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Abstract: The high demand for energy consumption in
everyday life, and fears of climate change are driving
the scientific community to explore prospective materi-
als for efficient energy conversion and storage. Perovs-
kites, a prominent category of materials, including metal
halides and perovskite oxides have a significant role as
energy materials, and can effectively replace conventional
materials. The simultaneous need for new energy mate-
rials together with the increased interest for making new
devices, and exploring new physics, thrust the research
to control the structuring of the perovskite materials at
the nanoscale. Nanostructuring of the perovskites offers
unique features such as a large surface area, extensive
porous structures, controlled transport and charge-car-
rier mobility, strong absorption and photoluminescence,
and confinement effects. These features together with
the unique tunability in their composition, shape, and
functionalities make perovskite nanocrystals efficient
for energy-related applications such as photovoltaics,
catalysts, thermoelectrics, batteries, supercapacitor and
hydrogen storage systems. The synthesis procedures of
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perovskite nanostructures in different morphologies is
summarized and the energy-related properties and appli-
cations are extensively discussed in this paper.
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1 Introduction

The high demand for energy consumption in everyday life
activities along with fears of the climate changes highlight
the importance to develop efficient energy conversion
and storage devices. Thus, sufficient energy conversion
and storage together with low-cost energy materials are
the most important requirements. In order to design such
devices, it is crucial to study and understand the under-
lying principles and mechanisms of renewable energy
conversion and storage. Each of these technologies has its
own characteristics, requirements, and efficiency limits
or constraints. Different mechanisms take place in each
technology and this is the main reason for dealing them
independently.

The design and engineering of novel materials with
a suitable range of properties for the effective utilization
for such applications is a basic requirement. The design of
new energy-related materials is at the forefront of different
sciences such as the material science, chemistry, physics,
and engineering. It is important to reveal the relationship
between the material structure and the device perfor-
mance if we wish to propose new energy-related materials
[1-3].

In the quest to find prospective energy materials for
high performance energy devices, the perovskite com-
pounds hold a prominent role due to their unique tunable
properties [4-8]. Perovskites are a family of materials with
the formula ABX, and have a similar structure to the pro-
totype CaTiO, mineral. The cation “A” occupies the corner
positions of the unit cell and the cation “B” is located at
the center of the cell, while the anion “X” is on the unit
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cell faces [9]. This family comprises oxides and halide per-
ovskite material. Some representative oxides are the ferro-
electric BaTiO, and PhTiO,, the dielectric (Ba,Sr)TiO,, the
piezoelectric Pb(Z1,Ti)0,, the electro-strictive Pb(Mg,Nb)
0, the magneto-resistant (La,Ca)MnO3, and the multifer-
roic BiFeO,. In the case of metal-halide perovskites, M is
a divalent metal from group 14 (Pb, Sn) or a rare earth
element (Eu), and X is a halogen (X=F, Cl, Br, I, or a com-
bination of them). According to the nature of the cation,
the metal halides can be divided in two groups, the all-
inorganic and the hybrid organic-inorganic metal halides.
In the first category the cation A is a monovalent alkali
metal (like Cs, K) while in the second it is a small organic
cation (such as CH,NH,) [10, 11].

The exploitation of new synthesis methods for the
fine control of the structural characteristics and improved
stability is important in the design of perovskite energy-
related materials. Furthermore, the progress on the syn-
thesis strategies for nanoparticulate systems of high
quality in terms of homogeneity and crystallinity, has led
the research community to search whether these materi-
als could replace conventional energy materials. Differ-
ent morphologies and chemical structures have been
introduced for both metal halide and perovskite oxide
nanocrystals for such purposes [1, 12, 13].

Metal halide nanocrystals can be effectively used in
energy conversion, due to their strong optical absorption,
low non-radiative recombination rates, tunable band
gaps, relatively high charge-carrier mobility, and long dif-
fusion lengths coupled with solution processability [14].
These nanocrystals have been utilized as the absorbing
material in perovskite solar cells [15, 16] or placed at the
interface between the absorbing and the hole transport
layer (HTL) in order to improve carrier transport and sta-
bility [17, 18]. They are also used as down-converters in
silicon solar cells due to their excellent quantum-cutting
properties giving efficiencies of 21.5% [19]. In contrast,
perovskite oxide nanocrystals have been utilized as elec-
tron transport layers (ETLs) in perovskite solar cells,
as these materials are characterized by high electron
mobility, wide band-gap, and a well-aligned conduction
band with the absorbing layer [20]. Furthermore, perovs-
kite nanocrystals have been tested for catalytic carbon
dioxide (COZ) reduction in solar fuel cells. By mimick-
ing the natural photosynthesis in green plants, artificial
conversion of CO, into chemical fuels offers a promising
approach to simultaneously mitigate the levels of green-
house gas and produce renewable energy [21]. Artificial
solar-driven CO, reduction results in the partial reduction
of the carbon monoxide (CO), methane (CH,), methanol
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(CH,OH), etc., which are common chemical fuels. Single-
phase metal halide nanocrystals have shown promising
results in CO, reduction [22, 23], but enhanced perfor-
mance when these are coupled with graphene oxide (GO)
or palladium nanosheets [24, 25]. Besides, the perovskite
materials are promising materials for thermoelectrics for
the conversion of thermal energy to electricity [26, 27].
Compared to the traditional materials used for thermo-
electric applications (metal chalcogenide materials like
Bi,Te, and PbTe), perovskite materials are less expensive
and can be processed by low energy cost methods and can
be used for flexible thermoelectric devices [27]. The fairly
ionic, polar character with a large dielectric constant and
the remarkable conduction band anisotropy of the metal
halides convey robust thermopower and moderate room
temperature electrical conductivity [28].

Perovskite nanocrystals have been utilized in energy
storage in batteries or supercapacitors due to their excel-
lent catalytic activity, electrical conductivity, and dura-
bility. Ion migration through perovskite lattices allows
the use of such materials as electrodes for batteries. Elec-
trochemical measurements of the nanoparticulate per-
ovskite systems displayed superior catalytic activity for
oxygen reduction, as well as a higher discharge plateau
and specific capacity compared to the bulk materials of
the same crystal structure [29]. Metal halide nanocrys-
tal films have been formed for application as anodes,
for stable Li-based batteries [30-32]. Furthermore, in
the case of the perovskite oxides, the size and the mor-
phology of the nanocrystals are two factors that affect
their electrochemical performance. Factors such as the
structural nanocrystal quality, the existence of defects
in the lattice [33], the doping in of the A and/or B site
of the perovskite lattice [34-37], the nanocrystal poros-
ity [38-41], and the existence of synergetic effects in the
bifunctional morphologies [42-46] play an important role
in the final electrochemical behavior. In addition, in the
case of supercapacitor storage, it was found that struc-
turing perovskite oxides and forming nanocrystals lead
to remarkably enhanced, specific capacitance, rate capa-
bility, and cycle stability compared to the corresponding
bulk materials [47-49]. Finally, perovskite nanocrystals
offer improved electrochemical performance, low cost
production in hydrogen storage and energy sustainabil-
ity for transportation, electricity generation, and heating.
Perovskite oxide nanocrystals show a higher discharge
capacity compared to the bulk counterpart of the same
stoichiometry [50] and in some cases is comparable to
that of common materials that have been used for hydro-
gen storage to date [51].
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Several review articles have been published on the
application of nanocrystals in energy conversion and
storage in the last couple of years [52-57]. This review article
seeks to summarize the colloidal methods of the perovskite
nanocrystals both for metal halides and perovskite oxides
but mainly focuses only on the applications of the nano-
particulate structures (Figure 1). This review is structured
in three main sections: Section 2 deals with the synthesis
strategies, morphology, and size control of the single-
phase perovskite nanocrystals, Section 3 looks at perovs-
kite nanocrystals for energy conversion, and Section 4
deals with perovskite nanocrystals for energy storage. In
all these sections, we have summarized the literature for
both metal halide and perovskite oxide nanocrystals and
discuss the effect of structure, morphology, and size in the
performance of these devices. This review article concludes
with some open issues that require attention to succeed in
designing efficient and low-cost devices.
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2 Synthesis strategies, morphology,
and size control of the single-
phase perovskite nanocrystals

Different methods have been introduced for the success-
ful synthesis of perovskite nanocrystals. Metal halides
have been synthesized by template-assisted methods and
colloidal-based reactions, while perovskite oxides are
created by solid-state or molten-salt reactions and col-
loidal processes. Due to the limited use in energy appli-
cation of the metal halide nanocrystals synthesized by
template-assisted methods we will focus only on the col-
loidal methods. In the case of the oxides, despite the fact
that the solid state and molten-salt syntheses are more
convenient compared to the colloidal ones, the latter
have the advantage of achieving a better control of the
characteristics of nanocrystals. Here, we focus on the

Metal halide _.
Perovskite oxides o

Figure 1: Applications of perovskite (metal halides and perovskite oxides) nanocrystals for energy conversion and storage.
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colloidal methods that offer control on the morphology/
structure and we think that they can be used to obtain
energy devices of high performance with a reproducible
and well-controlled manner despite whether they were
used earlier or not.

Colloidal methods were used for the synthesis of both
metal-halide and perovskite oxide nanocrystals of differ-
ent morphology, isotropic or anisotropic one (Figure 2). In
most cases, the metal halide nanocrystals were covered
with organic molecules, usually acids and amines, while
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in the case of perovskite oxides, they are free of ligands
(Table 1).

2.1 Colloidal synthesis for metal halide
nanocrystals

Colloidal strategies at low or even at high tempera-
ture (>140°C) have been introduced for the morpho-
logical control of the metal halide nanocrystals through

Perovskites

etal-halides
- Precipitation - Precipitation - Precipitation - Precipitation - Precipitatio
- Hot-injection - Hot-injection - Hot-injection - Hot-injection - Hot-injection
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Figure 2: Summary of the solution-processed synthesis procedures of various perovskite nanocrystal morphologies.

