loidal processes. Due to the limited use in energy appli-
cation of the metal halide nanocrystals synthesized by 
template-assisted methods we will focus only on the col-
loidal methods. In the case of the oxides, despite the fact 
that the solid state and molten-salt syntheses are more 
convenient compared to the colloidal ones, the latter 
have the advantage of achieving a better control of the 
characteristics of nanocrystals. Here, we focus on the 

Figure 1: Applications of perovskite (metal halides and perovskite oxides) nanocrystals for energy conversion and storage.
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colloidal methods that offer control on the morphology/
structure and we think that they can be used to obtain 
energy devices of high performance with a reproducible 
and well-controlled manner despite whether they were 
used earlier or not.

Colloidal methods were used for the synthesis of both 
metal-halide and perovskite oxide nanocrystals of differ-
ent morphology, isotropic or anisotropic one (Figure 2). In 
most cases, the metal halide nanocrystals were covered 
with organic molecules, usually acids and amines, while 

in the case of perovskite oxides, they are free of ligands 
(Table 1).

2.1  �Colloidal synthesis for metal halide 
nanocrystals

Colloidal strategies at low or even at high tempera-
ture (>140°C) have been introduced for the morpho-
logical control of the metal halide nanocrystals through 

Figure 2: Summary of the solution-processed synthesis procedures of various perovskite nanocrystal morphologies.
Metal halides: (a) Nanospheres synthesized by a hot method. (Reprinted with permission from [58] Copyright (2017), American Chemical 
Society.] (b) Nanocubes synthesized by ultrasound-irradiation. (Reproduced by permission of the Royal Society of Chemistry [59].) (c) 
Nanorods synthesized by solvothermal method. (Reprinted with permission from [60]. Copyright (2016), American Chemical Society.) (d) 
Nanowires synthesized by re-precipitation method. (Reproduced by permission of the Royal Society of Chemistry [61].) (e) Nanosheets 
synthesized by exfoliation. (Reproduced with permission from [62]. Copyright 2016, Wiley-VCH.) Perovskite oxides: (a) Irregular-shaped 
nanocrystals synthesized by sol-gel method. (Reproduced with permission from [63]. Copyright 2011, Elsevier.) (b) Spheres synthesized by 
the sol-gel method. (Reprinted with permission from [64]. Copyright (2001), American Chemical Society.) (c) Clusters synthesized by the 
sonochemical method. (Reproduced with permission from [65]. Copyright 2018, Elsevier.) (d) Cubes synthesized by solvothermal method. 
(Reproduced from [66] with permission from the Royal Society of Chemistry.) (e) Rods synthesized by hydrothermal methods. (Reproduced 
with permission from [67], Copyright 2005, Wiley-VCH.)
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“top-down” or “bottom-up” approaches [12]. The first 
category comprises processes which start from molecules 
and ions and proceed with chemical reactions. In this type 
of reaction, the presence of capping ligands is important 
to control the size, morphology, and dispersity of the final 
nanocrystals. The second category includes the fragmen-
tation of larger particles by an external stimulus such as 
irradiation or sonication in the presence of ligands or not.

Re-precipitation, hot-injection and solvothermal are 
the three main synthesis methods in the “bottom-up” 
approaches. The first one is a low-temperature process 
while the other two take place at high temperatures. All 
of them share common characteristics but have important 
differences [1]. For example, the re-precipitation methods 
are quick procedures, cost-effective, reproducible, they 
do not need complex apparatus, such as Schlenk line and 
inert gas flow, and are suitable for large-scale production. 
The hot-injection processes have a unique capability to 
finely control the shape and morphology of the nanocrys-
tals, and also to produce complex structures with high 
homogeneity. This procedure is a time consuming pro-
cedure; it uses a Schlenk line coupled with a protective 
atmosphere and produces a small amount of the final 
product. Finally, the solvothermal process gives very good 
control of the nanocrystals by using a simple set-up, but 
the time duration of the reactions is a significant disad-
vantage of this procedure.

2.1.1  �“Bottom-up” approaches

2.1.1.1  Room temperature re-precipitation methods
This solution-based process has been introduced to syn-
thesize nanocrystals of different morphologies and chemi-
cal phases. The metal precursors are dissolved in a solvent 
usually in the presence of capping molecules. Then, this 
solution is added in a miscible co-solvent in which the 
solubility of the ions is low. Spontaneous crystallization 
and precipitation take place. This procedure has been pro-
posed for both hybrid organic-inorganic or all inorganic 
metal halide nanocrystals and morphologies such as 
nanospheres [68–73], nanocubes [71, 72, 74–76], nanohex-
agons [32, 76], nanorods [70–72, 77], nanowires [61, 70, 72, 
78], nanoplatelets [70–72, 79, 80, 173], and nanosheets [70, 
81]. In addition, such methods were reported last years for 
the synthesis of lead-free nanocrystals with quantum dot 
morphology [110–112].

The first report on the synthesis of metal halide 
nanocrystals with this was in 2014 by the group of Pérez-
Prieto for the production of spherical CH3NH3PbBr3 
nanocrystals with a 6 nm diameter [68]. The precursors in 

this reaction were CH3NH3Br and PbBr2 while the capping 
molecules were the oleic acid together with long chain 
alkyl ammonium bromide. The dispersive solvent was 
octadecene while the co-solvent was acetone. Later, in 
2015, in order to simplify this procedure, commercially 
available precursors and capping ligands (n-octylamine 
and oleic acid) were used [69]. This modified procedure 
resulted in similar morphologies but smaller in size 
(3 nm). N-dimethylformamide (DMF) was used as dissolv-
ing solvent and toluene as co-solvent.

By combining organic molecules of a long and a 
short chain, nanoplatelet morphologies were formed [79]. 
Their lateral dimensions can be tuned by regulating the 
surfactant ratio while by adjusting the oleic acid amount 
one can obtain very thin platelets down to one layer. By 
changing the ratio between octylamonium bromide and 
oleic acid, the particles can be changed from spheres to 
anisotropic nanorods [77]. The amines found mainly affect 
the size of the nanocrystals by controlling the kinetics of 
crystallization while the acids suppress the aggregation 
effects and contribute to the stability of the colloids [69]. 
Furthermore, the way of adding the precursor solution can 
affect the final size of the nanocrystals [70, 174]. A longer 
duration of the addition of the precursor results in larger 
particles through an Ostwald ripening mechanism [72] or 
anisotropic morphologies [70].

The type of solvent and co-solvent in which the pre-
cursors are dissolved can also affect the morphology of 
the final nanocrystals. Elongated particles have been syn-
thesized by using acetonitrile or γ-butyrolactone as the 
dissolving solvent [70]. While when the cosolvent was the 
ethyl acetate, the obtained morphology is varied from dots 
to nanoplates to nanobars by increasing the reaction time 
while by using toluene the nanocrystals transform from 
nanocubes to nanorods to nanowires [72].

2.1.1.2  �Room temperature sonochemical methods
Metal halide nanocrystals have been synthesized via 
ultrasonication techniques. The solution of the reactants 
together with the organic ligands are positioned in a high 
density probe-type ultrasonicator in order to fabricate 
cubic or platelet-like crystals [59, 107].

2.1.1.3  �Hot-injection methods
This synthesis procedure is utilized for both lead-contain-
ing or lead-free metal halide nanocrystals (Table 1). This 
process includes the injection of a precursor solution in a 
hot liquid of the surfactants. A high-boiling point solvent 
is needed for these reactions. When the hot solution is 
injected, an instantaneous formation of nuclei takes 
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place. The nuclei grow slowly, due to the considerable 
amount of precursors, by increasing the temperature and 
the surfactant molecules coordinate on the surface of the 
nanocrystals. The relatively high temperatures of the reac-
tions allow the annealing of the nanocrystals and the for-
mation of well-crystallined and defect-free nanocrystals 
capped with the organic molecules. This method gives 
nanocrystals of small size and narrow size distribution. 
The size and the morphology found can be regulated 
by three crucial parameters during the synthesis: (i) the 
injection temperature of the precursor solution into the 
solution of the surfactants, (ii) the time of the reaction and 
(iii) the ratio of the precursors to the surfactants and the 
polarity of the reaction medium.

The first synthesis of metal halide nanocrystals using a 
hot-injection approach was reported by Kovalenko’s group 
for cubic-shaped CsPbBr3 nanocrystals of 4–15  nm edge 
length [83]. The reaction temperature is the main parameter 
that controls the size of the nanocubes in this case. Then, 
various morphologies such as nanospheres [58, 84–86, 
113], nanocubes [83, 84, 87–93, 113], nanorods [60, 93], 
nanowires [94–98], nanoplatelets [85, 91–93, 99, 100] and 
nanosheets [98–101] have been synthesized. This wet chem-
istry method is also capable for fabricating more complex 
structures because the nucleation and the growth stages 
can easily be separated and controlled independently, that 
is not possible with the re-precipitation methods.

