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Abstract: As two groups of bases in fibers, cylindrical vec-
tor (CV) modes and the orbital angular momentum (OAM) 
modes can be transformed into each other. Several trans-
formation relations have been studied in previous works, 
such as ˆ .even odd

1, 1,OAM l l m l mHE iHEσ +
+ + += +  However, these rela-

tions are discussed in the limitation of equal amplitude, 

limited phase difference 
 
  ,

2
k k Zπ ∈  and finite (generally 

two) mode bases. Complete connection between the CV 
and OAM modes has not been found. In this paper, a 
four-dimensional complex space model is constructed to 
describe arbitrary CV and OAM modes. The reliability of 
the model is verified by previously reported results and our 
experiment results. The complete transformation relation 
between the CV modes and OAM modes is well described 
in the model. Furthermore, two common kinds of relations 
have been researched, that is, a single arbitrary polarized 
OAM mode and two arbitrary orthogonal polarized OAM 
modes and their corresponding CV modes. These two 
kinds of states include most of previously reported states, 
and some new states have not been reported.

Keywords: cylindrical vector mode; orbital angular 
momentum mode; fiber optics; mode transformation; 
complex analysis.

1  �Introduction

Cylindrical vector (CV) modes, as a group of intrinsic bases 
in fibers, have been studied for a long time [1]. As the eigen-
solutions of Helmholtz equation in ideal fiber, CV modes 
are the intrinsic states that can be propagated stably in 
fibers. Any electric field in fibers can be presented in the 
bases of CV modes. CV modes are divided into different 
orders. In each order, there are four degenerated CV modes, 
whose propagation constants are almost the same. For the 
lth (l > 0) order modes, they consist of four degenerated 
modes, named even odd even odd

1, 1, 1, 1,,  ,  ,  for 1 l m l m l m l mEH EH HE HE l− − + + >  and 
even odd

0, 0, 2, 2,, , ,   for 1,m m m mTM TE HE HE l =  also named higher-
order modes. The 0th order modes are combined by two 
degenerated modes, named even

11HE  and odd
11 ,HE  also named 

fundamental modes. l is the azimuthal order and m is the 
radial order of CV modes. In principle, l and m can take 
any integer number from 0 to +∞. Generally, the radial 
order m is not important, so we will just discuss the azi-
muthal order l. There is a singular area in the center of the 
pattern of lth (l > 0) order modes where the intensity van-
ishes. This is because the radial intensity is determined by 
an lth-order Bessel function for step index fibers (or other 
functions with similar properties for other axisymmetric 
index profile fibers), which is zero at the center when l > 0. 
Moreover, the polarization states of CV modes are spatially 
inhomogeneous. That is, for different points on the beam 
cross-section of CV modes, the polarization states vary 
from their azimuthal angles. These properties are unique 
compared with conventional light waves. It leads to some 
potential applications in optical manipulation [2–5], high-
resolution microscopy [6], optical communication [7–11], 
and data storage [12].

Orbital angular momentum (OAM) modes, as another 
group of bases found almost three decades ago [13], 
are attracting more and more attention in recent years 
[14–17]. OAM modes are characterized by a helical phase 
front e±ilξ, where ±l is topological charge (TC) and ξ is the 
azimuthal angle related to the optic axis. l can take the 
integer numbers from 0 to +∞. Notice that l is the same as 
the azimuthal order mentioned above, which will be dis-
cussed soon. In the beam cross-section, the polarization 
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(amplitude and direction of electric vector) of each point 
can arrive to that of another point with the same radius, 
but at a different time or propagation distance. In other 
words, for different points on the beam cross-section with 
the same radius, the polarization states are the same, but 
different in phase. This indicates the helical phase front 
of OAM modes. Due to its unique phase properties, OAM 
beams are becoming a useful tool in atom manipula-
tion [18–20], nanoscale microscopy [21], optical tweezers 
[22–24], optical communication [25–29], and data storage 
[30, 31].