Metal halides: (@) Nanospheres synthesized by a hot method. (Reprinted with permission from [58] Copyright (2017), American Chemical
Society.] (b) Nanocubes synthesized by ultrasound-irradiation. (Reproduced by permission of the Royal Society of Chemistry [59].) (c)
Nanorods synthesized by solvothermal method. (Reprinted with permission from [60]. Copyright (2016), American Chemical Society.) (d)
Nanowires synthesized by re-precipitation method. (Reproduced by permission of the Royal Society of Chemistry [61].) (e) Nanosheets
synthesized by exfoliation. (Reproduced with permission from [62]. Copyright 2016, Wiley-VCH.) Perovskite oxides: (a) Irregular-shaped
nanocrystals synthesized by sol-gel method. (Reproduced with permission from [63]. Copyright 2011, Elsevier.) (b) Spheres synthesized by
the sol-gel method. (Reprinted with permission from [64]. Copyright (2001), American Chemical Society.) (c) Clusters synthesized by the
sonochemical method. (Reproduced with permission from [65]. Copyright 2018, Elsevier.) (d) Cubes synthesized by solvothermal method.
(Reproduced from [66] with permission from the Royal Society of Chemistry.) (e) Rods synthesized by hydrothermal methods. (Reproduced

with permission from [67], Copyright 2005, Wiley-VCH.)
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“top-down” or “bottom-up” approaches [12]. The first
category comprises processes which start from molecules
and ions and proceed with chemical reactions. In this type
of reaction, the presence of capping ligands is important
to control the size, morphology, and dispersity of the final
nanocrystals. The second category includes the fragmen-
tation of larger particles by an external stimulus such as
irradiation or sonication in the presence of ligands or not.

Re-precipitation, hot-injection and solvothermal are
the three main synthesis methods in the “bottom-up”
approaches. The first one is a low-temperature process
while the other two take place at high temperatures. All
of them share common characteristics but have important
differences [1]. For example, the re-precipitation methods
are quick procedures, cost-effective, reproducible, they
do not need complex apparatus, such as Schlenk line and
inert gas flow, and are suitable for large-scale production.
The hot-injection processes have a unique capability to
finely control the shape and morphology of the nanocrys-
tals, and also to produce complex structures with high
homogeneity. This procedure is a time consuming pro-
cedure; it uses a Schlenk line coupled with a protective
atmosphere and produces a small amount of the final
product. Finally, the solvothermal process gives very good
control of the nanocrystals by using a simple set-up, but
the time duration of the reactions is a significant disad-
vantage of this procedure.

2.1.1 “Bottom-up” approaches

2.1.1.1 Room temperature re-precipitation methods

This solution-based process has been introduced to syn-
thesize nanocrystals of different morphologies and chemi-
cal phases. The metal precursors are dissolved in a solvent
usually in the presence of capping molecules. Then, this
solution is added in a miscible co-solvent in which the
solubility of the ions is low. Spontaneous crystallization
and precipitation take place. This procedure has been pro-
posed for both hybrid organic-inorganic or all inorganic
metal halide nanocrystals and morphologies such as
nanospheres [68-73], nanocubes [71, 72, 74-76], nanohex-
agons [32, 76], nanorods [70-72, 77], nanowires [61, 70, 72,
78], nanoplatelets [70-72, 79, 80, 173], and nanosheets [70,
81]. In addition, such methods were reported last years for
the synthesis of lead-free nanocrystals with quantum dot
morphology [110-112].

The first report on the synthesis of metal halide
nanocrystals with this was in 2014 by the group of Pérez-
Prieto for the production of spherical CH,NH,PbBr,
nanocrystals with a 6 nm diameter [68]. The precursors in
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this reaction were CH,NH_Br and PbBr, while the capping
molecules were the oleic acid together with long chain
alkyl ammonium bromide. The dispersive solvent was
octadecene while the co-solvent was acetone. Later, in
2015, in order to simplify this procedure, commercially
available precursors and capping ligands (n-octylamine
and oleic acid) were used [69]. This modified procedure
resulted in similar morphologies but smaller in size
(3 nm). N-dimethylformamide (DMF) was used as dissolv-
ing solvent and toluene as co-solvent.

By combining organic molecules of a long and a
short chain, nanoplatelet morphologies were formed [79].
Their lateral dimensions can be tuned by regulating the
surfactant ratio while by adjusting the oleic acid amount
one can obtain very thin platelets down to one layer. By
changing the ratio between octylamonium bromide and
oleic acid, the particles can be changed from spheres to
anisotropic nanorods [77]. The amines found mainly affect
the size of the nanocrystals by controlling the kinetics of
crystallization while the acids suppress the aggregation
effects and contribute to the stability of the colloids [69].
Furthermore, the way of adding the precursor solution can
affect the final size of the nanocrystals [70, 174]. A longer
duration of the addition of the precursor results in larger
particles through an Ostwald ripening mechanism [72] or
anisotropic morphologies [70].

The type of solvent and co-solvent in which the pre-
cursors are dissolved can also affect the morphology of
the final nanocrystals. Elongated particles have been syn-
thesized by using acetonitrile or y-butyrolactone as the
dissolving solvent [70]. While when the cosolvent was the
ethyl acetate, the obtained morphology is varied from dots
to nanoplates to nanobars by increasing the reaction time
while by using toluene the nanocrystals transform from
nanocubes to nanorods to nanowires [72].

2.1.1.2 Room temperature sonochemical methods

Metal halide nanocrystals have been synthesized via
ultrasonication techniques. The solution of the reactants
together with the organic ligands are positioned in a high
density probe-type ultrasonicator in order to fabricate
cubic or platelet-like crystals [59, 107].

2.1.1.3 Hot-injection methods

This synthesis procedure is utilized for both lead-contain-
ing or lead-free metal halide nanocrystals (Table 1). This
process includes the injection of a precursor solution in a
hot liquid of the surfactants. A high-boiling point solvent
is needed for these reactions. When the hot solution is
injected, an instantaneous formation of nuclei takes
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place. The nuclei grow slowly, due to the considerable
amount of precursors, by increasing the temperature and
the surfactant molecules coordinate on the surface of the
nanocrystals. The relatively high temperatures of the reac-
tions allow the annealing of the nanocrystals and the for-
mation of well-crystallined and defect-free nanocrystals
capped with the organic molecules. This method gives
nanocrystals of small size and narrow size distribution.
The size and the morphology found can be regulated
by three crucial parameters during the synthesis: (i) the
injection temperature of the precursor solution into the
solution of the surfactants, (ii) the time of the reaction and
(iii) the ratio of the precursors to the surfactants and the
polarity of the reaction medium.

The first synthesis of metal halide nanocrystals using a
hot-injection approach was reported by Kovalenko’s group
for cubic-shaped CsPbBr, nanocrystals of 4-15 nm edge
length [83]. The reaction temperature is the main parameter
that controls the size of the nanocubes in this case. Then,
various morphologies such as nanospheres [58, 84-86,
113], nanocubes [83, 84, 87-93, 113], nanorods [60, 93],
nanowires [94-98], nanoplatelets [85, 91-93, 99, 100] and
nanosheets [98-101] have been synthesized. This wet chem-
istry method is also capable for fabricating more complex
structures because the nucleation and the growth stages
can easily be separated and controlled independently, that
is not possible with the re-precipitation methods.

The role of the reaction medium polarity to the final
morphology of the formed nanocrystals was described by
the Zhang’s group [84]. When the polarity of the solvent
is high (diethylene glycol dibutyl ether and tetraethylene
glycol dibutyl ether), spherical nanocrystals of 3—-4 nm dia-
meter are obtained. Cubes of 10 nm have been formed in a
solvent with lower polarity (ethylene glycol dibutyl ether)
with all the other parameters kept constant. The lateral
dimensions of the nanocrystals can be tuned by lowering
the temperature down to 90-130°C [91-93, 99-101]. The
thickness of these large structures can be controlled by the
reaction temperature as well as the type of ligands which
are used for their capping [91]. Elongated nanocrystals
have been synthesized at higher temperatures (150-250°C)
but with longer reaction times [94, 96, 97].

2.1.1.4 High temperature solvothermal methods

In this method, the precursors and the surfactants are dis-
solved in a high boiling point solvent and closed in a sealed
reaction container (stainless steel autoclave). The temper-
ature is increased above the boiling point of the solvent
and maintained at this temperature for a desired period.
This method has been used for III-IV semiconductors

A. Kostopoulou et al.: Perovskite nanocrystals for energy conversion and storage —— 1613

and recently also for perovskite nanocrystals. This type of
synthesis is based on the same starting materials with the
previous methods, but it is capable for large-scale produc-
tion. The first synthesis of perovskite nanocrystals with
this approach was reported in 2016 from Chen’s group
[60]. Lead-free tin halide nanorods were fabricated at a
temperature of 180°C and reaction time of 6 h.

Such a method has also been utilized for the syn-
thesis of all-inorganic nanocubes or nanowires at 160°C
[104]. Without pre-dissolving of the precursors, the final
morphology of the nanocrystals are cubes while when this
step takes place the final results are nanowires due to the
higher concentration of the precursors.

2.1.2 “Top-down” approaches

2.1.2.1 Room temperature exfoliation

Hybrid organic-inorganic metal halide nanoplatelets of
varied thickness have been obtained through the exfo-
liation of bulkier particles/microcrystals synthesized
previously via a solid-state reaction [62]. These microcrys-
tals are dispersed in an organic solvent together with a
capping ligand and this solution is placed on a tip sonica-
tion. Different steps of centrifugation lead to nanoplate-
lets of different thickness. This method can be used for
very thin nanoplatelets down to that of single unit cell.