The role of the reaction medium polarity to the final 
morphology of the formed nanocrystals was described by 
the Zhang’s group [84]. When the polarity of the solvent 
is high (diethylene glycol dibutyl ether and tetraethylene 
glycol dibutyl ether), spherical nanocrystals of 3–4 nm dia-
meter are obtained. Cubes of 10 nm have been formed in a 
solvent with lower polarity (ethylene glycol dibutyl ether) 
with all the other parameters kept constant. The lateral 
dimensions of the nanocrystals can be tuned by lowering 
the temperature down to 90–130°C [91–93, 99–101]. The 
thickness of these large structures can be controlled by the 
reaction temperature as well as the type of ligands which 
are used for their capping [91]. Elongated nanocrystals 
have been synthesized at higher temperatures (150–250°C) 
but with longer reaction times [94, 96, 97].

2.1.1.4  �High temperature solvothermal methods
In this method, the precursors and the surfactants are dis-
solved in a high boiling point solvent and closed in a sealed 
reaction container (stainless steel autoclave). The temper-
ature is increased above the boiling point of the solvent 
and maintained at this temperature for a desired period. 
This method has been used for III–IV semiconductors 

and recently also for perovskite nanocrystals. This type of 
synthesis is based on the same starting materials with the 
previous methods, but it is capable for large-scale produc-
tion. The first synthesis of perovskite nanocrystals with 
this approach was reported in 2016 from Chen’s group 
[60]. Lead-free tin halide nanorods were fabricated at a 
temperature of 180°C and reaction time of 6 h.

Such a method has also been utilized for the syn-
thesis of all-inorganic nanocubes or nanowires at 160°C 
[104]. Without pre-dissolving of the precursors, the final 
morphology of the nanocrystals are cubes while when this 
step takes place the final results are nanowires due to the 
higher concentration of the precursors.

2.1.2  �“Top-down” approaches

2.1.2.1  Room temperature exfoliation
Hybrid organic-inorganic metal halide nanoplatelets of 
varied thickness have been obtained through the exfo-
liation of bulkier particles/microcrystals synthesized 
previously via a solid-state reaction [62]. These microcrys-
tals are dispersed in an organic solvent together with a 
capping ligand and this solution is placed on a tip sonica-
tion. Different steps of centrifugation lead to nanoplate-
lets of different thickness. This method can be used for 
very thin nanoplatelets down to that of single unit cell.

2.1.2.2  �Room temperature photo-induced methods
Two reports exist about the use a laser-induced procedure 
for the synthesis of metal halide nanocrystals. In the first, 
the nanocrystals were obtained through a photo-fragmen-
tation process from larger particles. Bulk crystals grown by 
inverse temperature crystallization grinded into smaller 
structures in an organic solvent [105]. Ten minutes of irra-
diation with 532 nm laser pulses (9 ns, 10 Hz, 0.8 J/cm2) of 
a Nd-YAG laser was enough to obtain cubic nanocrystals 
of around 60 nm. The ligand protects from the continuous 
growth of the crystals. In the second, a laser-ablation of 
metal-halide bulk material was used to obtain nanocrys-
tals of the same phase [106]. This material was placed in 
the bottom of a vial containing an organic solvent together 
with an organic capping ligand. Nanocrystals of around 
30–70 nm were formed after irradiation for 70 min with a 
532 nm laser.

2.1.2.3  �High temperature and room temperature 
microwave-assisted methods

In the first process, all the reactants are mixed together 
in a microwave tube in air atmosphere in contrast to the 
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protective atmosphere of the hot-injection method [108]. 
Then the tube is placed in a microwave reactor and the 
temperature is increased gradually. The shape of the all-
inorganic metal halide nanocrystals synthesized by this 
method at high temperature are small cubes while they 
are plate-like for lower temperatures. Ultra-thin nanowires 
are obtained when the precursors are pre-dissolved before 
increasing the temperature. The role of the trioctylphos-
phine oxide (TOPO) ligand is important in this reaction, it 
favors the dissolution of the precursors and thus helps to 
obtain high-quality nanocrystals.

Besides, this reaction can take place at room tempera-
ture [109]. In this case the ligand is bis(2,4,4-trimethylpen-
tyl) phosphinic acid (TMPPA) instead of oleic acid and the 
precursor is cesium acetate instead of cesium carbonate, 
and cubic nanocrystals of 19 nm in size are formed. The 
type of the precursor plays an important role in the lumi-
nescence properties. The luminescence is higher when 
CsOAc is used as the precursor compared to that of using 
Cs2CO3.

2.2  �Colloidal synthesis for perovskite oxide 
nanocrystals

Solid-state reaction or molten-salt methods have been 
extensively used for the synthesis of perovskite oxide 
nanocrystals. These two processes are easy and use 
simple equipment. The nanocrystals synthesized by such 
methods are well-crystallined but they have irregular 
shapes and wide size distribution. The solid-state reac-
tions take place at high temperatures while the molten-
salt method at moderate ones (600–800°C) due to the 
existence of the inorganic molten salt which serves as 
a medium to enhance the reaction rate and reduce the 
temperature of the reactant oxides [13]. The solid-state 
process has been used to synthesize simple shapes such 
as irregular-shaped or spherical nanoparticles [175–177], 
and only a few reports exist for nanocubes or nanowires 
[178]. The starting materials are mixed together, a milling 
process is followed and then calcination at high tempera-
ture. In contrast, the molten-salt method has been pro-
posed for various structures including irregular shapes 
[179–184], morphologies of high-aspect ratio [185–188] 
and platelets [189]. In order to have a better control over 
the morphology than the previous methods, bottom-up 
solution-processed approaches have been realized includ-
ing sol-gel, hydrothermal, solvothermal, sonochemical, 
or microwave-assisted reactions (Table 1, Figure 2). Lower 
temperatures and in some cases organic ligands are uti-
lized in such approaches.

2.2.1  �Sol-gel methods

In these methods, a sol is formed when metal alkoxide, 
metal-organic, or metal-inorganic salt precursors are dis-
solved in an appropriate solvent, it is then dried and sin-
tered at high temperatures. The morphologies obtained by 
this approach are irregular-shaped [63, 117–126, 136, 190] 
and spherical [64, 127–130]. Only a few reports exist about 
this method for different structures such as cubic [64, 131] 
or honeycomb-like [132] structures. Reaction parameters 
which play important role on the morphology and the size 
of the synthesized nanocrystals are the temperature, time 
of the reaction, and heating rate [133], as well as the usage 
or not of an organic ligand [64, 119, 123]. In order to save 
energy and to be cost effective, a sol-gel approach com-
bined with a microwave-assisted sintering has been pro-
posed for perovskite oxide nanocrystals [136].

2.2.2  �Hydrothermal methods

An aqueous suspension of insoluble salts is positioned in 
an autoclave and the temperature is increased. Precipitation 
from the solution of the crystalline material occurs at tem-
peratures between the boiling point and the critical point 
of water. Various and more complex morphologies includ-
ing randomly-shaped [137–139], spheres [140–144], cubes 
[141, 145–147, 163], nanowires [67], nanotubes [148], as well 
as more complex dendrite [149] or star-like [150] structures 
have been synthesized by this method compared to the 
simple structures synthesized by the sol-gel method. The 
combination of hydrothermal with sol-gel method has been 
used for the synthesis of rounded/randomly shaped [36, 
155–159], hollow [160], or elongated [161] nanocrystals. A 
microwave-hydrothermal process has also been utilized for 
the synthesis of cubic perovskite oxide nanocrystals [162].

2.2.3  �Solvothermal methods

The solvothermal method is a general procedure for per-
ovskite oxide nanocrystals that are free of ligands. The 
first synthesis was performed by Antonietti’s group for the 
synthesis of irregular shaped BaTiO3, BaZrO3, and LiNbO3 
nanocrystals [164]. Lithium or barium metal was dissolved 
in benzyl alcohol at slightly elevated temperature. Then 
a metal alkoxide was added to this solution, placed in an 
autoclave and heated in a furnace at temperatures between 
200 and 220°C for more than 2  days. Benzyl alcohol has 
been proved to be a versatile solvent and reactant for 
controlled crystallization and stabilization of oxidic 
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nanocrystals. The solvent polarity is crucial for the mor-
phology control of the nanocrystals. The nanocrystals can 
be spheres or cubes by tuning this parameter [66]. The size 
can also be tuned by changing the precursors concentra-
tion and the temperature of the reaction. This method has 
been used for the efficaciously synthesis of spherical [66, 
164–166], cubic [66, 166] or even hollow [48] morphologies.

2.2.4  �Sonochemical methods

These processes take place at room temperature, where all 
the reactants are dissolved in a solvent under ultra-sound 
irradiation. With this method, irregular-shaped [65, 168], 
spherical [169, 170], rods [171], and polygons [172] are fabri-
cated. All of these nanocrystals are free of ligands.

2.3  �Perovskite nanocrystals for energy 
conversion

2.3.1  �Perovskite nanocrystals in solar cells

2.3.1.1  ��Metal halide nanocrystals in perovskite solar cells
The metal halide nanocrystals have been used in perovs-
kite solar cells by forming the active layer and/or placing 
them at the interface.
(i)	 �Perovskite nanocrystals as active layer

Metal halide nanocrystals of various morphologies and 
chemical phases have been used as absorber mate-
rial in perovskite solar cells. Hybrid organic-inorganic 
lead halides of spheres [191, 192], nanosheets [193] and 
nanowires [103, 194] have been used for active layer 
with the nanowires to show the higher efficiency to 
date (18.7%) [103]. Although, all-inorganic lead halides 
nanocrystals with spherical [16, 195–198], cubic [15, 
199, 200] and elongated [201] morphologies have 
been used reaching an efficiency of 13.43% [202]. The 
Νanocrystals which showed this efficiency have a cubic 
morphology and they are capped with oleic acid [202].