As two mode bases in fibers, there should be a trans-
formation relation between OAM modes and CV modes. 
However, people just found some particular states linking 
OAM modes and CV modes. Han et  al. [32] has reported 
circular OAM modes generated by combining even and 
odd modes of the first- and second-order CV modes, that 
is, even odd

2 11 11 1 01 01  OAM , O M  ˆ ˆ AEH iEH TM iTEσ σ± ±= ± = ±∓ ∓  and 
even odd

2 31 31
ˆ ,OAM HE iHEσ±

± = ±  even odd
1 21 21

ˆ .OAM HE iHEσ±
± = ±  

σ̂+(σ̂−) represents the left-hand (right-hand) circular 
polarized direction. Jiang has reported the transfor-
mation relations of even

1 1 01 21OAM OAM  ˆˆ ,x iy TE iHE±± =∓ ∓  
odd

1 1 01 21OAM OAMˆx̂ y TM iHE± ± = ±  ∓  in step index fiber [33] 
and ring-core fiber [34]. x̂(ŷ) represents the polarized direc-
tion along the x(y)-axis. And they separate these hybrid 
states into two pure OAM modes by a polarizer. Han et al. 
[35] has reported the generation of OAM modes by TM01, 
TE01, TM01 + TE01, and TM01–TE01, which correspond to two 
circular orthogonal polarized OAM modes, also corre-
sponding to the superposition of two orthogonal polarized 
linear polarized (LP) modes [36]. Wu et al. [37] has reported 
the connection of the first- and the second-order LP OAM 
modes and LP modes, even odd

1 11 11( )OAM ( )ˆ ˆ ˆˆ ˆ ( ,)ˆx y x y LP ix y LP± = ±  
even odd

2 21 21
ˆ  ( )OAM ( ) ( )ˆ ˆˆ ˆ ˆ .x y x y LP ix y LP± = ±  Previous articles 

have demonstrated several combination states in which 
CV modes can be transformed into OAM modes. However, 
their selected combinations are too simple. In conclusion, 
they just select the complex amplitudes of CV modes as 
±1 or ±i (equal-amplitude and limited phase difference 

, ),
2
k k Zπ 

∈    and the CV modes used to generate OAM 

modes are generally no more than two. That is not enough. 
In reality, to totally describe the lth-order electric field in 
fibers, we need combine the four degenerated CV modes 
in arbitrary amplitude and phase. This means we should 
not only consider the complex amplitudes of CV modes 
as arbitrary complex number but also consider the four 
degenerated CV modes simultaneously. Moreover, previ-
ous works just reveal the properties of circular or LP OAM 
modes. However, the most general elliptical polarized 
OAM modes have not been discussed in the past.

In this paper, we break the limitations of previous 
papers and derive the complete transformation relation of 
arbitrary lth modes between CV modes and OAM modes in 
four-dimensional complex space. Through this transfor-
mation relation, for any combination of CV modes (OAM 
modes) in fibers, one can calculate the corresponding OAM 
modes (CV modes) equivalent to it. The reliability of the 
proposed four-dimensional complex space model is well 
verified by previous reports and our experiment results 
[32–45]. As will be shown soon, it is much more intuitive 
to analyze a specific kind of mode when the electric fields 
are expressed in the corresponding mode bases. If the OAM 
mode is to be analyzed, the mathematical expression of 
the field in OAM modes will be the simplest. For example, 

even odd
1, 1, ,l m l mEH iHE− +−  one may not be able to tell if this state can 

be used to generate OAM modes. However, when express-
ing the same electric field into OAM mode bases, we get 