2.1.2.2 Room temperature photo-induced methods

Two reports exist about the use a laser-induced procedure
for the synthesis of metal halide nanocrystals. In the first,
the nanocrystals were obtained through a photo-fragmen-
tation process from larger particles. Bulk crystals grown by
inverse temperature crystallization grinded into smaller
structures in an organic solvent [105]. Ten minutes of irra-
diation with 532 nm laser pulses (9 ns, 10 Hz, 0.8 J/cm?) of
a Nd-YAG laser was enough to obtain cubic nanocrystals
of around 60 nm. The ligand protects from the continuous
growth of the crystals. In the second, a laser-ablation of
metal-halide bulk material was used to obtain nanocrys-
tals of the same phase [106]. This material was placed in
the bottom of a vial containing an organic solvent together
with an organic capping ligand. Nanocrystals of around
30-70 nm were formed after irradiation for 70 min with a
532 nm laser.

2.1.2.3 High temperature and room temperature
microwave-assisted methods

In the first process, all the reactants are mixed together

in a microwave tube in air atmosphere in contrast to the
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protective atmosphere of the hot-injection method [108].
Then the tube is placed in a microwave reactor and the
temperature is increased gradually. The shape of the all-
inorganic metal halide nanocrystals synthesized by this
method at high temperature are small cubes while they
are plate-like for lower temperatures. Ultra-thin nanowires
are obtained when the precursors are pre-dissolved before
increasing the temperature. The role of the trioctylphos-
phine oxide (TOPO) ligand is important in this reaction, it
favors the dissolution of the precursors and thus helps to
obtain high-quality nanocrystals.

Besides, this reaction can take place at room tempera-
ture [109]. In this case the ligand is bis(2,4,4-trimethylpen-
tyl) phosphinic acid (TMPPA) instead of oleic acid and the
precursor is cesium acetate instead of cesium carbonate,
and cubic nanocrystals of 19 nm in size are formed. The
type of the precursor plays an important role in the lumi-
nescence properties. The luminescence is higher when
CsOAc is used as the precursor compared to that of using
Cs,CO..

2.2 Colloidal synthesis for perovskite oxide
nanocrystals

Solid-state reaction or molten-salt methods have been
extensively used for the synthesis of perovskite oxide
nanocrystals. These two processes are easy and use
simple equipment. The nanocrystals synthesized by such
methods are well-crystallined but they have irregular
shapes and wide size distribution. The solid-state reac-
tions take place at high temperatures while the molten-
salt method at moderate ones (600-800°C) due to the
existence of the inorganic molten salt which serves as
a medium to enhance the reaction rate and reduce the
temperature of the reactant oxides [13]. The solid-state
process has been used to synthesize simple shapes such
as irregular-shaped or spherical nanoparticles [175-177],
and only a few reports exist for nanocubes or nanowires
[178]. The starting materials are mixed together, a milling
process is followed and then calcination at high tempera-
ture. In contrast, the molten-salt method has been pro-
posed for various structures including irregular shapes
[179-184], morphologies of high-aspect ratio [185-188]
and platelets [189]. In order to have a better control over
the morphology than the previous methods, bottom-up
solution-processed approaches have been realized includ-
ing sol-gel, hydrothermal, solvothermal, sonochemical,
or microwave-assisted reactions (Table 1, Figure 2). Lower
temperatures and in some cases organic ligands are uti-
lized in such approaches.
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2.2.1 Sol-gel methods

In these methods, a sol is formed when metal alkoxide,
metal-organic, or metal-inorganic salt precursors are dis-
solved in an appropriate solvent, it is then dried and sin-
tered at high temperatures. The morphologies obtained by
this approach are irregular-shaped [63, 117-126, 136, 190]
and spherical [64, 127-130]. Only a few reports exist about
this method for different structures such as cubic [64, 131]
or honeycomb-like [132] structures. Reaction parameters
which play important role on the morphology and the size
of the synthesized nanocrystals are the temperature, time
of the reaction, and heating rate [133], as well as the usage
or not of an organic ligand [64, 119, 123]. In order to save
energy and to be cost effective, a sol-gel approach com-
bined with a microwave-assisted sintering has been pro-
posed for perovskite oxide nanocrystals [136].

2.2.2 Hydrothermal methods

An aqueous suspension of insoluble salts is positioned in
an autoclave and the temperature is increased. Precipitation
from the solution of the crystalline material occurs at tem-
peratures between the boiling point and the critical point
of water. Various and more complex morphologies includ-
ing randomly-shaped [137-139], spheres [140-144], cubes
[141, 145-147, 163], nanowires [67], nanotubes [148], as well
as more complex dendrite [149] or star-like [150] structures
have been synthesized by this method compared to the
simple structures synthesized by the sol-gel method. The
combination of hydrothermal with sol-gel method has been
used for the synthesis of rounded/randomly shaped [36,
155-159], hollow [160], or elongated [161] nanocrystals. A
microwave-hydrothermal process has also been utilized for
the synthesis of cubic perovskite oxide nanocrystals [162].

2.2.3 Solvothermal methods

The solvothermal method is a general procedure for per-
ovskite oxide nanocrystals that are free of ligands. The
first synthesis was performed by Antonietti’s group for the
synthesis of irregular shaped BaTiO,, BaZrO,, and LiNbO,
nanocrystals [164]. Lithium or barium metal was dissolved
in benzyl alcohol at slightly elevated temperature. Then
a metal alkoxide was added to this solution, placed in an
autoclave and heated in a furnace at temperatures between
200 and 220°C for more than 2 days. Benzyl alcohol has
been proved to be a versatile solvent and reactant for
controlled crystallization and stabilization of oxidic
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nanocrystals. The solvent polarity is crucial for the mor-
phology control of the nanocrystals. The nanocrystals can
be spheres or cubes by tuning this parameter [66]. The size
can also be tuned by changing the precursors concentra-
tion and the temperature of the reaction. This method has
been used for the efficaciously synthesis of spherical [66,
164-166], cubic [66, 166] or even hollow [48] morphologies.

2.2.4 Sonochemical methods

These processes take place at room temperature, where all
the reactants are dissolved in a solvent under ultra-sound
irradiation. With this method, irregular-shaped [65, 168],
spherical [169, 170], rods [171], and polygons [172] are fabri-
cated. All of these nanocrystals are free of ligands.

2.3 Perovskite nanocrystals for energy
conversion

2.3.1 Perovskite nanocrystals in solar cells

2.3.1.1 Metal halide nanocrystals in perovskite solar cells
The metal halide nanocrystals have been used in perovs-
kite solar cells by forming the active layer and/or placing
them at the interface.
(i) Perovskite nanocrystals as active layer
Metal halide nanocrystals of various morphologies and
chemical phases have been used as absorber mate-
rial in perovskite solar cells. Hybrid organic-inorganic
lead halides of spheres [191, 192], nanosheets [193] and
nanowires [103, 194] have been used for active layer
with the nanowires to show the higher efficiency to
date (18.7%) [103]. Although, all-inorganic lead halides
nanocrystals with spherical [16, 195-198], cubic [15,
199, 200] and elongated [201] morphologies have
been used reaching an efficiency of 13.43% [202]. The
Nanocrystals which showed this efficiency have a cubic
morphology and they are capped with oleic acid [202].
The first hybrid organic-inorganic nanocrystal-
based solar cell was reported by Park’s group in 2011
[191]. In the case of the hybrid organic-inorganic solar
cells, the efficiency was increased as the perovskite
nanocrystal morphology changes from the spheres
(2.4-6.54%) [191, 192] to nanosheets (10%) [193] and
nanowires (14.71-18.7%) [103, 194]. The use of nanow-
ires in the photoactive layer is an effective way for
enhancing light trapping and improving charge trans-
port efficiency. For this reason, the charge separa-
tion and conductivity were higher in the case of the
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nanowires compared to the bulk film [103, 196]. Very
recently nanowires synthesized from the same chemi-
cal phase synthesized by a two-step spin coating
process have reached the value of the 16.8% (Figure 3)
[103]. Partially developed perovskite nanowires in the
photoactive layer contribute more to photocurrent
generation than in compact films (Figure 3E, F). These
nanowires’ solar cell efficiency improved by using a
PC, PB additive and as a result raised the power con-
version efficiency (PCE) to 18.7%.

Later in 2016, all-inorganic metal halide
nanocrystals were used in perovskite solar cells
instead of hybrid organic-inorganic materials to
improve their stability [15, 16]. o-CsPbl, nanocubes
of 9 nm edge length were introduced and the perovs-
kite solar cells showed the high efficiency of 10.77%.
This high efficiency has been attributed to the stable
cubic phase (and not to the orthorhombic unstable
phase) in which the nanocubes are crystalline [15]. It
is known that the CsPbl, chemical phase which exhib-
its the smallest band gap is not structurally stable in
the bulk form. Direct deposition of the CsPbl, nano-
cubes by spin casting, followed by stabilization of
the perovskite structure via post deposition chemical
treatment or annealing, contributed positively to the
high quality of the active layer. The efficiency can be
improved more and reach a value of 13.43% by tuning
the surface chemistry via an A-site cation halide salt
(AX) treatment (Figure 4A) [202]. The AX treatment
provides a method for tuning the coupling among
the nanocubes and improving the charge transport.
The mobility of the treated film doubles, enabling
an increased photocurrent and improved efficiency.
Furthermore, higher stability has been observed in
similar nanocrystals capped with TOP synthesized
using a hot-injection method and a PbL/Gel, dual
iodine source [200]. These nanocubes showed a near
unity photoluminescence (PL) quantum yield and
improved chemical stability compared to the previous
systems. The ensuing nanocubes solar cells deliver
PCE of 12.15% and retain 85% of its peak performance
after storage over 90 days.

In a different approach, all-inorganic metal
halides have been introduced into the absorber
MAPDI, layer to reduce charge recombination and
improve the charge transfer [203]. This process was
used to improve the quality of the absorber layer in
terms of film structure, morphology, and crystallin-
ity as the nanocrystals behave as nucleation centers
in the growth of perovskite films. The high quality
of the films leads to improved charge transport and
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Figure 3: CH,NH_Pbl, nanowires in perovskite solar cells.