The first hybrid organic-inorganic nanocrystal-
based solar cell was reported by Park’s group in 2011 
[191]. In the case of the hybrid organic-inorganic solar 
cells, the efficiency was increased as the perovskite 
nanocrystal morphology changes from the spheres 
(2.4–6.54%) [191, 192] to nanosheets (10%) [193] and 
nanowires (14.71–18.7%) [103, 194]. The use of nanow-
ires in the photoactive layer is an effective way for 
enhancing light trapping and improving charge trans-
port efficiency. For this reason, the charge separa-
tion and conductivity were higher in the case of the 

nanowires compared to the bulk film [103, 196]. Very 
recently nanowires synthesized from the same chemi-
cal phase synthesized by a two-step spin coating 
process have reached the value of the 16.8% (Figure 3) 
[103]. Partially developed perovskite nanowires in the 
photoactive layer contribute more to photocurrent 
generation than in compact films (Figure 3E, F). These 
nanowires’ solar cell efficiency improved by using a 
PC60PB additive and as a result raised the power con-
version efficiency (PCE) to 18.7%.

Later in 2016, all-inorganic metal halide 
nanocrystals were used in perovskite solar cells 
instead of hybrid organic-inorganic materials to 
improve their stability [15, 16]. α-CsPbI3 nanocubes 
of 9 nm edge length were introduced and the perovs-
kite solar cells showed the high efficiency of 10.77%. 
This high efficiency has been attributed to the stable 
cubic phase (and not to the orthorhombic unstable 
phase) in which the nanocubes are crystalline [15]. It 
is known that the CsPbI3 chemical phase which exhib-
its the smallest band gap is not structurally stable in 
the bulk form. Direct deposition of the CsPbI3 nano-
cubes by spin casting, followed by stabilization of 
the perovskite structure via post deposition chemical 
treatment or annealing, contributed positively to the 
high quality of the active layer. The efficiency can be 
improved more and reach a value of 13.43% by tuning 
the surface chemistry via an A-site cation halide salt 
(AX) treatment (Figure 4A) [202]. The AX treatment 
provides a method for tuning the coupling among 
the nanocubes and improving the charge transport. 
The mobility of the treated film doubles, enabling 
an increased photocurrent and improved efficiency. 
Furthermore, higher stability has been observed in 
similar nanocrystals capped with TOP synthesized 
using a hot-injection method and a PbI2/GeI2 dual 
iodine source [200]. These nanocubes showed a near 
unity photoluminescence  (PL) quantum yield and 
improved chemical stability compared to the previous 
systems. The ensuing nanocubes solar cells deliver 
PCE of 12.15% and retain 85% of its peak performance 
after storage over 90 days.

In a different approach, all-inorganic metal 
halides have been introduced into the absorber 
MAPbI3 layer to reduce charge recombination and 
improve the charge transfer [203]. This process was 
used to improve the quality of the absorber layer in 
terms of film structure, morphology, and crystallin-
ity as the nanocrystals behave as nucleation centers 
in the growth of perovskite films. The high quality 
of the films leads to improved charge transport and 
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solar cell PCE. At the same time, a protecting passiva-
tion layer of Cs1-yMAyPbI3-xBrx is formed on the top of 
the perovskite absorber layer and this contributes to 
the final stability of the solar cell. A champion PCE 

of 20.46% is obtained from the perovskite solar cells 
based on high quality perovskite film.

Anion exchange at ambient conditions verified 
that this process could be an effective and simple 

Figure 4: (A) Schematic representation of the AX-coated CsPbI3 quantum dot sensitized solar cell, IV, and external quantum efficiency 
results. Reproduced with permission from [202]. Copyright 2017, AAAS. (B) Schematic structure of the device using CsPbBr3-CsPb2Br5 
composite as an absorbed layer, fabrication process and comparison with fabricated layers at higher temperatures in the literature. 
(Reprinted with permission from [196]. Copyright (2018), American Chemical Society).
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way to obtain mixed halide nanocrystals and showed 
really promising results in perovskite solar cells [198]. 
These perovskite solar cells displayed a photoconver-
sion efficiency of 5.3% and open circuit up to 1.31 V. 
In addition, cation exchange approaches for tunable 
A-site alloys of cesium (Cs+) and formamidium (FA+) 
lead triiodide perovskite nanocrystals (Cs1−xFAxPbI3) 
lead to quantum dot solar cells with high open circuit 
voltage (VOC) with a lower loss than the thin-film per-
ovskite devices of similar compositions [204]. These 
solar cells showed an efficiency of 10%.

Furthermore, CsPbBr3 was developed and applied 
as “inks” to fabricate fully air-processed, electri-
cal stable solar cells exhibiting a PCE exceeding 5%. 
This method provides a new pathway for single-step, 
large-scale fabrication of inorganic perovskite solar 
cells. Inks of CsPbBr3 nanocrystals of 15–20 nm syn-
thesized with a fast room temperature synthesis using 
short, low boiling point ligands and environmentally 
friendly solvents, have been proposed by Manna’s 
group [16]. These inks can be used directly to fabricate 
films of high optoelectronic quality. An active layer 
of 550  nm prepared by nine sequential depositions, 
exhibited a PCE of 5.4% and a VOC =  1.5 V.

The quality of the absorber layers of CsPbBr3 
can be improved further by treating them using an 
NH4SCN ethyl acetate solution to quickly transform 
the CsPbBr3 nanocrystals film into CsPbBr3-CsPb2Br5 
composite film (Figure 4B) [196]. The treated film is 
uniform and compact after a surface dissolution-
recrystallization process, with large grain size and 
low defect density. The recorded PCE by using this 
composite was 6.81% in this case.

Finally, lead-free metal halide nanocrystals, free 
of toxic elements, were also introduced in perovskite 
solar cells. Tin-based metal halide nanocrystals have 
been synthesized in the form of nanospheres [205] 
or nanorods [60]. The efficiency of the devices using 
hybrid organic-inorganic tin halide nanospheres was 
8.79% [205], while the efficiency of the devices includ-
ing all inorganic nanorods can be ranged from 9.66 to 
12.96% depending on the metal halide composition. 
The highest solar cell performance was recorded 
for the device using the phase CsSnI3 [60]. These 
nanorods exhibit colloidal stability in air for more than 
2  months and a decomposition temperature signifi-
cantly higher than that of MAPbI3. The photovoltaic 
parameters recorded for such devices were a short-
circuit current density (Jsc) = 23.21  mA/cm2, open-
circuit voltage (Voc) = 0.86  V, fill factor (FF) = 0.65, 
and PCE of 12.96%. In addition, recently reported all 

inorganic bismuth-based cesium halide nanocrystals 
in the form of nanosheets of 4.3 nm in thickness, syn-
thesized by a dissolution-recrystallization process 
and were used for such applications [206]. The effi-
ciency of this device was 3.2% but it is the highest 
reported to date in bi-based solar cells.

(ii)	 �Perovskite nanocrystals at interfaces
Metal halide nanocrystals have been used at the inter-
face between the perovskite absorbing layer and the 
HTL [17, 18]. The interface engineering is an effective 
way for obtaining high efficiency and improved sta-
bility in the perovskite solar cells through interfacial 
charge transfer control. A layer of hybrid organic-
inorganic FAPbX3 quantum dots is placed between 
the absorbing MAPbI3 layer and the C60 HTL [17]. In 
this way, an increased short-circuit current and an 
improved solar cell efficiency by 43.7% were observed. 
Moreover, all inorganic α-CsPbI3 quantum dots have 
been placed at the same position and the PCE increased 
from 15.17 to 18.56% in solar cells using MAPbI3 as the 
absorbing material [18]. The charge-transfer efficiency 
at the interface of the perovskite/HTL is enhanced by 
CsPbI3 quantum dots due to their intermediate valence 
band position between the perovskite and the HTL. In 
addition, the enhancement of the stability of perovs-
kite solar cells can be attributed to the coating of the 
perovskite layer with the all inorganic CsPbI3, which 
has a high moisture stability and results in long-term 
stability of the perovskite solar cells in the air.

In order to make stable the hybrid organic-
inorganic quantum dots, they are covered with a shell 
of C18 [207]. These core-shell quantum dots – C18 were 
also used at the interface with the HTL. The efficiency 
of these solar cells reaches over 10%. The presence of 
long chain ligands bound to the quantum dots did not 
appear to damage hole extraction.