even odd
1, 1,

ˆˆOAM OAM .l m l m l lEH iHE x iy− + − +− = +  Now, one can recog-
nize this state as the superposition of two orthogonal polar-
ized OAM modes and can be separated by polarizer. Most 
previous articles present the mode field in fiber in CV mode 
bases, even studying the OAM modes. It is not intuitive to 
research the properties of OAM modes. To simplify the verifi-
cation of our model for readers, we still give the electric field 
in CV mode bases and OAM mode bases simultaneously in 
Section 3, “Results and Discussion.” Furthermore, in discuss-
ing the properties of OAM modes better, we sort the results 
into six situations and give the corresponding general for-
mulas to describe each of them. The first four situations are 
enough to include most of reported works [32–45]. The last 
two situations are the extended states, which describe the 
elliptical polarized OAM modes. The experimental results 
of the elliptical polarized OAM modes obtained from our 
fiber system are in agreement with the theory results. As will 
be shown, situations 1, 3, and 5 describe a single arbitrary 
polarized OAM mode and the corresponding CV modes. 
Many previous works [32, 37–40, 42–44] can be included in 
these situations, which are some special states in the given 
general formulas. Situations 2, 4, and 6 describe two arbi-
trary orthogonal polarized OAM modes with opposite TCs 
[33–35, 45]. In these situations, OAM modes with opposite 
TCs can be separated along with the separation of their 
polarization, by the devices of a quarter-wave plate (QWP) 
and a polarizer with particular angle. It leads to the benefit 
that the TCs are tunable between +l and −l.

2  �Theory
Before discussing the transformation relation of CV 
modes and OAM modes, it is helpful to know their 
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propagating properties. Three features are given for dis-
tinguishing CV modes and OAM modes: (1) amplitude, 
(2) polarization state, and (3) phase. First, the radial 
distributions of the CV mode and OAM mode in fiber are 
the same, which affects the amplitude of points with dif-
ferent radius. The amplitudes are the same at the points 
with the same radius, whether in CV modes or OAM 
modes. Second, the polarization states of points in CV 
modes are always linear polarization states, while the 
polarized direction varies from the azimulthal angle. 
The polarization states of points in OAM modes are the 
same. Third, the phases of points in CV modes are the 
same or opposite (the phase when the electric vector 
reaches maximum is defined as the same), while that in 
OAM modes varies from azimulthal angle continuously. 
In summary, the amplitudes of CV modes and OAM 
modes are affected only by the radial field distribution. 
The polarization states vary from azimulthal angle in CV 
modes (and always linear polarization) and invariant in 
OAM modes. The phases vary from azimulthal angle in 

OAM modes and invariant in CV modes. Figure 1 gives the 
change in electric vector fields along with the propaga-
tion of two common CV modes, TE01, and TM01, and OAM 
modes, 1OAˆ ,Mσ−

+  and 1ˆOAM .x +  When propagating half 
a period, the trends of electric vector changes among 
these modes are different. For TE01 and TM01, the polari-
zation states at each point are linear polarization, but 
the polarized directions vary from the azimulthal angle. 
Except for the amplitude scaling factor of the points 
with different radius, the phases are the same, which 
are represented as the electric vectors changing with the 
same trend. For 1

ˆ OAMσ−
+  and 1ˆOAM ,x +  the amplitude and 

direction of the electric vector at each point can arrive 
those of another point with the same radius, but at a 
different time or propagation distance. In other words, 
for different points on the beam cross-section with the 
same radius, the polarization states are the same but are 
different in phase. Take 1

ˆ OAMσ−
+  for example, shown in 

the third row in Figure  1; electric vectors at each point 
with the same radius on the beam cross-section are 

Figure 1: The electric vector field of TE01, TM01, +1
ˆ ,OAMx  and σ−

+1
ˆ OAM  along the step index fiber.

π/4 phase difference is between the adjacent column.The last column figures are time-average intensity patterns in the integer period, 
which correspond to the patterns detected by CCD camera.
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the right-hand circular polarized (σ̂−). The phase factor 
of OAM+l should be ei(kz−ωt+lξ). For lth-order OAM modes, 
the number of equal phase points on the beam cross 
section will be l. As shown in the third row in Figure 1, 
at the beginning, the x-polarization point locates at 
ξ = 0(kz – ωt + ξ = 0). Then, when the field propagates to 

,
4

kz t π
ω− =  the only x-polarization point (with the same 

phase) locates at  ( 0).
4

kz tπ
ξ ω ξ= − − + =  This means 

ξ = −(kz – ωt), where the equal phase point appears along 
with the clockwise direction when propagating, which 
indicates the factor eiξ. Thus, the third row in Figure  1 
indicates 1

ˆ OAMσ−
+  mode. As for ˆ ,OAM lx +  the symbol x̂ 

just indicates the linear polarization, which can be sub-
stituted by other linear polarization symbols when the 
observation coordinates rotate.