Scanning electron microscopy (SEM) images of the c-perovskite (compact): (A), c-perovskite: PC, BM (B), perovskite nanowires (nw), (C),
perovskite nanowires: PC, BM (D) films. J-V characteristics measured under sun and dark conditions (E), and EQE spectra for the highest-
performing films (F). Reproduced with permission from [103]. Copyright 2018, Elsevier.
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solar cell PCE. At the same time, a protecting passiva- of 20.46% is obtained from the perovskite solar cells
tion layer of Cs, MA PbL, Br is formed on the top of based on high quality perovskite film.
the perovskite absorber layer and this contributes to Anion exchange at ambient conditions verified

the final stability of the solar cell. A champion PCE that this process could be an effective and simple
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way to obtain mixed halide nanocrystals and showed
really promising results in perovskite solar cells [198].
These perovskite solar cells displayed a photoconver-
sion efficiency of 5.3% and open circuit up to 1.31 V.
In addition, cation exchange approaches for tunable
A-site alloys of cesium (Cs*) and formamidium (FA¥)
lead triiodide perovskite nanocrystals (Cs, FA Pbl.)
lead to quantum dot solar cells with high open circuit
voltage (V) with a lower loss than the thin-film per-
ovskite devices of similar compositions [204]. These
solar cells showed an efficiency of 10%.

Furthermore, CsPbBr, was developed and applied
as “inks” to fabricate fully air-processed, electri-
cal stable solar cells exhibiting a PCE exceeding 5%.
This method provides a new pathway for single-step,
large-scale fabrication of inorganic perovskite solar
cells. Inks of CsPbBr, nanocrystals of 15-20 nm syn-
thesized with a fast room temperature synthesis using
short, low boiling point ligands and environmentally
friendly solvents, have been proposed by Manna’s
group [16]. These inks can be used directly to fabricate
films of high optoelectronic quality. An active layer
of 550 nm prepared by nine sequential depositions,
exhibited a PCE of 5.4% and a V.= 1.5 V.

The quality of the absorber layers of CsPhBr,
can be improved further by treating them using an
NH,SCN ethyl acetate solution to quickly transform
the CsPbBr, nanocrystals film into CsPbBr,-CsPb,Br,
composite film (Figure 4B) [196]. The treated film is
uniform and compact after a surface dissolution-
recrystallization process, with large grain size and
low defect density. The recorded PCE by using this
composite was 6.81% in this case.

Finally, lead-free metal halide nanocrystals, free
of toxic elements, were also introduced in perovskite
solar cells. Tin-based metal halide nanocrystals have
been synthesized in the form of nanospheres [205]
or nanorods [60]. The efficiency of the devices using
hybrid organic-inorganic tin halide nanospheres was
8.79% [205], while the efficiency of the devices includ-
ing all inorganic nanorods can be ranged from 9.66 to
12.96% depending on the metal halide composition.
The highest solar cell performance was recorded
for the device using the phase CsSnl, [60]. These
nanorods exhibit colloidal stability in air for more than
2 months and a decomposition temperature signifi-
cantly higher than that of MAPbI.. The photovoltaic
parameters recorded for such devices were a short-
circuit current density (J )=23.21 mA/cm’, open-
circuit voltage (V, )=0.86 V, fill factor (FF)=0.65,
and PCE of 12.96%. In addition, recently reported all
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inorganic bismuth-based cesium halide nanocrystals
in the form of nanosheets of 4.3 nm in thickness, syn-
thesized by a dissolution-recrystallization process
and were used for such applications [206]. The effi-
ciency of this device was 3.2% but it is the highest
reported to date in bi-based solar cells.
(ii) Perovskite nanocrystals at interfaces

Metal halide nanocrystals have been used at the inter-
face between the perovskite absorbing layer and the
HTL [17, 18]. The interface engineering is an effective
way for obtaining high efficiency and improved sta-
bility in the perovskite solar cells through interfacial
charge transfer control. A layer of hybrid organic-
inorganic FAPbX, quantum dots is placed between
the absorbing MAPbI, layer and the C , HTL [17]. In
this way, an increased short-circuit current and an
improved solar cell efficiency by 43.7% were observed.
Moreover, all inorganic o-CsPbl, quantum dots have
been placed at the same position and the PCE increased
from 15.17 to 18.56% in solar cells using MAPbI, as the
absorbing material [18]. The charge-transfer efficiency
at the interface of the perovskite/HTL is enhanced by
CsPbl, quantum dots due to their intermediate valence
band position between the perovskite and the HTL. In
addition, the enhancement of the stability of perovs-
kite solar cells can be attributed to the coating of the
perovskite layer with the all inorganic CsPbl,, which
has a high moisture stability and results in long-term
stability of the perovskite solar cells in the air.

In order to make stable the hybrid organic-
inorganic quantum dots, they are covered with a shell
of C18 [207]. These core-shell quantum dots — C18 were
also used at the interface with the HTL. The efficiency
of these solar cells reaches over 10%. The presence of
long chain ligands bound to the quantum dots did not
appear to damage hole extraction.

2.3.1.2 Metal halide nanocrystals in dichalcogenide
quantum dot sensitized solar cells

All-inorganic metal halide nanocrystals have been
employed as carrier blocking layers between the absorber
layer of PbSe nanocrystals and the metal contact in dichal-
cogenide quantum dots sensitized solar cells [208]. The
relatively large E, (2.4t02.7 eV) of the CsPbBr, nanocrystals
compared to that of PbSe nanocrystals (1.2 to 1.5 eV) was
the crucial factor to use them as a blocking layer. On the
one hand, these nanocrystals have been chosen for their
good air-stability, their high photoluminescence quantum
yield and their ability to be synthesized independently
and on the other hand, the quality of the perovskite layer
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seems not to be affected by the PbSe quantum dot layer.
The PCE of this solar cell configuration is 7.2%. An open-
circuit voltage (V,.) of 482 mV, a current density (J..) of
23.9 mA/cm?, and a fill factor (FF) of 62.4% under one-sun
conditions were recorded.

In a different approach, the metal halides were uti-
lized as a passivation layer on the surface of the dichalco-
genide quantum dots (PbS) forming a core-shell structure
[209-211]. A shell of hybrid organic-inorganic MAPbI,
[209, 210] or all-inorganic CsPbl, [211] metal halide was
introduced for quantum dot passivation. In the first case,
the film of the core-shell nanocrystals was incorporated
in a photovoltaic device with graded band structure and
recorded a PCE of 8.95% for this solar cell [209]. Two years
later, a funtionalized quantum dot HTL was introduced
in such structures to block the back flow of the photo-
generated electrons, leading to enhanced photocurrent
and fill factor compared to undoped devices [210]. The
ligand of the quantum dots was 1,2-ethanedithiol (EDT)
and the solar cell performance reached the value of 9.5%
due to the enhanced bending at HTL-absorber junction.
The utilization of an all-inorganic shell around the PbS
quantum dots led to a performance of 10.5% [211]. In this
case the shell was epitaxially grown on the core surface.
The improved passivation significantly diminished the
sub-bandgap trap-state-assisted recombination, leading
to improved charge collection and therefore higher photo-
voltaic performance.

2.3.1.3 Metal halide nanocrystals in dye-sensitized solar
cells

Irregular-shaped, free of ligands, hybrid organic-inor-
ganic perovskite nanocrystals were used to enhance the
light absorption of dye-sensitized solar cells employing
liquid electrolytes [212]. This incorporation resulted in a
photovoltaic efficiency of 3.8% and photovoltage of 1.0 V.
In this device, nanocrystalline particles of CH,NH,PbX,
(X=Br, I) were deposited onto the TiO, surface by a self-
organization process, starting with the coating of a precur-
sor DMF-based solution. This CH,NH,PbX_-deposited TiO,
electrode was used as photoelectrode (anode) together
with a Pt-coated FTO glass as counter electrode (cathode)
and a 50 um-thick separator layer. The gap between the
electrodes was filled with an organic electrolyte solution
containing lithium halide and halogen as a redox couple.
A higher PCE was measured for the CH.NH,Pbl, perovs-
kite sensitizer (3.8%) among the different stoichiometries
tested.

Furthermore, spherical amine-capped CH,NH,Pbl,
nanocrystals synthesized by a re-precipitation method
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have been introduced in quasi-solid-state sensitized
solar cells with a configuration FTO/m-TiO,/perovskite
quantum dots/dye/long persistence phosphor/gel elec-
trolyte/Pt/FTO [213]. The perovskite nanocrystals were
employed as charge-transfer bridge between the TiO,
and the N719 dye to extract photo-induced charges from
a light-harvester. From the metal halides tested, the
CH,NH,PbBr, I, nanocrystals have been proved as the
most preferred co-sensitizers for the efficiency enhance-
ment due to their optimal energy level compared to that
of a dye molecule, in which the photogenerated electrons
from the dye molecule can transfer to nanocrystals and
then to TiO,. Furthermore, the long persistence phosphor
(LPP) which has light-storing and light-emitting ability
covered the m-TiO, layers aiming to harvest the longer
wavelength light which permeated across the FTO/m-TiO,/
PQDs/dye and which subsequently emits monochromatic
green photofluorescence to re-excite the sensitizers. This
device showed the impressive power conversion efficiency
of 7.91%, well above the previous report in 20009.