2.3.1.2  �Metal halide nanocrystals in dichalcogenide 
quantum dot sensitized solar cells

All-inorganic metal halide nanocrystals have been 
employed as carrier blocking layers between the absorber 
layer of PbSe nanocrystals and the metal contact in dichal-
cogenide quantum dots sensitized solar cells [208]. The 
relatively large Eg (2.4 to 2.7 eV) of the CsPbBr3 nanocrystals 
compared to that of PbSe nanocrystals (1.2 to 1.5 eV) was 
the crucial factor to use them as a blocking layer. On the 
one hand, these nanocrystals have been chosen for their 
good air-stability, their high photoluminescence quantum 
yield and their ability to be synthesized independently 
and on the other hand, the quality of the perovskite layer 
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seems not to be affected by the PbSe quantum dot layer. 
The PCE of this solar cell configuration is 7.2%. An open-
circuit voltage (VOC) of 482  mV, a current density (JSC) of 
23.9 mA/cm2, and a fill factor (FF) of 62.4% under one-sun 
conditions were recorded.

In a different approach, the metal halides were uti-
lized as a passivation layer on the surface of the dichalco-
genide quantum dots (PbS) forming a core-shell structure 
[209–211]. A shell of hybrid organic-inorganic MAPbI3 
[209, 210] or all-inorganic CsPbI3 [211] metal halide was 
introduced for quantum dot passivation. In the first case, 
the film of the core-shell nanocrystals was incorporated 
in a photovoltaic device with graded band structure and 
recorded a PCE of 8.95% for this solar cell [209]. Two years 
later, a funtionalized quantum dot HTL was introduced 
in such structures to block the back flow of the photo-
generated electrons, leading to enhanced photocurrent 
and fill factor compared to undoped devices [210]. The 
ligand of the quantum dots was 1,2-ethanedithiol (EDT) 
and the solar cell performance reached the value of 9.5% 
due to the enhanced bending at HTL-absorber junction. 
The utilization of an all-inorganic shell around the PbS 
quantum dots led to a performance of 10.5% [211]. In this 
case the shell was epitaxially grown on the core surface. 
The improved passivation significantly diminished the 
sub-bandgap trap-state-assisted recombination, leading 
to improved charge collection and therefore higher photo-
voltaic performance.

2.3.1.3  �Metal halide nanocrystals in dye-sensitized solar 
cells

Irregular-shaped, free of ligands, hybrid organic-inor-
ganic perovskite nanocrystals were used to enhance the 
light absorption of dye-sensitized solar cells employing 
liquid electrolytes [212]. This incorporation resulted in a 
photovoltaic efficiency of 3.8% and photovoltage of 1.0 V. 
In this device, nanocrystalline particles of CH3NH3PbX3 
(X=Br, I) were deposited onto the TiO2 surface by a self-
organization process, starting with the coating of a precur-
sor DMF-based solution. This CH3NH3PbX3-deposited TiO2 
electrode was used as photoelectrode (anode) together 
with a Pt-coated FTO glass as counter electrode (cathode) 
and a 50 μm-thick separator layer. The gap between the 
electrodes was filled with an organic electrolyte solution 
containing lithium halide and halogen as a redox couple. 
A higher PCE was measured for the CH3NH3PbI3 perovs-
kite sensitizer (3.8%) among the different stoichiometries 
tested.

Furthermore, spherical amine-capped CH3NH3PbI3 
nanocrystals synthesized by a re-precipitation method 

have been introduced in quasi-solid-state sensitized 
solar cells with a configuration FTO/m-TiO2/perovskite 
quantum dots/dye/long persistence phosphor/gel elec-
trolyte/Pt/FTO [213]. The perovskite nanocrystals were 
employed as charge-transfer bridge between the TiO2 
and the N719 dye to extract photo-induced charges from 
a light-harvester. From the metal halides tested, the 
CH3NH3PbBr1.5I1.5 nanocrystals have been proved as the 
most preferred co-sensitizers for the efficiency enhance-
ment due to their optimal energy level compared to that 
of a dye molecule, in which the photogenerated electrons 
from the dye molecule can transfer to nanocrystals and 
then to TiO2. Furthermore, the long persistence phosphor 
(LPP) which has light-storing and light-emitting ability 
covered the m-TiO2 layers aiming to harvest the longer 
wavelength light which permeated across the FTO/m-TiO2/
PQDs/dye and which subsequently emits monochromatic 
green photofluorescence to re-excite the sensitizers. This 
device showed the impressive power conversion efficiency 
of 7.91%, well above the previous report in 2009.

2.3.1.4  �Metal halide nanocrystals in silicon solar cells
Metal halide nanocrystals have been utilized for the 
improvement of the c-Si solar cell efficiency. Spherical 
organic-inorganic metal halide nanocrystals [214] and 
all-inorganic nanocubes [19] have been used for such pur-
poses with the second showing the higher performance.

In the first case, a c-Si solar cell architecture based 
on a heterojunction between n-type c-Si and a conducting 
polymer (PEDOT:PSS) is demonstrated as an alternative 
concept of the field effect solar cell (Figure 5A). Usually, 
these solar cells consume extra electric energy originated 
from an external bias. In this case by introducing the per-
ovskite nanocrystals, the extra potential is generated by 
the light [214]. The organometal trihalide nanocrystals 
synthesized by a low-temperature precipitation method 
are deposited on the top of the PEDOT:PSS top electrode 
and act as potential generation layer (Figure 5A). The 
device operates as a Schottky heterojunction solar cell 
with the light-induced electric polarization in the perovs-
kite nanocrystals enhancing the electric field in the c-Si 
depletion region. The light harvested by organometal tri-
halide perovskite nanocrystals induces molecular align-
ment on a conducting polymer, which generates a positive 
electrical surface field. Photoinduced carriers generated 
in c-Si are directed to the respective contacts by the elec-
tric field in the depletion region at the interface between 
n-Si and MoO3/PEDOT:PSS. The successful combination 
of the light-driving polarization perovskite nanocrystals 
with n-type c-Si leads to the fabrication of a “field-effect 
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solar cell” with a PCE of 14.3%. This PCE showed a 12% 
enhancement compared to the one without using such 
nanocrystal coverage (12.7%). This device displayed a Jsc of 
30.84 mA/cm2, an FF of 73%, a Voc of 635 mV, which results 
in a PCE of 14.3%. While the device without the perovs-
kite nanocrystals exhibits a short circuit current (Jsc) of 
30.42 mA/cm2, an FF of 70%, an open circuit voltage (Voc) 
of 594 mV, yielding a PCE of 12.7%.

The second report on using metal halide nanocrys-
tals demonstrated a cheap, convenient, and effective 
way to enhance the PCE of the commercial silicon solar 
cells (Figure 5B) [19]. Doped all-inorganic metal halide 
nanocubes synthesized by a hot-injection method have 
been used as a downconverter of these solar cells due 
to their excellent quantum-cutting properties. The 
PCE in this case is improved from 18.1 to 21.5%. They 
were self-assembled on the surface of the commercial 
single crystal silicon solar cell via liquid-phase depo-
sition and the thickness was controlled ranging from 
60 to 770 nm. Compared to 18.1% PCE of the uncoated 
solar cells, the performance for the 110, 210, and 350 nm 
perovskite nanocrystals coated samples increases to 
different contents, while the further increasing thick-
ness of the nanocrystals induces the decrease of solar 
cell performance. The best thickness of the nanocrys-
tal layer is 230  nm. The PCE of this device reaches to 
21.5%, with an open-circuit voltage 0.65 V and a short-
circuit current 39.8  mA/cm2 with good reproducibility. 
In the dark, the luminescent intensity of this layer is 
decreased less than 5% and the PCE decreased only 

about 5% after being placed in the air for 700 h, indicat-
ing a high stability. Irradiated by simulated AM 1.5 sun-
light for 50 h continuously, the PCE is rarely changed, 
implying its excellent photostability. Finally, by testing 
various photoluminescent converters, the optimum 
enhancement of PCE was observed for the Yb3+, Ce3+ co-
doped perovskite nanocrystals. The PCE is comparable 
to the perovskite/silicon tandem solar cells but in this 
case the fabrication is easier and simpler to repeat.

2.3.1.5  ��Perovskite oxide nanocrystals in perovskite solar 
cells

Perovskite oxide nanocrystals have been used as elec-
tron transporting materials. Films of sol-gel synthesized 
nanocrystals of Zn2SnO4 have been utilized as ETLs for 
highly efficient perovskite solar cells [215]. There is a 
dual role of these materials in perovskite solar cells. On 
the one hand, the introduction of such films significantly 
improves the transmittance of flexible polyethylene 
naphthalate/indium-doped tin oxide (PEN/ITO)-coated 
substrate from ~75 to ~90% over the entire range of wave-
lengths and, on the other hand, due to its antireflection 
properties and low refractive index lead to the improve-
ment of the PCE. The PCE in such perovskite solar cells 
leads the value of 14.85 % under AM 1.5G-100 mW/cm2 illu-
mination (Figure 6). Furthermore, by replacing them with 
hydrothermally synthesized Zn2SnO4 nanocrystals the 
performance has been further increased to a PCE of 17.7% 
[20]. These materials were characterized by high electron 

Figure 5: (A) “Field-effect solar cell” by using spherical hybrid organic-inorganic metal halide nanocrystals. Reproduced with permission 
from [214]. Copyright 2017, Wiley-VCH. (B) CsPbCl1.5Br1.5:Yb (7.1 %), Ce (2 %) perovskite nanocubes film, used as a downconverter in 
commercial silicon solar cells. Reproduced with permission from [19]. Copyright 2017, Wiley-VCH.
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mobility of 10–25 cm2/Vs, a wide optical bandgap (3.8 eV), 
and a well-aligned conduction band edge (~− 4.1 eV) with 
that of the absorbing layer (CH3NH3PbI3).

