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Abstract: The phase matching between the propagating 
fundamental and nonlinearly generated waves plays an 
important role in the efficiency of the nonlinear frequency 
conversion in macroscopic crystals. However, in nanoscale 
samples, such as nanoplasmonic structures, the phase-
matching condition is often ignored due to the sub-wave-
length nature of the materials. Here, we first show that the 
phase matching of the lattice plasmon modes at the funda-
mental and second-harmonic frequencies in a plasmonic 
nanoantenna array can effectively enhance the surface-
enhanced second-harmonic generation. Additionally, a 
significant enhancement of the second-harmonic genera-
tion is demonstrated using stationary band-edge lattice 
plasmon modes with zero phase.

Keywords: plasmonics; metasurface; nanoantenna; non-
linear optics; second harmonic generation.

1  �Introduction
Nonlinear optical effects are the key underlying processes 
in a host of advanced photonic functionalities such as 
all-optical signal processing [1, 2], photon entanglement 
[3], generation of optical qubits for quantum computing 
[4] and quantum cryptography [5, 6], generation of ultra-
short pulses [7, 8], generation of optical solitons and optical 

combs [9, 10], as well as nonlinear spectroscopy [11, 12] and 
imaging [13–15] techniques. The high field enhancement in 
plasmonic nanostructures and metasurfaces (MSs) enables 
us to achieve relatively efficient nonlinear signal genera-
tion in sub-wavelength volumes. Nevertheless, improving 
the nonlinear frequency conversion efficiency in these 
structures remains a critical primary challenge [16] in many 
applications including nanomedicine [17, 18], nonlinear 
biosensing [19–21], surface-enhanced nonlinear spectros-
copy and imaging [22–26] and generation of ultrashort 
pulses at the extreme ultraviolet spectral range [27–29].

Achieving efficient nonlinear signal conversion in 
nonlinear nano-optic devices requires high field enhance-
ment in both excitation and emission wavelengths. There-
fore, a key requirement for efficient nonlinear frequency 
conversion in a plasmonic MS is to support phase-matched 
modes corresponding to the fundamental and nonlinearly 
generated optical waves. While phase matching (PM) (or 
momentum matching) between the fundamental input 
signal and the nonlinear output signal is considered a criti-
cal issue in photonic structures [30–32], it is often ignored 
in the design of nonlinear plasmonic structures. This is 
because the plasmonic structures strongly interact with 
a continuum of radiative waves, and therefore, a nonlin-
ear signal can be generated by the interaction between a 
strong resonant mode for the fundamental input signal and 
matching radiative modes for the nonlinear signal. Previ-
ously, lattice plasmon (LP) structures [33–37] have been 
used to control and enhance high harmonic generation 
[38–43] and four-wave mixing [44] by supporting matching 
resonant modes for both the fundamental and nonlinear 
signals. However, most of the previous reports on nonlin-
ear signal generation are based on only using a resonant 
fundamental wave and non-resonant radiative waves (for 
the nonlinearly generated wave). A comprehensive study 
of the effect of the relative phase between the fundamental 
and nonlinear modes in nanostructures that support sub-
radiant plasmonic modes is lacking in the literature.

In this work, we show that the conversion efficiency in 
surface-enhanced second-harmonic generation (SESHG) 
in a strongly coupled nanoantenna array, supporting LP 
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modes for both fundamental and nonlinear signals, can 
be substantially improved in two ways by PM of the fun-
damental and second-harmonic LP modes. We will further 
show that using band-edge LP modes with zero momen-
tum at the fundamental (also referred to as the pump) or 
second-harmonic frequency can lead to strong SESHG.

2  �Results and discussion
The efficiency of second-harmonic generation in a 
medium depends on the wavevector mismatch between 
the fundamental (i.e. excitation) and second-harmonic 
(i.e. emission) waves, with frequencies f1 and f2 = 2f1, 
and momenta k1(f1) and k2(f2), respectively, according 
to I2 = I2,max sinc2 (Δk · L/2), with L being the interaction 
length and Δk = 2k1 − k2 [45]. In nonlinear crystals, often 
used in free-space nonlinear optics, the most common 
procedure is to use the material birefringence to achieve 
PM. Alternatively, in LP structures, the effective interac-
tion length of the nonlinear process corresponds to the 

LP mode propagation length in the periodic plasmonic 
structure (e.g. ~50 μm). While the relatively short propa-
gation length of LP modes relaxes the PM requirement, 
it still plays an important role in the efficiency of SESHG 
because of the strong dispersion of the LP modes. The PM 
condition in LP structures can be achieved by engineering 
the optical dispersion of the linear and second-harmonic 
waves (by engineering the LP structure geometry) to match 
at the desired fundamental frequency. This enables us to 
achieve high-conversion-efficiency SESHG in coupled 
plasmonic nanoantenna structures that support propa-
gating LP modes, when the PM condition is satisfied.