2.3.1.4 Metal halide nanocrystals in silicon solar cells
Metal halide nanocrystals have been utilized for the
improvement of the c-Si solar cell efficiency. Spherical
organic-inorganic metal halide nanocrystals [214] and
all-inorganic nanocubes [19] have been used for such pur-
poses with the second showing the higher performance.
In the first case, a c-Si solar cell architecture based
on a heterojunction between n-type c-Si and a conducting
polymer (PEDOT:PSS) is demonstrated as an alternative
concept of the field effect solar cell (Figure 5A). Usually,
these solar cells consume extra electric energy originated
from an external bias. In this case by introducing the per-
ovskite nanocrystals, the extra potential is generated by
the light [214]. The organometal trihalide nanocrystals
synthesized by a low-temperature precipitation method
are deposited on the top of the PEDOT:PSS top electrode
and act as potential generation layer (Figure 5A). The
device operates as a Schottky heterojunction solar cell
with the light-induced electric polarization in the perovs-
kite nanocrystals enhancing the electric field in the c-Si
depletion region. The light harvested by organometal tri-
halide perovskite nanocrystals induces molecular align-
ment on a conducting polymer, which generates a positive
electrical surface field. Photoinduced carriers generated
in c-Si are directed to the respective contacts by the elec-
tric field in the depletion region at the interface between
n-Si and MoO,/PEDOT:PSS. The successful combination
of the light-driving polarization perovskite nanocrystals
with n-type c-Si leads to the fabrication of a “field-effect
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Figure 5: (A) “Field-effect solar cell” by using spherical hybrid organic-inorganic metal halide nanocrystals. Reproduced with permission
from [214]. Copyright 2017, Wiley-VCH. (B) CsPbCl, ,Br, .:Yb (7.1 %), Ce (2 %) perovskite nanocubes film, used as a downconverter in
commercial silicon solar cells. Reproduced with permission from [19]. Copyright 2017, Wiley-VCH.

solar cell” with a PCE of 14.3%. This PCE showed a 12%
enhancement compared to the one without using such
nanocrystal coverage (12.7%). This device displayed a J__ of
30.84 mA/cm?, an FF of 73%, a V__of 635 mV, which results
in a PCE of 14.3%. While the device without the perovs-
kite nanocrystals exhibits a short circuit current (J) of
30.42 mA/cm?, an FF of 70%, an open circuit voltage (V_ )
of 594 mV, yielding a PCE of 12.7%.

The second report on using metal halide nanocrys-
tals demonstrated a cheap, convenient, and effective
way to enhance the PCE of the commercial silicon solar
cells (Figure 5B) [19]. Doped all-inorganic metal halide
nanocubes synthesized by a hot-injection method have
been used as a downconverter of these solar cells due
to their excellent quantum-cutting properties. The
PCE in this case is improved from 18.1 to 21.5%. They
were self-assembled on the surface of the commercial
single crystal silicon solar cell via liquid-phase depo-
sition and the thickness was controlled ranging from
60 to 770 nm. Compared to 18.1% PCE of the uncoated
solar cells, the performance for the 110, 210, and 350 nm
perovskite nanocrystals coated samples increases to
different contents, while the further increasing thick-
ness of the nanocrystals induces the decrease of solar
cell performance. The best thickness of the nanocrys-
tal layer is 230 nm. The PCE of this device reaches to
21.5%, with an open-circuit voltage 0.65 V and a short-
circuit current 39.8 mA/cm? with good reproducibility.
In the dark, the luminescent intensity of this layer is
decreased less than 5% and the PCE decreased only

about 5% after being placed in the air for 700 h, indicat-
ing a high stability. Irradiated by simulated AM 1.5 sun-
light for 50 h continuously, the PCE is rarely changed,
implying its excellent photostability. Finally, by testing
various photoluminescent converters, the optimum
enhancement of PCE was observed for the Yb*, Ce** co-
doped perovskite nanocrystals. The PCE is comparable
to the perovskite/silicon tandem solar cells but in this
case the fabrication is easier and simpler to repeat.

2.3.1.5 Perovskite oxide nanocrystals in perovskite solar
cells
Perovskite oxide nanocrystals have been used as elec-
tron transporting materials. Films of sol-gel synthesized
nanocrystals of Zn,SnO, have been utilized as ETLs for
highly efficient perovskite solar cells [215]. There is a
dual role of these materials in perovskite solar cells. On
the one hand, the introduction of such films significantly
improves the transmittance of flexible polyethylene
naphthalate/indium-doped tin oxide (PEN/ITO)-coated
substrate from ~75 to ~90% over the entire range of wave-
lengths and, on the other hand, due to its antireflection
properties and low refractive index lead to the improve-
ment of the PCE. The PCE in such perovskite solar cells
leads the value of 14.85 % under AM 1.5G-100 mW/cm?illu-
mination (Figure 6). Furthermore, by replacing them with
hydrothermally synthesized Zn,SnO, nanocrystals the
performance has been further increased to a PCE of 17.7%
[20]. These materials were characterized by high electron
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Figure 6: Structure and performance of flexible perovskite solar cells including Zn,SnO, nanocrystals as hole transporting layer.
Cross-sectional SEM image and photograph of the ZS0O-based flexible perovskite solar cell (scale bar, 500 nm) (A). Energy levels of the
materials (B). Photocurrent density-voltage (J-V) curve measured by reverse scan with 10 mV voltage steps and 40 ms delay times under AM
1.5 G illumination (C). EQE spectrum of the ZSO-based flexible perovskite solar cell (D). Transmittance and reflectance spectra of PEN/ITO/
750, PEN/ITO/TiO, and PEN/ITO substrate (E). Reproduced with permission from [215]. Copyright 2015, Nature Publishing Group.

mobility of 10-25 cm?/Vs, a wide optical bandgap (3.8 eV),
and a well-aligned conduction band edge (~- 4.1 eV) with
that of the absorbing layer (CH,NH,PbL).

2.3.1.6 Perovskite oxide nanocrystals in dye-sensitized
solar cells

Quite spherical perovskite nanocrystals have been used
in ETL in dye sensitized solar cells due to their supe-
rior electron collection property. The energy conversion
reported for such solar cells is 4.7% for using Zn,Sn0O,
[152] and 5.2% for BaSnO, [216] nanocrystals. The elec-
tron capture in the perovskite oxide films was higher
than in TiO, and the electron in the conduction band

can diffuse rapidly resulting in greater photovoltaic
performance.

2.3.2 Perovskite nanocrystals for photocatalytic CO,
reduction in solar fuel cells

The emission of CO, by human activities is an impor-
tant factor for the dramatic change of the environment
and phenomena such as the climate change and global
warming. Photocatalytic reduction of CO, using solar
energy into renewable hydrocarbon fuels has gained
much attention in the effort to conserve energy [21]. By
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mimicking the natural photosynthesis in green plants,
artificial conversion of CO, into chemical fuels such
as carbon monoxide [CO], methane [CH,], methanol
[CH,OH], offers a promising approach to simultaneously
mitigate the levels of greenhouse gas and produce renew-
able energy. Nanocrystals of metal halides or perovskite
oxides have been introduced as efficient photocatalysts
for such purposes.

2.3.2.1 Metal halide nanocrystals for photocatalytic
reduction of the CO,

Metal halides have not been applied for photochemical
conversion (water splitting or Co, reduction) due to their
instability in the presence of moisture or polar solvents.
But there are some recent reports on novel photocataly-
sis to convert CO, into solar fuels in non-aqueous media.
Single-phase lead-containing or lead-free metal halide
nanocrystals have been proposed as novel catalysts for
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solar cell CO, reduction. CsPbBr, quantum dots with diam-
eters 3-12 nm showed a highly selectivity over 99% and
achieve an efficient yield rate of 20.9 umol/g towards solar
CO, reduction (Figure 7A). [22] While lead-free nanocrys-
tals of Cs,AgBiBr, showed an impressive stability against
moisture, light, and temperature and under AM 1.5G illu-
mination for 6 h achieved a total electron consumption of
105 umol/g [23].

Enhanced photocatalytic reduction of CO, to ethyl
acetate observed when CsPbBr, quantum dots are coupled
with GO (Figure 7B) [24]. Under AM 1.5G simulated illumi-
nation, the primary CsPbBr, nanocrystals of 6 nm in dia-
meter steadily generated and injected electrons into CO,,
catalyzing CO, reduction at a rate of 23.7 umol/g h with the
important selectivity over 99.3%. The growth of the per-
ovskite on GO results in the increase of the electron rate to
25.5% due to the improved electron extraction and trans-
port. These rates are superior compared to the common
CdS quantum dots photocatalysts. These photocatalysts
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Figure 7: Metal halide nanocrystals for photocatalytic CO, reduction.
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(A) Single phase CsPbBr, nanocatalysts. Reproduced with permission from [22]. Copyright 2017, Wiley-VCH. (B) Composite CsPbBr,/GO
catalysts. Reprinted with permission from ref [24]. Copyright (2017), American Chemical Society. (C) Composite CsPbBr,/Pd catalysts.
Reprinted with permission from [217]. Copyright (2018), American Chemical Society.
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are stable after 12 h of photocatalytic reaction and no
phase transformation or degradation are observed. The
effective CO, reduction capacity (1.05 umol/cm? h) and
selectivity (84%) are much smaller in the case of nanocom-
posites including hybrid organic-inorganic metal halide
nanocrystals and GO [25]. The photocatalytic performance
of the previous nanocomposite is improved when the
metal halide nanocrystals were coupled with palladium
nanosheets instead of GO (Figure 7C) [217]. Their opti-
mized performance in this case was 33.79 umol/g h, cor-
responding to 2.43-fold enhancement compared to the
pristine metal halide nanocrystals.

Furthermore, the encapsulation of the CsPbBr,
nanocrystals in amorphous-TiO, showed a marvelous
6.5-fold improvement on the consumption of photoelec-
trons in photocatalytic CO, reduction reactions compared
to that of individual CsPbBr, nanocrystals [218]. Despite
the poor photocatalytic behavior of the amorphous TiO,,
its good chemical stability makes it good candidate as a
protection layer for the lead halides. The amorphous TiO,
coverage has been witnessed as a pivotal driving force for
preeminent photocatalytic performance by enhancing the
extraction and separation of the photoinduced charges,
and increasing the adsorption of the CO, simultaneously.
Such combined effects finally boost the photoelectron
consumption from 25.72 to 193.36 umol/g during the 3 h
photocatalytic reaction. Photocatalytic reduction of CO, to
CH, is more thermodynamically favorable than the forma-
tion of CO and H,, which however, is kinetically challeng-
ing since eight electrons were involved.