2.3.1.6  �Perovskite oxide nanocrystals in dye-sensitized 
solar cells

Quite spherical perovskite nanocrystals have been used 
in ETL in dye sensitized solar cells due to their supe-
rior electron collection property. The energy conversion 
reported for such solar cells is 4.7% for using Zn2SnO4 
[152] and 5.2% for BaSnO3 [216] nanocrystals. The elec-
tron capture in the perovskite oxide films was higher 
than in TiO2 and the electron in the conduction band 

can diffuse rapidly resulting in greater photovoltaic 
performance.

2.3.2  �Perovskite nanocrystals for photocatalytic CO2 
reduction in solar fuel cells

The emission of CO2 by human activities is an impor-
tant factor for the dramatic change of the environment 
and phenomena such as the climate change and global 
warming. Photocatalytic reduction of CO2 using solar 
energy into renewable hydrocarbon fuels has gained 
much attention in the effort to conserve energy [21]. By 

Figure 6: Structure and performance of flexible perovskite solar cells including Zn2SnO4 nanocrystals as hole transporting layer.
Cross-sectional SEM image and photograph of the ZSO-based flexible perovskite solar cell (scale bar, 500 nm) (A). Energy levels of the 
materials (B). Photocurrent density–voltage (J–V) curve measured by reverse scan with 10 mV voltage steps and 40 ms delay times under AM 
1.5 G illumination (C). EQE spectrum of the ZSO-based flexible perovskite solar cell (D). Transmittance and reflectance spectra of PEN/ITO/
ZSO, PEN/ITO/TiO2 and PEN/ITO substrate (E). Reproduced with permission from [215]. Copyright 2015, Nature Publishing Group.
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mimicking the natural photosynthesis in green plants, 
artificial conversion of CO2 into chemical fuels such 
as carbon monoxide [CO], methane [CH4], methanol 
[CH3OH], offers a promising approach to simultaneously 
mitigate the levels of greenhouse gas and produce renew-
able energy. Nanocrystals of metal halides or perovskite 
oxides have been introduced as efficient photocatalysts 
for such purposes.

2.3.2.1  �Metal halide nanocrystals for photocatalytic 
reduction of the CO2

Metal halides have not been applied for photochemical 
conversion (water splitting or CO2 reduction) due to their 
instability in the presence of moisture or polar solvents. 
But there are some recent reports on novel photocataly-
sis to convert CO2 into solar fuels in non-aqueous media. 
Single-phase lead-containing or lead-free metal halide 
nanocrystals have been proposed as novel catalysts for 

solar cell CO2 reduction. CsPbBr3 quantum dots with diam-
eters 3–12  nm showed a highly selectivity over 99% and 
achieve an efficient yield rate of 20.9 μmol/g towards solar 
CO2 reduction (Figure 7A). [22] While lead-free nanocrys-
tals of Cs2AgBiBr6 showed an impressive stability against 
moisture, light, and temperature and under AM 1.5G illu-
mination for 6 h achieved a total electron consumption of 
105 μmol/g [23].

Enhanced photocatalytic reduction of CO2 to ethyl 
acetate observed when CsPbBr3 quantum dots are coupled 
with GO (Figure 7B) [24]. Under AM 1.5G simulated illumi-
nation, the primary CsPbBr3 nanocrystals of 6 nm in dia-
meter steadily generated and injected electrons into CO2, 
catalyzing CO2 reduction at a rate of 23.7 μmol/g h with the 
important selectivity over 99.3%. The growth of the per-
ovskite on GO results in the increase of the electron rate to 
25.5% due to the improved electron extraction and trans-
port. These rates are superior compared to the common 
CdS quantum dots photocatalysts. These photocatalysts 
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Figure 7: Metal halide nanocrystals for photocatalytic CO2 reduction.
(A) Single phase CsPbBr3 nanocatalysts. Reproduced with permission from [22]. Copyright 2017, Wiley-VCH. (B) Composite CsPbBr3/GO 
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are stable after 12  h of photocatalytic reaction and no 
phase transformation or degradation are observed. The 
effective CO2 reduction capacity (1.05  μmol/cm2  h) and 
selectivity (84%) are much smaller in the case of nanocom-
posites including hybrid organic-inorganic metal halide 
nanocrystals and GO [25]. The photocatalytic performance 
of the previous nanocomposite is improved when the 
metal halide nanocrystals were coupled with palladium 
nanosheets instead of GO (Figure 7C) [217]. Their opti-
mized performance in this case was 33.79 μmol/g h, cor-
responding to 2.43-fold enhancement compared to the 
pristine metal halide nanocrystals.

Furthermore, the encapsulation of the CsPbBr3 
nanocrystals in amorphous-TiO2 showed a marvelous 
6.5-fold improvement on the consumption of photoelec-
trons in photocatalytic CO2 reduction reactions compared 
to that of individual CsPbBr3 nanocrystals [218]. Despite 
the poor photocatalytic behavior of the amorphous TiO2, 
its good chemical stability makes it good candidate as a 
protection layer for the lead halides. The amorphous TiO2 
coverage has been witnessed as a pivotal driving force for 
preeminent photocatalytic performance by enhancing the 
extraction and separation of the photoinduced charges, 
and increasing the adsorption of the CO2 simultaneously. 
Such combined effects finally boost the photoelectron 
consumption from 25.72 to 193.36 μmol/g during the 3 h 
photocatalytic reaction. Photocatalytic reduction of CO2 to 
CH4 is more thermodynamically favorable than the forma-
tion of CO and H2, which however, is kinetically challeng-
ing since eight electrons were involved.

2.3.2.2  �Perovskite oxide nanocrystals for photocatalytic 
reduction of the CO2

NaNbO3 and NaTaO3 nanocrystals of similar size and 
synthesized by the same method have been tested as 
photocatalysts for the reduction of the CO2 [219]. Both 
perovskites give rise to the similar conversions in the CO2 
reduction reaction with a slightly higher carbon product 
evolution for the nanocrystals of NaTaO3. Furthermore, 
the crystal structure of the nanocrystals seems to be a 
crucial factor for the photoreduction performance of the 
NaNbO3 nanocrystals [220]. The photocatalytic H2 evo-
lution and CO2 reduction activities over cubic NaNbO3 
were nearly twice of those over orthorhombic NaNbO3 
structure. The electronic structure of the cubic phase is 
beneficial for electron excitation and transfer. Further-
more, nanowires of the same chemical structure covered 
with the polymer g-C3N4 showed an enhanced photo-
catalytic performance (8 times higher) compared to the 
single-phase g-C3N4 or the NaNbO3 nanowires [221]. The 

remarkable enhancement of photocatalytic activity was 
mainly ascribed to the improved separation and trans-
fer of photogenerated electron-hole pairs at the intimate 
interface of g-C3N4/NaNbO3 heterojunctions, which origi-
nated from the well-aligned overlapping band struc-
tures of C3N4 and NaNbO3. Finally, KNbO3 (where A=Na, 
K) nanocrystals showed a higher photocatalytic activity 
compared to the NaNbO3 due to its narrower band gap 
and higher mobile charge carriers [222].

BiWO6 nanocrystals of different morphologies have 
been synthesized for photo-induced CO2 reduction. 
Square BiWO6 nanoplateles of 9.5  nm in thickness and 
capped with oleylamine were used for such purposes 
[223]. Their enhanced catalytic activity is due to the pref-
erentially exposed {001} surface. The ultrathin geometry 
of these nanocrystals also promotes charge carriers to 
move rapidly from the interior to the surface to partici-
pate in the photoreduction reaction and should also favor 
an improved separation of the photogenerated electron 
and hole and the lower electron-hole recombination rate. 
More complex nanosheet-based nanocrystals have been 
also designed to improve the catalytic performance. Ball-
flower-like nanostructures composed by nanoplatelets 
[224] or nanoplatelets decorated with core-shell Au-CdS 
[225] also synthesized for such purposes.

2.3.3  �Perovskite nanocrystals for thermoelectrics

Generating energy through thermoelectric materials is 
becoming increasingly important as the challenges faced 
nowadays in terms of energy production and efficiency 
are more intense than ever. Much work has been carried 
out during the past decades in an effort to enhance the 
production of energy through novel materials and pro-
cesses [226–228].

Thermoelectric generators (TEG) constitute a new 
technology in order to recover heat which is based on the 
Seebeck effect and is broadly used for power generation. 
The Seebeck effect can be described as the connection of 
two different type (p-type and n-type) of conductors or 
semiconductors. This connection is formed by a parallel 
thermal connection along with an electrically connec-
tion in series which in turn causes a difference in voltage 
between the two materials [229, 230]. When connecting 
the two different components with a heated junction one 
can observe on the n-type component the transport of 
electrons from the hot junction to a heat sink whereas the 
p-type component transports holes which are positively 
charged, following the same direction as the temperature 
gradient.
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The efficiency that a specific material can possess in 
the conversion process of heat to electricity can be given 
by the formula below.