The figures of the last column in Figure 1 show the 
integer-period (kz – ωt = 2kπ) time average intensity pat-
terns of the four modes. Because the response frequen-
cies of the detected devices are much slower than the 
frequency of light, the patterns we can detect are the time 
average intensity patterns of a huge number of periods, 
which are close to the integer-period time average inten-
sity patterns. We may notice that there is no difference 
among the time average intensity patterns of these four 
modes. To ensure phase information further, a fundamen-
tal mode is usually used to interfere with a higher-order 
mode from fiber. Through the interference patterns, we 
can get the phase information to confirm the specific elec-
tric vector field of the same doughnut intensity patterns.

A typical combination of CV modes to generate OAM 
mode, 1 01 01OAMˆ ,TM iTEσ−

+ = −  is shown in Figure 1. The 

term “–iTE01” denotes the figures of the first row with 2
π−  

time delay. The physical meaning of 1 01 01OAMˆ TM iTEσ−
+ = −  

is the interference between TM01 and TE01 patterns with a 

2
π−  time delay of TE01. In Figure 1, when TM01 propagates 

to ,
2

kz t π
ω− =  TE01 reaches kz – ωt = 0. Adding these two 

electric vectors, we get the 1
ˆ OAMσ−

+  at .
2

kz t π
ω− =  Besides 

1 01 01OAMˆ ,TM iTEσ−
+ = −  there are a series of transforma-

tion relations between CV modes and OAM modes. We are 
going to derive the whole relation for them.

For ideal fibers, when solving the Helmholtz equa-
tion in a cylindrical coordinate system, one can derive the 
electric field distribution in fibers. We use Jones calcu-
lus to express the polarization. When l > 0, the CV mode 
bases are
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
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 
  

 

� (1)

where Fl,m (r) is the radial field distribution, l is the azi-
muthal order of CV modes, m is the radial order, and β1−4 
are the propagation constants. For l = 1, even

1,l mEH −  should be 
substituted by 0,mTM  and odd

1,l mEH −  should be substituted 
by TE0,m. For conciseness, we use the symbol even

1,  l mEH −  and 
odd

1,l mEH −  to represent TM0,m and TE0,m when l = 1 in the end of 
this section. Equation (1) indicates that for describing the 
electric field with a particular azimuthal order l (l > 0) in 
fiber, at least four base vectors are needed. In other words, 
for a particular azimuthal order l, the four CV modes can 
be abstracted as four base vectors in a four-dimensional 
complex Hilbert space. OAM modes are the other four 
base vectors in space. Thus, OAM modes generated by 
CV modes are equivalent to base vector transformation 
in four-dimensional complex Hilbert space. For l = 0, two 
base vectors are enough. But the 0th modes (fundamental 
modes) will not convert into OAM modes (or just convert 
into 0th order OAM modes); thus, we are not going to 
discuss these. In the rest of this paper, l > 0 is the default.

Because of the weak guidance of fiber, the propaga-
tion constant β of these four CV modes are almost the 
same. Neglecting the common complex constant Fl,m(r)eiβz, 
it is convenient to convert Eq. (1) as

	

even
1,

odd
1,

even
1,

odd
1,

1 11 ;
2

1 1
;

2

1 11 ;
2

and
1 1

.
2

il il
l m

il il
l m

il il
l m

il il
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EH e e
i i

iEH e e
i i

HE e e
i i
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i i

ξ ξ
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ξ ξ

ξ ξ

−
−

−
−

−
+

−
+

     
 = −    −     
      = − −    −    

    
= +    −    

    
= −    −    

.