2.3.2.2 Perovskite oxide nanocrystals for photocatalytic
reduction of the CO,
NaNbO, and NaTaO, nanocrystals of similar size and
synthesized by the same method have been tested as
photocatalysts for the reduction of the CO, [219]. Both
perovskites give rise to the similar conversions in the CO,
reduction reaction with a slightly higher carbon product
evolution for the nanocrystals of NaTaO.. Furthermore,
the crystal structure of the nanocrystals seems to be a
crucial factor for the photoreduction performance of the
NaNbO, nanocrystals [220]. The photocatalytic H, evo-
lution and CO, reduction activities over cubic NaNbO,
were nearly twice of those over orthorhombic NaNbO,
structure. The electronic structure of the cubic phase is
beneficial for electron excitation and transfer. Further-
more, nanowires of the same chemical structure covered
with the polymer g-C\N, showed an enhanced photo-
catalytic performance (8 times higher) compared to the
single-phase g-C,N, or the NaNbO, nanowires [221]. The
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remarkable enhancement of photocatalytic activity was
mainly ascribed to the improved separation and trans-
fer of photogenerated electron-hole pairs at the intimate
interface of g-C,N,/NaNbO, heterojunctions, which origi-
nated from the well-aligned overlapping band struc-
tures of C,N, and NaNbO,. Finally, KNbO, (where A=Na,
K) nanocrystals showed a higher photocatalytic activity
compared to the NaNbO, due to its narrower band gap
and higher mobile charge carriers [222].

BiWO, nanocrystals of different morphologies have
been synthesized for photo-induced CO, reduction.
Square BiWO, nanoplateles of 9.5 nm in thickness and
capped with oleylamine were used for such purposes
[223]. Their enhanced catalytic activity is due to the pref-
erentially exposed {001} surface. The ultrathin geometry
of these nanocrystals also promotes charge carriers to
move rapidly from the interior to the surface to partici-
pate in the photoreduction reaction and should also favor
an improved separation of the photogenerated electron
and hole and the lower electron-hole recombination rate.
More complex nanosheet-based nanocrystals have been
also designed to improve the catalytic performance. Ball-
flower-like nanostructures composed by nanoplatelets
[224] or nanoplatelets decorated with core-shell Au-CdS
[225] also synthesized for such purposes.

2.3.3 Perovskite nanocrystals for thermoelectrics

Generating energy through thermoelectric materials is
becoming increasingly important as the challenges faced
nowadays in terms of energy production and efficiency
are more intense than ever. Much work has been carried
out during the past decades in an effort to enhance the
production of energy through novel materials and pro-
cesses [226-228].

Thermoelectric generators (TEG) constitute a new
technology in order to recover heat which is based on the
Seebeck effect and is broadly used for power generation.
The Seebeck effect can be described as the connection of
two different type (p-type and n-type) of conductors or
semiconductors. This connection is formed by a parallel
thermal connection along with an electrically connec-
tion in series which in turn causes a difference in voltage
between the two materials [229, 230]. When connecting
the two different components with a heated junction one
can observe on the n-type component the transport of
electrons from the hot junction to a heat sink whereas the
p-type component transports holes which are positively
charged, following the same direction as the temperature
gradient.
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The efficiency that a specific material can possess in
the conversion process of heat to electricity can be given
by the formula below.

2
ZTza oT

4]
K

where ZT is the dimensionless figure of merit, ¢ is the
electrical conductivity of the material, x is the thermal
conductivity of the material and a the Seebeck coefficient
[231, 232].

In order for thermoelectric materials to be competitive
with ordinary power generators the figure of merit for TEG
must be larger than 3 [233, 234]. Generally, finding materi-
als with a ZT value above 2 is a challenging task but recent
advancements [235, 236] in the effort to increase the figure
of merit to around 3 has been made possible with the use
of nanocomposites.

In this direction, lead and tin halide perovskites
namely CH,NH,Pbl, and CH,NH,Snl, have been regarded
as very promising photovoltaic materials mainly because
of their relatively large absorption coefficient, high charge
carrier mobility, and diffusion length properties [212, 237]
also possessing a large Seebeck coefficient [238, 239].
Recent first principle studies of these materials have con-
firmed this and have provided detail insides especially
when results are combined with the Rashba effect.

Recently Nafradi’s group has also shown that the ZT
of the Sn component of the hybrid halide perovskite men-
tioned can be augmented by three orders of magnitude at
room temperature by appropriate chemical doping [240].
This finding suggests that CH,NH,Snl, can constitute a
very promising candidate for low cost and mass produc-
tion processes.

Similar improvement in the thermoelectric properties
of perovskites was observed with W doping for CaMnO,
by Tan’s group [241]. They reported a two-fold increase in
the figure of merit which in turn is attributed to structural
characteristics involving the existence of MnO, distorted
octahedra. This case is also interesting as two mechanisms
are reported to occur simultaneously although their effect
is canceling one another. The W doping seems to increase
carrier concentration which ultimately leads to enhanced
electrical conductivity and a decreased Seebeck coeffi-
cient. The enhanced electrical conductivity is a positive
effect that outweighs the negative impact of the decreased
Seebeck coefficient thus leading to an increased power
factor. This increase in ZT is also temperature depended
and seems to increase almost linearly with increasing
temperature.

Overall the structural dependence of the ZT still
remains a big challenge and is a promising field for more
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intensive research in order to elucidate the structural
dependence of the above-mentioned phenomena.

2.4 Perovskite nanocrystals for energy
storage

2.4.1 Perovskite nanocrystals for batteries

Emerging autonomous electronic devices require com-
paction and miniaturization of energy storage devices.
Perovskite materials have received considerable attention
for energy storage applications due to their excellent cata-
lytic activity, electrical conductivity, and durability. Ion
migration through perovskite lattices allowing the use of
such materials as electrodes for batteries. Electrochemi-
cal measurements on nanoparticulate perovskite systems
showed that they displayed superior catalytic activity for
oxygen reduction, as well as a higher discharge plateau
and specific capacity compared to the bulk materials of
the same crystal structure [29]. Perovskite oxide nanocrys-
tals have been investigated for such application but in
recent years metal halides have also shown high specific
capacitance and promising stability upon cycling. This
section summarizes all the reports on such applications
focused on nanoparticulate systems of both metal halides
and perovskite oxides and tries to correlate and under-
stand the role of the size, the morphology and the intrinsic
properties of the nanocrystals to the final performance of
the batteries.

2.4.1.1 Metal halide nanocrystals in batteries

The first report of using metal halide materials for Li-ion
batteries was in 2015 by Peng’s group [30]. Hydrother-
mally grown organic-inorganic metal halide microcrys-
tals were used as the active material in Li-ion storage
devices presenting a discharge capacity of 331.8 mA h/g
(at current density of 200 mA/g) [30]. In this system, the
capacity decreased rapidly in the first 30 cycles, it sub-
sequently decayed slowly, showing a relative capacity
retention of 76.9 % in the next 170 cycles. A comparison
between different halides indicated that the batteries
with the CH,NH,PbBr, showed a larger discharge capacity
compared to that with CH,NH,PblI.. The discharge capac-
ity for the first system was 331.8 mA h/g while for the
second only 43.6 mA h/g. Two years later, CH,NH ,PbBr,
nanocrystals of 65 nm in size, synthesized by a precipita-
tion method combined with a heating process, showed
similar electrochemical response (Figure 8A) [31]. Long-
term specific capacity attained significant values,
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Figure 8: Metal halide perovskite nanocrystals for Li-air batteries. Electrochemical performance of the anodes consisted of (A) hybrid
organic-inorganic CH,NH,PbBr, nanocrystals of 65 nm in size, synthesized by a precipitation method combined with a heating process and
(B) all-inorganic metal halide, Cs,PbBr, nanohexagons of 100 nm in size deposited on ITO electrodes and subjected to three and five cycles
of thermal annealing. These layers are coated with a few-nanometer thin TiO_ layer. (A) Reprinted with permission from [31]. Copyright
(2017), American Chemical Society. (B) Reproduced from [32] with permission from the Royal Society of Chemistry.

approaching 200 mA h/g. Very recently, the electro-
chemical performance of metal halide nanoparticulate
electrodes by using aqueous electrolyte were evaluated
by our group [32]. This is the first report of using metal
halide nanocrystals in batteries using aqueous electro-
lytes. In particular, the electrodes comprised a layer of
100 nm-size Cs,PbBr, nanohexagons deposited on ITO
substrates and coated with a thin TiO, film (Figure 8B)
[32]. The nanocrystals were prepared at room tempera-
ture, by a fast, solution-processed co-precipitation
method. The electrodes were subjected to successive
annealing cycles to optimize their electrochemical sta-
bility. The electrodes of five annealing cycles showed the
best performance. It was observed that these electrodes
showed the best performance among the nanoparticu-
late anodes using metal halides presented previously
in terms of stability (high stability for 40 scans), spe-
cific capacity (377 mA h/g) and coulombic efficiency
(dropped to 98% after 100 scans). On the contrary, the
non-annealed and/or uncoated nanohexagon layers dis-
played poor stability, immediately after the first scan. A
water-triggered transformation of the metal halide mate-
rial occurred in the aqueous medium from Cs,PbBr, to
CsPb Br.. Then, the Li-ion intercalation/deintercalation

mechanism is a reversible process for the 40 consecutive
scans, as the crystal structure of the CstzBr5 remains
unaltered. After this period, an irreversible conver-
sion reaction of CsPb,Br, to CsBr and PbBr, occurs up to
100 scans.