	

2 TZT α σ
κ

= � (1)

where ZT is the dimensionless figure of merit, σ is the 
electrical conductivity of the material, κ is the thermal 
conductivity of the material and α the Seebeck coefficient 
[231, 232].

In order for thermoelectric materials to be competitive 
with ordinary power generators the figure of merit for TEG 
must be larger than 3 [233, 234]. Generally, finding materi-
als with a ZT value above 2 is a challenging task but recent 
advancements [235, 236] in the effort to increase the figure 
of merit to around 3 has been made possible with the use 
of nanocomposites.

In this direction, lead and tin halide perovskites 
namely CH3NH3PbI3 and CH3NH3SnI3 have been regarded 
as very promising photovoltaic materials mainly because 
of their relatively large absorption coefficient, high charge 
carrier mobility, and diffusion length properties [212, 237] 
also possessing a large Seebeck coefficient [238, 239]. 
Recent first principle studies of these materials have con-
firmed this and have provided detail insides especially 
when results are combined with the Rashba effect.

Recently Nafradi’s group has also shown that the ZT 
of the Sn component of the hybrid halide perovskite men-
tioned can be augmented by three orders of magnitude at 
room temperature by appropriate chemical doping [240]. 
This finding suggests that CH3NH3SnI3 can constitute a 
very promising candidate for low cost and mass produc-
tion processes.

Similar improvement in the thermoelectric properties 
of perovskites was observed with W doping for CaMnO3 
by Tan’s group [241]. They reported a two-fold increase in 
the figure of merit which in turn is attributed to structural 
characteristics involving the existence of MnO6 distorted 
octahedra. This case is also interesting as two mechanisms 
are reported to occur simultaneously although their effect 
is canceling one another. The W doping seems to increase 
carrier concentration which ultimately leads to enhanced 
electrical conductivity and a decreased Seebeck coeffi-
cient. The enhanced electrical conductivity is a positive 
effect that outweighs the negative impact of the decreased 
Seebeck coefficient thus leading to an increased power 
factor. This increase in ZT is also temperature depended 
and seems to increase almost linearly with increasing 
temperature.

Overall the structural dependence of the ZT still 
remains a big challenge and is a promising field for more 

intensive research in order to elucidate the structural 
dependence of the above-mentioned phenomena.

2.4  �Perovskite nanocrystals for energy 
storage

2.4.1  �Perovskite nanocrystals for batteries

Emerging autonomous electronic devices require com-
paction and miniaturization of energy storage devices. 
Perovskite materials have received considerable attention 
for energy storage applications due to their excellent cata-
lytic activity, electrical conductivity, and durability. Ion 
migration through perovskite lattices allowing the use of 
such materials as electrodes for batteries. Electrochemi-
cal measurements on nanoparticulate perovskite systems 
showed that they displayed superior catalytic activity for 
oxygen reduction, as well as a higher discharge plateau 
and specific capacity compared to the bulk materials of 
the same crystal structure [29]. Perovskite oxide nanocrys-
tals have been investigated for such application but in 
recent years metal halides have also shown high specific 
capacitance and promising stability upon cycling. This 
section summarizes all the reports on such applications 
focused on nanoparticulate systems of both metal halides 
and perovskite oxides and tries to correlate and under-
stand the role of the size, the morphology and the intrinsic 
properties of the nanocrystals to the final performance of 
the batteries.

2.4.1.1  �Metal halide nanocrystals in batteries
The first report of using metal halide materials for Li-ion 
batteries was in 2015 by Peng’s group [30]. Hydrother-
mally grown organic-inorganic metal halide microcrys-
tals were used as the active material in Li-ion storage 
devices presenting a discharge capacity of 331.8 mA h/g 
(at current density of 200 mA/g) [30]. In this system, the 
capacity decreased rapidly in the first 30 cycles, it sub-
sequently decayed slowly, showing a relative capacity 
retention of 76.9 % in the next 170 cycles. A comparison 
between different halides indicated that the batteries 
with the CH3NH3PbBr3 showed a larger discharge capacity 
compared to that with CH3NH3PbI3. The discharge capac-
ity for the first system was 331.8  mA  h/g while for the 
second only 43.6 mA h/g. Two years later, CH3NH3PbBr3 
nanocrystals of 65 nm in size, synthesized by a precipita-
tion method combined with a heating process, showed 
similar electrochemical response (Figure 8A) [31]. Long-
term specific capacity attained significant values, 
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approaching 200  mA  h/g. Very recently, the electro-
chemical performance of metal halide nanoparticulate 
electrodes by using aqueous electrolyte were evaluated 
by our group [32]. This is the first report of using metal 
halide nanocrystals in batteries using aqueous electro-
lytes. In particular, the electrodes comprised a layer of 
100  nm-size Cs4PbBr6 nanohexagons deposited on ITO 
substrates and coated with a thin TiOx film (Figure  8B) 
[32]. The nanocrystals were prepared at room tempera-
ture, by a fast, solution-processed co-precipitation 
method. The electrodes were subjected to successive 
annealing cycles to optimize their electrochemical sta-
bility. The electrodes of five annealing cycles showed the 
best performance. It was observed that these electrodes 
showed the best performance among the nanoparticu-
late anodes using metal halides presented previously 
in terms of stability (high stability for 40  scans), spe-
cific capacity (377  mA  h/g) and coulombic efficiency 
(dropped to 98% after 100  scans). On the contrary, the 
non-annealed and/or uncoated nanohexagon layers dis-
played poor stability, immediately after the first scan. A 
water-triggered transformation of the metal halide mate-
rial occurred in the aqueous medium from Cs4PbBr6 to 
CsPb2Br5. Then, the Li-ion intercalation/deintercalation 

mechanism is a reversible process for the 40 consecutive 
scans, as the crystal structure of the CsPb2Br5 remains 
unaltered. After this period, an irreversible conver-
sion reaction of CsPb2Br5 to CsBr and PbBr2 occurs up to 
100 scans.

The overall capacity of the batteries is strongly 
dependent on the accessibility of the host material inte-
rior to the ions [242]. Different mechanisms Li+ intake/
release have been proposed for the metal halides in order 
to explain the different final performance of the devices. 
Topotactic insertion into organic-inorganic metal halide 
host (CH3NH3PbBr3) has been proposed by Garcia-Bel-
monte’s group [31]. Non-drastic structural alterations or 
rearrangements in the crystal lattice have been observed 
in this case. A different mechanism was proposed by 
Islam’s group for the same anode material. Using a combi-
nation of density functional theory and results by means 
of electrochemical characterization and diffraction tech-
niques [243], Li intercalation and conversion reactions in 
the CH3NH3PbX3 (where X: Br, Cl, I) take place. The con-
version process with the production of CH3NH3X, lithium 
halides (LiX), and Pb metal was found to be energetically 
more favorable than Li intercalation. Furthermore, it was 
also found that the specific capacity is dependent on the 

Figure 8: Metal halide perovskite nanocrystals for Li-air batteries. Electrochemical performance of the anodes consisted of (A) hybrid 
organic-inorganic CH3NH3PbBr3 nanocrystals of 65 nm in size, synthesized by a precipitation method combined with a heating process and 
(B) all-inorganic metal halide, Cs4PbBr6 nanohexagons of 100 nm in size deposited on ITO electrodes and subjected to three and five cycles 
of thermal annealing. These layers are coated with a few-nanometer thin TiOx layer. (A) Reprinted with permission from [31]. Copyright 
(2017), American Chemical Society. (B) Reproduced from [32] with permission from the Royal Society of Chemistry.
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crystal structure of the perovskite material [244]. This 
could be improved by changing the dimensionality of 
the halide perovskites from three-dimensional (3D) to a 
one-dimensional (1D) lattice [245]. Indeed, experiments 
on organic-inorganic hybrid lead halide perovskites 
showed that the Li intercalation in the two-dimensional 
(2D) tetragonal structure is enhanced compared to the 
3D orthorhombic one, due to the larger cell volume [243]. 
Finally, the type of the anion plays role in the charging 
performance [243]. It is observed that the Li intercalation 
is more favorable in the case of the iodides than in the 
chlorides or bromides [245].

2.4.1.2  �Perovskite oxide nanocrystals in batteries
The perovskite oxide nanocrystals started to be used in 
batteries from 2014. The first nanocrystals were from 
LaNi1-xMnxO3, La0.6Sr0.4CoO3 and Ba0.9Co0.5Fe0.4Nb0.1O3-δ 
chemical phases and succeed to be stable for less than 
50 battery cycles [132, 246, 247]. Later in 2016, LaNiO3 
nanoparticles showed an improved cycling ability up 
to 155 cycles [248]. Single phase nanocrystals such as 
spherical or randomly-shaped [33, 34, 36, 132, 246–253], 
nanocubes [147], and anisotropic ones [38–41, 254, 255] or 
bifunctional structures such as core-shell morphologies 
[42], decorated structures with a second material (metal, 
carbon, or oxides) [43–45], or composites [46] have been 
tested in order to improve the catalytic performance in 
batteries. Except the size and the morphology, there are 
other factors that affect the electrochemical performance 
in the case of the perovskite oxides such as the structural 
nanocrystal quality and the existence of defects in the 
lattice [33], the doping in the A and/or B site of the per-
ovskite lattice [34–37], the nanocrystal porosity [38–41] 
and the existence of synergetic effects in the bifunctional 
morphologies [42–46].