To demonstrate the possibility of achieving PM 
between fundamental and second-harmonic LP modes, 
we develop a plasmonic nanoantenna array structure 
composed of a bilayer gold nanopillar-nanoaperture 
architecture, separated by dielectric pillars, as shown in 
Figure 1A. The structure is fabricated by patterning a thin 
(110-nm) layer of hydrogen silsesquioxane using electron-
beam lithography to form a nanopillar array followed 
by deposition of a thin gold layer using electron-beam 
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Figure 1: The LP nanostructure and its numerically calculated dispersion at the sweeping range of the excitation pump and the second-
harmonic signal.
(A) Schematic view of the CPNA system based on coupled plasmonic (gold) nanoapertures and nanoantennas, separated with oxide 
dielectric pillars. (B) The SEM image of the nanostructure in (A) prior to coating with the cladding layer. The design parameters are 
p = 580 nm and d = 160 nm. (C) Band diagram of the structure in (A) at the envisioned fundamental frequency range (250–500 THz) for the 
structure periodicity, p = 520 nm and (D) band diagram of the structure in (A) at the SHG frequency range (700–950 THz) for p = 580 nm. The 
straight white lines are light lines of SiO2 and FOX.
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deposition and lift-off (see Supporting Information for 
the detailed fabrication process). This strongly coupled 
plasmonic nanoantenna supports LP modes, which 
can be tuned by adjusting the period of the array and 
the diameter of the nanopillars (p and d, respectively, 
in Figure  1A) [35]. Figure  1B shows a scanning electron 
microscopy (SEM) image of the fabricated nanostruc-
ture with a period of 580 nm and a nanopillar radius of 
80 nm. The nanostructure is cladded with flowable oxide 
(FOX, PMCP17) to achieve stronger Fano resonances (with 
narrower line widths) associated with LP modes in the 
coupled plasmonic nanoparticle array (CPNA) structure 
[34, 36, 46]. Figure 1C and D shows the frequency disper-
sion of the fundamental and second-harmonic waves 
supported by this nanostructure, denoted by D1(f1, k1) 
and D2(f2, k2), respectively, calculated using the finite-
difference time-domain method (Lumerical Inc.). As can 
be seen in Figure 1, this structure supports two LP modes 
in the range of 300–400 THz (Figure 1C), which is in the 
sweeping range of the pump laser (at the fundamental fre-
quency) used in our measurements, and two additional 
LP modes in the range of 700–800 THz (Figure 1D), which 
is the range of the SHG signal. The white straight lines in 
these figures correspond to the light lines of SiO2 and FOX.

To satisfy the PM condition, we should find matching 
points in the dispersion diagrams with k1 = k2/2 (we use k1 
and k2 instead of kx1 and kx2, respectively, for simplicity) 
and f1 = f2/2. To find these discrete sets of f ’s and k’s, we 
have superimposed D1(2k1, f1) and D2(k2, f2/2) in Figure 2. 
The bands marked by blue lines in this figure show the 

dispersion relation of the fundamental mode stretched by 
a factor 2 in the direction of momentum, that is, D1(2k1, f1). 
All the other bands show the dispersion relation of the 
second-harmonic signal compressed by a factor 2 in the 
direction of frequency, that is, D2(k2, f2/2). From these 
superimposed dispersion diagrams, it is evident that the 
PM condition occurs at two discrete points, which are at 
the intersections of the higher fundamental LP band and 
the two second-harmonic LP bands, and they are approxi-
mately at: (a) 2 × k1 p = 0.58 and f1 = 365 THz (λ1 = 822 nm), 
and (b) 2 × k1 p = 0.65 and f1 = 370 THz (λ1 = 810 nm).

To experimentally investigate the effect of PM on 
the efficiency of SESHG, we have used an angle-resolved 
SHG measurement setup (see Supporting Information). 
Using this setup, the generated SHG corresponding to 
different points in the dispersion diagram can be meas-
ured by adjusting the pump frequency and the incident 
angle of the excitation wave (corresponding to the value 
of kx). Briefly, a small diameter (~2 mm) laser beam from 
a Ti:sapphire oscillator source is first narrowed down to 
~0.5  mm using a controllable slit and then focused on 
the sample using a high-numerical-aperture (NA = 1.42, 
oil immersion) objective lens. By adjusting the incident 
beam position with respect to the optical axis of the 

Figure 2: Phase matching between fundamental (D1(2k1, f1), slotted 
curves) and second-harmonic LP modes (dotted curves) for the 
structure in Figure 1B with p = 580 nm.
The second-harmonic bands are overlaid on the fundamental mode 
band structure by mapping the second-harmonic bands D2(k2, f2)) 
on their equivalent excitation frequency and wavevector point on 
the dispersion diagram (i.e. D2(k2/2, f2/2)). The phase-matching 
condition occurs at the intersection of the two dispersions (marked 
by blue dots), where k1 = k2/2 and f1 = f2/2, shown by blue dots: (1) 
Point A with kx·p ~ = 0.27, f1/λ1 = 365 THz/821 nm and Point B with 
kx·p ~ = 0.32, f1/λ1 = 379 THz/811 nm.