The overall capacity of the batteries is strongly
dependent on the accessibility of the host material inte-
rior to the ions [242]. Different mechanisms Li* intake/
release have been proposed for the metal halides in order
to explain the different final performance of the devices.
Topotactic insertion into organic-inorganic metal halide
host (CH,NH,PbBr,) has been proposed by Garcia-Bel-
monte’s group [31]. Non-drastic structural alterations or
rearrangements in the crystal lattice have been observed
in this case. A different mechanism was proposed by
Islam’s group for the same anode material. Using a combi-
nation of density functional theory and results by means
of electrochemical characterization and diffraction tech-
niques [243], Li intercalation and conversion reactions in
the CH3NH3PbX3 (where X: Br, Cl, I) take place. The con-
version process with the production of CH,NH X, lithium
halides (LiX), and Pb metal was found to be energetically
more favorable than Li intercalation. Furthermore, it was
also found that the specific capacity is dependent on the
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crystal structure of the perovskite material [244]. This
could be improved by changing the dimensionality of
the halide perovskites from three-dimensional (3D) to a
one-dimensional (1D) lattice [245]. Indeed, experiments
on organic-inorganic hybrid lead halide perovskites
showed that the Li intercalation in the two-dimensional
(2D) tetragonal structure is enhanced compared to the
3D orthorhombic one, due to the larger cell volume [243].
Finally, the type of the anion plays role in the charging
performance [243]. It is observed that the Li intercalation
is more favorable in the case of the iodides than in the
chlorides or bromides [245].

2.4.1.2 Perovskite oxide nanocrystals in batteries

The perovskite oxide nanocrystals started to be used in
batteries from 2014. The first nanocrystals were from
LaNi, Mn O,, La Sr ,CoO, and Ba,Co,Fe Nb O .
chemical phases and succeed to be stable for less than
50 battery cycles [132, 246, 247]. Later in 2016, LaNiO,
nanoparticles showed an improved cycling ability up
to 155 cycles [248]. Single phase nanocrystals such as
spherical or randomly-shaped [33, 34, 36, 132, 246-253],
nanocubes [147], and anisotropic ones [38—41, 254, 255] or
bifunctional structures such as core-shell morphologies
[42], decorated structures with a second material (metal,
carbon, or oxides) [43-45], or composites [46] have been
tested in order to improve the catalytic performance in
batteries. Except the size and the morphology, there are
other factors that affect the electrochemical performance
in the case of the perovskite oxides such as the structural
nanocrystal quality and the existence of defects in the
lattice [33], the doping in the A and/or B site of the per-
ovskite lattice [34-37], the nanocrystal porosity [38-41]
and the existence of synergetic effects in the bifunctional
morphologies [42-46].

For example, nanocrystals synthesized by a ball-mill-
ing process showed superior catalytic activities compared
to the nanocrystals without this process due to the struc-
tural change and defects in the crystal structure [33]. B-site
doping in the manganite perovskite oxides (La,Sr, ,Mn_
Ni 0,) showed enhanced performance compared to the
undoped one due to the introduction of more oxygen
vacancies at the surface (Figure 9A) [252]. The capacity
can be tuned by doping in the A site of the perovskite and
decreased from 7211 to 6205, 6760, and 5925 mA h/g for
LaO.GSPbO_35MnO3, LaO.GSBaOSSMnOB, Lao_ﬁSrOSSMnO3 nanocrys-
tals respectively [34]. The effect of the doping in the B-site
has been studied in the La-based perovskite oxides and
showed that the performance is improved in the order of
LaCrO,, LaFeO,, LaNiO,, LaMnO,, and LaCoO, [37].
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The morphology and also the porosity of the nano-
structures affect the electrochemical performance, includ-
ing the first discharge specific capacity, the overpotential,
the rate capability, and the cycle stability. The enhanced
performance is due to the formation of direct current
pathways that facilitate electron transport, short O,*/Li*
diffusion lengths that can improve ion transferring rates
to oxygen electrode, the existence of a more efficient
electrolyte-electrode contact, the increase of active sites
for ORR/OER during battery operation, and the existence
of more space to store discharged products. [38]. Porous
nanocubes (Figure 9B) [147] or elongated nanocrystals
(nanorods or nanotubes or nanofibers) [39-41, 256] of
perovskite oxides have been introduced for such pur-
poses. Furthermore, bifunctional nanocrystals have been
utilized to enhance the performance in metal-air batter-
ies. Synergetic effect have been utilized to improve the
catalytic activity by covering the La Sr ,MnO, nanorods
with a layer of NiCo,0, [42]. The ORR takes place mainly at
the core, while the OER takes place at the nanoscale shell
and their synergetic effect leads to the enhanced catalytic
performance. Synergetic effects have also been observed
in different bifunctional morphologies such as perovskite
oxide nanocrystals decorated with nitrogen-doped carbon
nanotubes [43], perovskite nanorods/graphene composite
decorated with Ag nanocrystals [46], perovskite nanofib-
ers functionalized with RuO, nanoparticles and non-
oxidized graphene nanoflakes [44], perovskite porous
nanofibers loaded with RuO, nanosheets (Figure 9C) [45].

2.4.2 Perovskite nanocrystals for supercapacitors

Perovskites have found also use as electrode materials in
supercapacitors for energy storage. A simple design of a
supercapacitor is based on two electrodes separated by
an ion-permeable membrane and an electrolyte ionically
connecting to both electrodes. During the polarization
of the electrodes the ions are moving to oppose the elec-
trode’s charges, forming electric double layers of opposite
polarity. Supercapacitors are divided into three categories,
the double-layer capacitors where the charge storage is
electrostatically, the pseudocapacitors with electrochem-
ically charge storage, and the hybrid ones which combine
electrostatically and electrochemically charge storage
[257]. The nanodimensional perovskites that are used for
such purposes are some metal oxides, a few nanocom-
posites and even more limited halides in contrast with
the many reports for using all-inorganic or hybrid halides
in photovoltaic applications. Many studies have been
reported in lanthanum-based perovskite nanocrystals
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(A) Reprinted with permission from [252]. Copyright (2016), American Chemical Society. (B) Reproduced with permission from [147].
Copyright 2014, Springer. (C) Reprinted with permission from [45]. Copyright (2017), American Chemical Society.

due to their structural stability at high temperatures and
inherent nature to contain oxygen vacancies. Addition-
ally, the structure of lanthanum-based perovskites allows
the substitution of ions by other ions of varying oxidation
states changing on demand the electronic and physical
properties [258]. Specifically, in LaMnO, nanocrystals by
tuning the oxygen content, capacitance of 586.7-609.8
F/g has been achieved [258]. Introducing a secondary
phase of La,0, attached on the nanocrystals could result
in the capacitance of 520 F/g [259]. Important also is the
substitution of the B site (ABO,) in the perovskite crystal
structure with elements such Mn, Fe, Cr, and Ni which
leads to capacitances of 56.78, 16.43, 24.4, and 106.58 F/g,
respectively, after 500 charge-discharge cycles in a 3 M

LiOH solution [260]. Furthermore, among the lanthanum-
based candidates for supercapacitors the perovskites
with Ni in the B site hold a prominent role. The incorpo-
ration of Ni offers excellent electrical conductivity and
presents capacitances of a few hundred F. Specifically,
LaNiO, nanosheets [49], hollow nanospheres [48], and
randomly-shaped nanocrystals [261] exhibit capacitance
0f139.2mA h/g (at 1.0 A/g), 422 F/g (at 1.0 A/g), and 478.7
F/g (at 0.1 mV/s), respectively, while their cycling stability
reaches the 10000, 5000, and 15000 cycles, respectively.
Figure 10 shows their morphology and the cyclic voltam-
metry curves at different scan rates.

A different type of lanthanum-based supercapaci-
tor is that of incorporating composite materials. In this
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direction, a promising nanocomposite is the CeO, mixed
LaMnO, which has been assessed as a negative electrode
material [262]. The advantage of such a mixture is the high
surface to volume ratio of the CeO, nanocrystals which
increases the active sites of the electrode. During the three-
electrode measurement, the supercapacitor displayed 262
F/g for 1 A/g, retaining the 98% of capacitance after 2000
cycles. Another interesting nanocomposite system is that
which combines the LaMnO, with nitrogen-doped reduced
graphene oxide (N-rGO). Doping the rGO with an amount
of 25% of N-rGO, the active material exhibits 687 F/g at
5mV/s and retains stability of 79% after 2000 cycles [263].
While the nanocomposite LaMnO,@Mn,0, demonstrates
remarkable stability of the specific capacitance even in
50,000 cycles (135 F/g at 1 A/g) with a maximum energy
density of 75 W h/kg.

In addition, the substitution of La atoms in the crystal
structure of the perovskite with Sr gives very high specific
capacitances. According to this, La Sr ,CoO,; nanofib-
ers [47] or La ,Sr, MnO,@NiCo,0, (LSM15@NC) nano-
flowers [264] have shown 747 F/g (in Na,SO, electrolyte
at 2 A/g current density) and 1341 F/g (in 6 m KOH at 0.5
A/g current density), respectively. These values are among
the highest reported for perovskites (Figure 11). In the case

of the nanofibers, the substitution of La with Sr** into
LaCoO, lattice induces more oxygen vacancies which are
active sites for storage in pseudocapacitive applications.
Similar mechanism takes place in the LSM15@NC per-
ovskites. Remarkably, the LSM15@NC nanocomposite in
an asymmetric supercapacitor delivers energy density of
63.5 W h/kg at the power density of 900 W/kg. This energy
density is higher than those recorded for Ni, Co, and/
or Mn-based asymmetric capacitors [264]. The specific
capacitance also increases slowly for the first 3000 cycles,
becomes double above the 3000 cycles up to 10000 cycles.
This indicates the efficiency of this material for high per-
formance supercapacitors.