For example, nanocrystals synthesized by a ball-mill-
ing process showed superior catalytic activities compared 
to the nanocrystals without this process due to the struc-
tural change and defects in the crystal structure [33]. B-site 
doping in the manganite perovskite oxides (La0.8Sr0.2Mn1-

xNixO3) showed enhanced performance compared to the 
undoped one due to the introduction of more oxygen 
vacancies at the surface (Figure 9A) [252]. The capacity 
can be tuned by doping in the A site of the perovskite and 
decreased from 7211 to 6205, 6760, and 5925  mA  h/g for 
La0.65Pb0.35MnO3, La0.65Ba0.35MnO3, La0.65Sr0.35MnO3 nanocrys-
tals respectively [34]. The effect of the doping in the B-site 
has been studied in the La-based perovskite oxides and 
showed that the performance is improved in the order of 
LaCrO3, LaFeO3, LaNiO3, LaMnO3, and LaCoO3 [37].

The morphology and also the porosity of the nano-
structures affect the electrochemical performance, includ-
ing the first discharge specific capacity, the overpotential, 
the rate capability, and the cycle stability. The enhanced 
performance is due to the formation of direct current 
pathways that facilitate electron transport, short O2

2−/Li+ 
diffusion lengths that can improve ion transferring rates 
to oxygen electrode, the existence of a more efficient 
electrolyte-electrode contact, the increase of active sites 
for ORR/OER during battery operation, and the existence 
of more space to store discharged products. [38]. Porous 
nanocubes (Figure 9B) [147] or elongated nanocrystals 
(nanorods or nanotubes or nanofibers) [39–41, 256] of 
perovskite oxides have been introduced for such pur-
poses. Furthermore, bifunctional nanocrystals have been 
utilized to enhance the performance in metal-air batter-
ies. Synergetic effect have been utilized to improve the 
catalytic activity by covering the La0.8Sr0.2MnO3 nanorods 
with a layer of NiCo2O4 [42]. The ORR takes place mainly at 
the core, while the OER takes place at the nanoscale shell 
and their synergetic effect leads to the enhanced catalytic 
performance. Synergetic effects have also been observed 
in different bifunctional morphologies such as perovskite 
oxide nanocrystals decorated with nitrogen-doped carbon 
nanotubes [43], perovskite nanorods/graphene composite 
decorated with Ag nanocrystals [46], perovskite nanofib-
ers functionalized with RuO2 nanoparticles and non-
oxidized graphene nanoflakes [44], perovskite porous 
nanofibers loaded with RuO2 nanosheets (Figure 9C) [45].

2.4.2  �Perovskite nanocrystals for supercapacitors

Perovskites have found also use as electrode materials in 
supercapacitors for energy storage. A simple design of a 
supercapacitor is based on two electrodes separated by 
an ion-permeable membrane and an electrolyte ionically 
connecting to both electrodes. During the polarization 
of the electrodes the ions are moving to oppose the elec-
trode’s charges, forming electric double layers of opposite 
polarity. Supercapacitors are divided into three categories, 
the double-layer capacitors where the charge storage is 
electrostatically, the pseudocapacitors with electrochem-
ically charge storage, and the hybrid ones which combine 
electrostatically and electrochemically charge storage 
[257]. The nanodimensional perovskites that are used for 
such purposes are some metal oxides, a few nanocom-
posites and even more limited halides in contrast with 
the many reports for using all-inorganic or hybrid halides 
in photovoltaic applications. Many studies have been 
reported in lanthanum-based perovskite nanocrystals 
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due to their structural stability at high temperatures and 
inherent nature to contain oxygen vacancies. Addition-
ally, the structure of lanthanum-based perovskites allows 
the substitution of ions by other ions of varying oxidation 
states changing on demand the electronic and physical 
properties [258]. Specifically, in LaMnO3 nanocrystals by 
tuning the oxygen content, capacitance of 586.7–609.8 
F/g has been achieved [258]. Introducing a secondary 
phase of La2O3 attached on the nanocrystals could result 
in the capacitance of 520 F/g [259]. Important also is the 
substitution of the B site (ABO3) in the perovskite crystal 
structure with elements such Mn, Fe, Cr, and Ni which 
leads to capacitances of 56.78, 16.43, 24.4, and 106.58 F/g, 
respectively, after 500 charge-discharge cycles in a 3  m 

LiOH solution [260]. Furthermore, among the lanthanum-
based candidates for supercapacitors the perovskites 
with Ni in the B site hold a prominent role. The incorpo-
ration of Ni offers excellent electrical conductivity and 
presents capacitances of a few hundred F. Specifically, 
LaNiO3 nanosheets [49], hollow nanospheres [48], and 
randomly-shaped nanocrystals [261] exhibit capacitance 
of 139.2 mA h/g (at 1.0 A/g), 422 F/g (at 1.0 A/g), and 478.7 
F/g (at 0.1 mV/s), respectively, while their cycling stability 
reaches the 10000, 5000, and 15000 cycles, respectively. 
Figure 10 shows their morphology and the cyclic voltam-
metry curves at different scan rates.

A different type of lanthanum-based supercapaci-
tor is that of incorporating composite materials. In this 

Figure 9: Electrochemical performance of Li-air batteries including perovskite oxide nanocrystals. Three factors that affect this performance 
are: Ni-doping in manganite perovskite oxide (A), porosity of the nanocrystals (LaNiO3 nanocubes) (B), and synergetic effects in bifunctional 
nanocrystals (La0.6Sr0.4Co0.8Mn0.2O3 nanofibers loaded with RuO2) (C).
(A) Reprinted with permission from [252]. Copyright (2016), American Chemical Society. (B) Reproduced with permission from [147]. 
Copyright 2014, Springer. (C) Reprinted with permission from [45]. Copyright (2017), American Chemical Society.
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direction, a promising nanocomposite is the CeO2 mixed 
LaMnO3 which has been assessed as a negative electrode 
material [262]. The advantage of such a mixture is the high 
surface to volume ratio of the CeO2 nanocrystals which 
increases the active sites of the electrode. During the three-
electrode measurement, the supercapacitor displayed 262 
F/g for 1 A/g, retaining the 98% of capacitance after 2000 
cycles. Another interesting nanocomposite system is that 
which combines the LaMnO3 with nitrogen-doped reduced 
graphene oxide (N-rGO). Doping the rGO with an amount 
of 25% of N-rGO, the active material exhibits 687 F/g at 
5 mV/s and retains stability of 79% after 2000 cycles [263]. 
While the nanocomposite LaMnO3@Mn3O4 demonstrates 
remarkable stability of the specific capacitance even in 
50,000 cycles (135 F/g at 1 A/g) with a maximum energy 
density of 75 W h/kg.

In addition, the substitution of La atoms in the crystal 
structure of the perovskite with Sr gives very high specific 
capacitances. According to this, La0.7Sr0.3CoO3-δ nanofib-
ers [47] or La0.85Sr0.15MnO3@NiCo2O4 (LSM15@NC) nano-
flowers [264] have shown 747 F/g (in Na2SO4 electrolyte 
at 2 A/g current density) and 1341 F/g (in 6 m KOH at 0.5 
A/g current density), respectively. These values are among 
the highest reported for perovskites (Figure 11). In the case 

of the nanofibers, the substitution of La with Sr2+ into 
LaCoO3 lattice induces more oxygen vacancies which are 
active sites for storage in pseudocapacitive applications. 
Similar mechanism takes place in the LSM15@NC per-
ovskites. Remarkably, the LSM15@NC nanocomposite in 
an asymmetric supercapacitor delivers energy density of 
63.5 W h/kg at the power density of 900 W/kg. This energy 
density is higher than those recorded for Ni, Co, and/
or Mn-based asymmetric capacitors [264]. The specific 
capacitance also increases slowly for the first 3000 cycles, 
becomes double above the 3000 cycles up to 10000 cycles. 
This indicates the efficiency of this material for high per-
formance supercapacitors.

Bimetallic Co-Mn and Ni-Co perovskite fluorides are 
also promising electrode materials for supercapacitors. 
KCoxMn1-xF3 with Co:Mn 6:1, governed by strong synergistic 
effect of Co/Mn redox species exhibited a specific capacity 
of 226–192 F/g at 1–16 A/g coupled with a cycling stabil-
ity of 5000 cycles (at 8 A/g). In an asymmetric capacitor 
design, it delivers 8–2.4 W h/kg at 0.14–8.7 kW/kg retain-
ing the 90% of capacity in 10,000 cycles at 5 A/g [265]. 
While the similar structure with Ni, KNi0.8Co0.2F3 nanocrys-
tals showed an energy density of 42.7–13.8 W  h/kg at 
0.242–18.8 kW/g power density [266].
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Various oxide nanocrystals different than the previ-
ous have also been introduced for supercapacitor appli-
cations. Among these, BiFeO3 nanocrystalline porous 
film showed a capacitance of 81 F/g [267], BiFeO3 nano-
plates 254.6 F/g [268], Y2NiMnO6 nanowires 77.76 F/g 
[269], LaFeO3 nanocrystals with Na and Mn substitutions 
56.4 F/g [270], doped SrMnO3 nanofibers 321.7–446.8 F/g 
depending the doping of Ba/Ca on Sr and Co/Fe/Ni on Mn 
[271], SrTiO3 nanocubes with Co doping 75.28 F/g [272] and 
nano-Ru-based perovskites on rGO 564-316 F/g [273].