Figure 3: The measured normalized SESHG signal power (PSH) 
versus the pump frequency (wavelength) and the excitation angle θ 
(A) and equivalent normalized in-plane wavevector (B), showing four 
important features: (I) a peak in SHG due to the first band edge of 
the fundamental LP mode, (II) a peak in SHG due to the second band 
edge of the fundamental LP mode, (III) two peaks in SHG due to PM 
and (IV) a peak in SHG due to the band edge of the second-harmonic 
LP mode.
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objective (within the wide, ~11 mm, back aperture of the 
objective), the incident angle of light at the objective focal 
plane (and, therefore, the excitation wavevector) can be 
tuned over a wide range of angles (i.e. wavevectors). By 
moving the excitation beam position for ±4 mm from the 
objective center, an excitation angle dynamic range of 
θ ~ ± 80° (corresponding to a normalized kx of ~± 0.91 in 
an LP structure with period p = 580 nm at the fundamen-
tal frequency of 350 THz) in the plasmonic structure clad-
ding (FOX with a refractive index of 1.375) is achieved. The 
excitation beam size of ~0.5 mm also corresponds to an 
excitation beam width of ~5°. The same large-NA objec-
tive is used for the collection of the SHG signal and its 
subsequent detection with a CCD-coupled spectrometer. 
To calibrate the setup, we first measure the linear band 
structure of the CPNA using a wideband super-contin-
uum source (Super-K) instead of the ultra-fast excitation 
source. The measured experimental results (shown in 
Figure S4, Supporting Information) show good agreement 
between the simulated and experimentally measured 

band structure of the fundamental mode. The results of 
the angle-resolved SHG measurements are presented 
in Figure 3 in the form of a heatmap, which shows the 
intensity of the SESHG signal measured with the pump 
wavelength varying from 740  nm (frequency ~405 THz) 
to 980 nm (frequency ~306 THz) and the excitation angle 
from θ = 0° to θ = 75°. The surface second-order nonlinear 
susceptibility χ(2)

s  [19, 47, 48] between the gold (Au) layer 
and the top or bottom dielectrics is the primary source 
of SESHG in this nanostructure, as the bulk second-order 
nonlinearities of Au, SiO2 and FOX at these wavelengths 
are quite negligible.

Four important features can be seen in the heatmap in 
Figure 3: (I) a peak at excitation wavelength (λp) ~940 nm 
(320 THz) in SESHG due to the first band edge of the fun-
damental LP mode, (II) a peak at ~880 nm (340 THz) due 
to the second band edge of the fundamental LP mode, (III) 
two peaks at λp ~ 835 nm (360 THz) and incident angles of 
43° and 72° (corresponding to the set of f and k values that 
satisfy the PM condition) and (IV) a peak at the fundamental 
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Figure 4: Evolution of the SESHG signal versus the excitation angle at the four critical excitation frequencies: (A) evolution of the SESHG 
peak at 470 nm near the first fundamental LP mode band edge, (B) evolution of the SESHG peak at 440 nm near the second fundamental LP 
mode band edge, (C) evolution of the SESHG peak at 420 nm near the PM wavelength and (D) evolution of the SESHG peak at 390 nm near 
the second-harmonic LP mode band edge. The (fundamental) pump wavelength in each case is shown by λp.
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pump wavelength λp ~ 780 nm (385 THz) in SESHG due to 
the band edge of the second-harmonic LP mode.

The measured nonlinear spectra, including SESHG 
and the intrinsic two-photon excited photoluminescence 
(TPPL) of Au in the visible range [49, 50], at the frequencies 
of these four features are shown in Figure 4A–D for five dif-
ferent excitation angles (θ). These measured spectra have 
been corrected for the variable quantum efficiency of the 
photodetector and optical loss of the measurement system 
in the range of 380–500  nm (both shown in Supporting 
Information). The TPPL of Au is subtracted by fitting a 
polynomial curve to these spectra, and the intensity of the 
SESHG signal at the second-harmonic wavelength (λp/2) 
is reordered to generate the heatmap shown in Figure 3.

3  �Conclusions
The results of Figures 3 and 4 show that an SESHG enhance-
ment factor in the range of 10–100 can be achieved via PM 
(Figure 4C) or by using band-edge LP modes (Figure 4B). 
We believe that the same concept can be applied to the 
third-order and carrier-induced nonlinear optical effects 
to improve the conversation efficiency in third-harmonic 
generation, four-wave mixing and optical parametric 
oscillation, as well as improving the sensitivity in nonlin-
ear spectroscopy and imaging.
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