Bimetallic Co-Mn and Ni-Co perovskite fluorides are
also promising electrode materials for supercapacitors.
KCo Mn,_F, with Co:Mn 6:1, governed by strong synergistic
effect of Co/Mn redox species exhibited a specific capacity
of 226-192 F/g at 1-16 A/g coupled with a cycling stabil-
ity of 5000 cycles (at 8 A/g). In an asymmetric capacitor
design, it delivers 8-2.4 W h/kg at 0.14-8.7 kW/kg retain-
ing the 90% of capacity in 10,000 cycles at 5 A/g [265].
While the similar structure with Ni, KNi, Co, F, nanocrys-
tals showed an energy density of 42.7-13.8 W h/kg at
0.242-18.8 kW/g power density [266].
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Various oxide nanocrystals different than the previ-
ous have also been introduced for supercapacitor appli-
cations. Among these, BiFeO, nanocrystalline porous
film showed a capacitance of 81 F/g [267], BiFeO, nano-
plates 254.6 F/g [268], Y,NiMnO, nanowires 77.76 F/g
[269], LaFeO, nanocrystals with Na and Mn substitutions
56.4 F/g [270], doped SrMnO, nanofibers 321.7-446.8 F/g
depending the doping of Ba/Ca on Sr and Co/Fe/Ni on Mn
[271], StTiO, nanocubes with Co doping 75.28 F/g [272] and
nano-Ru-based perovskites on rGO 564-316 F/g [273].

2.4.3 Perovskite nanocrystals for hydrogen storage

Hydrogen, the most sustainable fuel offering higher effi-
ciencies compared to diesel and gasoline, is compatible
with fuel cells and produces renewal waste (i.e. water).
There are various hydrogen storage methods such as gas
compression or liquefaction, however, they face safety
issues. The most safe approach is the storage in solid-state
materials such as metal alloys, metal oxides, hydroxides,
carbon, chalcogenides, and recently in perovskites [51].
The perovskite powders were reported in 2004 by Esaka’s
group as new anode materials for a hydrogen battery [274].
Later, in 2010, LaFeO, and LaCrO, powders were proposed

as negative electrodes for Ni/MH batteries by Chen’s group
[275, 276].

Three years later, Chen’s group succeeded in improv-
ing the electrochemical kinetics of the LaFeO, perovs-
kites by nanostructuring. These nanocrystals formed
aggregates with sizes ranging from 50 to 100 nm [50]. The
nanocrystals showed a higher discharge capacity than
the bulk counterparts of the same stoichiometry. The dis-
charge capacity is a value which characterizes the hydro-
gen storage efficiency of a material and it is estimated by
the galvanostatic behavior of charge and discharge. In
this method the investigated material was deposited on
the electrode and circles of charges and discharges were
followed [51]. In the case of nanostructured LaFeO,, the
discharge capacity reaches the value of 531.5 mA h/g for
333 K for the first cycle (Figure 12A), degraded and stabi-
lized above 350 mA/g for 20 cycles (a bit higher than the
bulk). However, the LaFeO, nanostructures showed higher
current densities and hydrogen diffusion coefficients.
Decreasing the size of the nanostructures is expected to
increase the discharge capacity due to the larger surface
area. A different perovskite system which tested for its H,
storage capability was the DyFeO, nanocrystals reported
by Salavati-Niasari’s group [277]. These nanocrystals have
a size around 16-18 nm and showed a discharge capacity
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of 2100 mA/g after 15 cycles (Figure 12B), which is very high
not only among the perovskites but also between other
common materials for hydrogen storage [51]. Furthermore,
Ba,Co,0,, nanocrystals of 10-30 nm were studied for the
same applications by the same group but the recorded
discharge capacity was lower (850 mA/g after 15 cycles)
(Figure 12C) than the DyFeO, nanocrystals. [278]. The pro-
posed mechanism of hydrogen storage lies in a two-step
reaction. The first step takes place on the surface of the
material over a few atomic layers, while the second occurs
inside as the H-atoms are diffused [277]. Although, these
studies mentioned that the structural defects may play
role in the storage capability, their exact role on the final
performance are not yet clear. Also, it would be interesting
to study newly solution-processed metal halide nanocrys-
tals in such storage applications.

3 Conclusions and open issues

In recent years the perovskite nanocrystals have been
introduced to effectively replace conventional energy
materials. The simultaneous need for new energy mate-
rials together with the increasing interest for the devel-
opment of new devices and even exploring new physics,
have pushed the research to manipulate the structuring

of the perovskite materials at the nanoscale level. The
nanostructuring of the perovskites due to their reduced
dimensions is advantageous in offering a large surface
area, extensive porous structures, controlled transport,
and high charge-carrier mobility, strong absorption, and
photoluminescence, and confinement effects. In recent
year there is a lot of work incorporating them into pho-
tovoltaics as active materials or covering the active layer
to improve its stability but there has been limited effort
to use them as thermoelectric materials or photocatalysts
for the CO, reduction in solar fuel cells. The utilization
of them in CO, reduction is a completely new scientific
field which has gained increased interest very recently.
In addition, perovskite nanocrystals have received con-
siderable attention for energy storage applications due to
their excellent catalytic activity, electrical conductivity,
and durability. Ion migration through perovskite lattices
allows the use of such materials as electrodes for batteries
or supercapacitors. Perovskite oxide nanostructures are
more investigated for such applications but very recently
the metal halides have also shown high specific capaci-
tance and promising stability upon cycling. Finally, the
utilization of such nanocrystals in hydrogen storage could
be really interesting as hydrogen is the most abundant
element on the planet, with the highest energy content
amongst all the existing energy sources, but the number
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of the perovskite nanocrystals used for such purposes is
still limited.

This review article has covered many aspects of the
synthesis of nanocrystals made of metal halides or per-
ovskite oxides, but also their applications in energy
conversion and storage. Despite the important evolution
in the synthesis procedures, there are some open issues
which require attention when we use these materials in
these applications. Some of these open issues are:

3.1 Synthesis strategies
3.1.1 Surface chemistry and role of the ligands

Despite the huge evolution of synthesis strategies for the
fabrication of nanocrystals of different morphologies and
chemical phases, there is a poor understanding of the role
of the ligands on the nanocrystal quality concerning their
stability, carrier transport, but also on the energy device
performance in which are included [279]. It is not clear
if the ligands passivate structure trap states or introduce
new ones and how the crystal defects play a role in the
whole reactivity and electronic properties of the passi-
vated nanocrystals.

3.1.2 Stability

Long-term stability issues at ambient conditions or more
harsh environments such as high temperature, direct irra-
diation, light, and humidity have to be carefully addressed
when we are interested in industrial applications. The
careful choice of a protective ligand has been proposed as
an effective way to improve the stability of the nanocrys-
tals but the effect on device performance is something that
has to be studied. The encapsulation of the nanocrystals
in a matrix or a different material could be another way,
but it is still unknown if such shelling could really prevent
the nanocrystals from oxygen and moisture [12]. Finally,
all-inorganic metal halides or lead-free compounds could
effectively improve the stability of the devices, but still the
performance of these devices remains very low.

3.1.3 Lead-free compounds

The synthesis of lead-free and environmentally friendly
nanocrystals is a demand. Tin- or bismuth-based com-
pounds have been introduced as possible stoichiometries
and more recently double perovskites with an elpaso-
lite structure [115]. The synthesis approaches for these
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perovskite nanocrystals remain limited. Only a few reports
exist for elpasolite nanocrystals and all these nanocrys-
tals are of spherical morphology and capped with organic
ligands. The performance of bismuth based solar cells
remains is very low.

3.1.4 Scale-up synthesis

One of the drawbacks of the synthesis procedures reported
in this review is the small quantity of the final product.
While there is a huge variety of synthesis procedures for
nanocrystals of different morphologies/chemical phases
and homogeneous in size and shape, there is still the dif-
ficulty of modifying them for large scale production if the
purpose is to use these nanocrystals for industrial applica-
tion. The development of large-scale synthesis procedures
which will be cheap and easy is still a real challenge.

3.2 Deposition of nanocrystals in layer form,
free of cracks and defects

Perovskite nanocrystals have been used in energy appli-
cations due to their large surface area, efficient carrier
transport, high absorption coefficient, long-term stability,
and tunable bandgap. The morphology and crystallinity
are some of the important intrinsic features that affect the
final performance of the devices. But in most of the appli-
cations these nanocrystals are assembled in films. The
shape and size of the nanocrystals and the existence or
not of ligands on the surface determine the final structure
of the film. The formation of compact and smooth films is
a real challenge for such applications. Many methods for
the fabrication of films of high quality free of pinholes and
cracks have been proposed, but many parameters remain
unexplored and have to be controlled. The removal of the
capping ligands is a necessity in order to fabricate such
films with enhanced electrical properties. For such pur-
poses, various methods for this removal have been pro-
posed, but many times they are insufficient which result
in the release of nanocrystals from the surface or cause
their undesired growth of the nanocrystals. These affect
also the stability of the devices in which are utilized such
nanocrystals. The development of new efficient strategies
for the effective removal of the capping ligands without
affecting their primary structural or morphological fea-
tures is a requirement.

Accordingly, it is important here to comment on
attempts such as the encapsulation of perovskite nanocrys-
tals in perovskite matrices [196] or the incorporation of
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nanocrystals between the active layer and the hole trans-
porting layer [17, 18]. Interface engineering is an effective
way for obtaining high efficiency and improved stability
in the perovskite solar cells through interfacial charge
transfer control. In addition, perovskite nanocrystals have
been introduced into the absorber layer to reduce charge
recombination and improve the charge transfer [203]. This
process used to improve the quality of the absorber layer
in terms of film structure, morphology, and crystallinity
as the nanocrystals behave as nucleation centers in the
growth of perovskite films. The high quality of the films
leads to improved charge transport and solar cell power
conversion efficiency.
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