2.4.3  �Perovskite nanocrystals for hydrogen storage

Hydrogen, the most sustainable fuel offering higher effi-
ciencies compared to diesel and gasoline, is compatible 
with fuel cells and produces renewal waste (i.e. water). 
There are various hydrogen storage methods such as gas 
compression or liquefaction, however, they face safety 
issues. The most safe approach is the storage in solid-state 
materials such as metal alloys, metal oxides, hydroxides, 
carbon, chalcogenides, and recently in perovskites [51]. 
The perovskite powders were reported in 2004 by Esaka’s 
group as new anode materials for a hydrogen battery [274]. 
Later, in 2010, LaFeO3 and LaCrO3 powders were proposed 

as negative electrodes for Ni/MH batteries by Chen’s group 
[275, 276].

Three years later, Chen’s group succeeded in improv-
ing the electrochemical kinetics of the LaFeO3 perovs-
kites by nanostructuring. These nanocrystals formed 
aggregates with sizes ranging from 50 to 100 nm [50]. The 
nanocrystals showed a higher discharge capacity than 
the bulk counterparts of the same stoichiometry. The dis-
charge capacity is a value which characterizes the hydro-
gen storage efficiency of a material and it is estimated by 
the galvanostatic behavior of charge and discharge. In 
this method the investigated material was deposited on 
the electrode and circles of charges and discharges were 
followed [51]. In the case of nanostructured LaFeO3, the 
discharge capacity reaches the value of 531.5 mA h/g for 
333 K for the first cycle (Figure 12A), degraded and stabi-
lized above 350 mA/g for 20 cycles (a bit higher than the 
bulk). However, the LaFeO3 nanostructures showed higher 
current densities and hydrogen diffusion coefficients. 
Decreasing the size of the nanostructures is expected to 
increase the discharge capacity due to the larger surface 
area. A different perovskite system which tested for its H2 
storage capability was the DyFeO3 nanocrystals reported 
by Salavati-Niasari’s group [277]. These nanocrystals have 
a size around 16–18 nm and showed a discharge capacity 
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of 2100 mA/g after 15 cycles (Figure 12B), which is very high 
not only among the perovskites but also between other 
common materials for hydrogen storage [51]. Furthermore, 
Ba2Co9O14 nanocrystals of 10–30 nm were studied for the 
same applications by the same group but the recorded 
discharge capacity was lower (850  mA/g after 15 cycles) 
(Figure 12C) than the DyFeO3 nanocrystals. [278]. The pro-
posed mechanism of hydrogen storage lies in a two-step 
reaction. The first step takes place on the surface of the 
material over a few atomic layers, while the second occurs 
inside as the H-atoms are diffused [277]. Although, these 
studies mentioned that the structural defects may play 
role in the storage capability, their exact role on the final 
performance are not yet clear. Also, it would be interesting 
to study newly solution-processed metal halide nanocrys-
tals in such storage applications.

3  �Conclusions and open issues
In recent years the perovskite nanocrystals have been 
introduced to effectively replace conventional energy 
materials. The simultaneous need for new energy mate-
rials together with the increasing interest for the devel-
opment of new devices and even exploring new physics, 
have pushed the research to manipulate the structuring 

of the perovskite materials at the nanoscale level. The 
nanostructuring of the perovskites due to their reduced 
dimensions is advantageous in offering a large surface 
area, extensive porous structures, controlled transport, 
and high charge-carrier mobility, strong absorption, and 
photoluminescence, and confinement effects. In recent 
year there is a lot of work incorporating them into pho-
tovoltaics as active materials or covering the active layer 
to improve its stability but there has been limited effort 
to use them as thermoelectric materials or photocatalysts 
for the CO2 reduction in solar fuel cells. The utilization 
of them in CO2 reduction is a completely new scientific 
field which has gained increased interest very recently. 
In addition, perovskite nanocrystals have received con-
siderable attention for energy storage applications due to 
their excellent catalytic activity, electrical conductivity, 
and durability. Ion migration through perovskite lattices 
allows the use of such materials as electrodes for batteries 
or supercapacitors. Perovskite oxide nanostructures are 
more investigated for such applications but very recently 
the metal halides have also shown high specific capaci-
tance and promising stability upon cycling. Finally, the 
utilization of such nanocrystals in hydrogen storage could 
be really interesting as hydrogen is the most abundant 
element on the planet, with the highest energy content 
amongst all the existing energy sources, but the number 
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of the perovskite nanocrystals used for such purposes is 
still limited.

This review article has covered many aspects of the 
synthesis of nanocrystals made of metal halides or per-
ovskite oxides, but also their applications in energy 
conversion and storage. Despite the important evolution 
in the synthesis procedures, there are some open issues 
which require attention when we use these materials in 
these applications. Some of these open issues are:

3.1  �Synthesis strategies

3.1.1  �Surface chemistry and role of the ligands

Despite the huge evolution of synthesis strategies for the 
fabrication of nanocrystals of different morphologies and 
chemical phases, there is a poor understanding of the role 
of the ligands on the nanocrystal quality concerning their 
stability, carrier transport, but also on the energy device 
performance in which are included [279]. It is not clear 
if the ligands passivate structure trap states or introduce 
new ones and how the crystal defects play a role in the 
whole reactivity and electronic properties of the passi-
vated nanocrystals.

3.1.2  �Stability

Long-term stability issues at ambient conditions or more 
harsh environments such as high temperature, direct irra-
diation, light, and humidity have to be carefully addressed 
when we are interested in industrial applications. The 
careful choice of a protective ligand has been proposed as 
an effective way to improve the stability of the nanocrys-
tals but the effect on device performance is something that 
has to be studied. The encapsulation of the nanocrystals 
in a matrix or a different material could be another way, 
but it is still unknown if such shelling could really prevent 
the nanocrystals from oxygen and moisture [12]. Finally, 
all-inorganic metal halides or lead-free compounds could 
effectively improve the stability of the devices, but still the 
performance of these devices remains very low.

3.1.3  �Lead-free compounds

The synthesis of lead-free and environmentally friendly 
nanocrystals is a demand. Tin- or bismuth-based com-
pounds have been introduced as possible stoichiometries 
and more recently double perovskites with an elpaso-
lite structure [115]. The synthesis approaches for these 

perovskite nanocrystals remain limited. Only a few reports 
exist for elpasolite nanocrystals and all these nanocrys-
tals are of spherical morphology and capped with organic 
ligands. The performance of bismuth based solar cells 
remains is very low.

3.1.4  �Scale-up synthesis

One of the drawbacks of the synthesis procedures reported 
in this review is the small quantity of the final product. 
While there is a huge variety of synthesis procedures for 
nanocrystals of different morphologies/chemical phases 
and homogeneous in size and shape, there is still the dif-
ficulty of modifying them for large scale production if the 
purpose is to use these nanocrystals for industrial applica-
tion. The development of large-scale synthesis procedures 
which will be cheap and easy is still a real challenge.

3.2  �Deposition of nanocrystals in layer form, 
free of cracks and defects

Perovskite nanocrystals have been used in energy appli-
cations due to their large surface area, efficient carrier 
transport, high absorption coefficient, long-term stability, 
and tunable bandgap. The morphology and crystallinity 
are some of the important intrinsic features that affect the 
final performance of the devices. But in most of the appli-
cations these nanocrystals are assembled in films. The 
shape and size of the nanocrystals and the existence or 
not of ligands on the surface determine the final structure 
of the film. The formation of compact and smooth films is 
a real challenge for such applications. Many methods for 
the fabrication of films of high quality free of pinholes and 
cracks have been proposed, but many parameters remain 
unexplored and have to be controlled. The removal of the 
capping ligands is a necessity in order to fabricate such 
films with enhanced electrical properties. For such pur-
poses, various methods for this removal have been pro-
posed, but many times they are insufficient which result 
in the release of nanocrystals from the surface or cause 
their undesired growth of the nanocrystals. These affect 
also the stability of the devices in which are utilized such 
nanocrystals. The development of new efficient strategies 
for the effective removal of the capping ligands without 
affecting their primary structural or morphological fea-
tures is a requirement.

Accordingly, it is important here to comment on 
attempts such as the encapsulation of perovskite nanocrys-
tals in perovskite matrices [196] or the incorporation of 
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nanocrystals between the active layer and the hole trans-
porting layer [17, 18]. Interface engineering is an effective 
way for obtaining high efficiency and improved stability 
in the perovskite solar cells through interfacial charge 
transfer control. In addition, perovskite nanocrystals have 
been introduced into the absorber layer to reduce charge 
recombination and improve the charge transfer [203]. This 
process used to improve the quality of the absorber layer 
in terms of film structure, morphology, and crystallinity 
as the nanocrystals behave as nucleation centers in the 
growth of perovskite films. The high quality of the films 
leads to improved charge transport and solar cell power 
conversion efficiency.
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