� (2)

If given physical meanings, Eq. (2) can be also 
expressed as
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even
1,

odd
1,

even
1,

odd
1,

1 ˆ ˆ( OAM OAM );
2

ˆ ˆ( OAM OAM );
2

1 ˆ ˆ( OAM OAM );
2

and

ˆ ˆ( OAM OAM ),
2

l m l l

l m l l

l m l l

l m l l

EH

iEH

HE

iHE

σ σ

σ σ

σ σ

σ σ

+ −
− − +

+ −
− − +

− +
+ − +

− +
+ − +


= +


 = − −

 = +


 = −

� (3)

where  σ̂± represent Jones vectors 1
i

 
 ± 

 and OAM±l 

represents the field distribution of e±ilξ. In ideal fibers with 
axisymmetric refractive index distribution, for the lth-
order CV modes, the spatial electric field distribution can 
be expressed as even odd even odd

1, 1, 1, 1,AEH BEH CHE DH ,El m l m l m l mE − − + += + + +  
where (A, B, C, D)T are arbitrary complex constants. The 
amplitudes and the phases of the complex values (A, B, 
C, D)T represent the amplitudes and the relative phases of 

even odd even odd
1, 1, 1, 1,,  , , ,l m l m l m l mEH EH HE HE− − + +  respectively. Equation (2) 

can be changed to

	

( ) ( )1( )
( ) ( )2

1        
2

1        OAM OAM ,
2

il il

il ill l

l l

l l
l l

l l

A C i D B A C i D B
E e e

D B i A C D B i A C

x x
e e

y y

x x
y y

ξ ξ

ξ ξ

ξ −

− − +

− +

− +
− −

− +

    + + − + − −
= +    + + − + − −    

    
= +    

    
    

= +    
    

� (4)

where l

l

x
y

−

−

 
 
 

 and l

l

x
y

+

+

 
 
 

 are Jones vectors to describe the 

polarization of OAM−l and OAM+l, respectively. Combining 
the first and the second rows of Equation (4), we get the 
following transformation matrix:

	

1 1
1 11 ,

1 12
1 1

l

l

l

l

i i A x
i i B y

i i C x
i i D y

−

−

+

+

     −
     −     =
     −
     −     

� (5)

where (A, B, C, D)T and  ( ,  , , )Tl l l lx y x y− − + +  are arbitrary 
complex vectors, which indicate the electric field expressed 
in CV mode bases and OAM mode bases. Because the coef-
ficient matrix is nonsingular matrix, there is one and only 
one vector (A, B, C, D)T corresponding with any value of 

 ( ,  , , ) ,T
l l l lx y x y− − + +  and vice versa. Figure 2 shows the 

intuitive sketch figure of the connection between CV mode 
bases and OAM mode bases. Whatever  ( ,  , , )Tl l l lx y x y− − + +  
we want, we can get a specific combination of (A, B, C, D)T 

by solving Equation (5). Similarly, for a specific com-
bination of (A, B, C, D)T, a group of  ( ,  , , )Tl l l lx y x y− − + +  is 
defined, too. In other words, according to any desired field 

distribution OAM OAM ,l l
l l

l l

x x
y y

− +
− +

− +

   
+   

   
 we can calculate 

the needed CV modes to generate the field distribution 

using Eq. (5). And for arbitrary combination of lth-order 
CV modes, solving Eq. (5), we can calculate the final field 
distribution in the bases of OAM±l, too.

3  �Results and discussions
A fiber OAM generation system is summarized in Figure 3. 
The system is separated as three parts: mode couple 
module, field control module and polarization separation 
module. The mode couple module is used to couple fun-
damental modes to specific lth azimuthal order CV modes. 
It is generally composed of fiber grating [32, 33, 35, 38, 40, 
41, 44, 46, 47] or fiber coupler [34, 45, 48, 49]. Especially 
by fiber grating, the couple efficiency of a single specific 
lth-order CV mode can reach 99%. As mentioned above, 
lth-order CV modes consist of four degenerated modes. 
Although the mode couple module has coupled funda-
mental mode into lth-order CV modes, the initial states of 
four degenerated lth-order CV modes are generally with 
random amplitudes and phases. The electric field gener-
ally does not satisfy the condition to the states, which can 
be used to generate pure OAM modes.

The field control module is used to redistribute the 
generated lth-order CV modes. It changes the relative 
amplitudes and phases among the four degenerated CV 
modes. In some special relations among the four degen-
erated vector modes, pure OAM modes can be generated, 
such as even odd

1, 1,
ˆ OAM   .l l m l mHE iHEσ+

+ + += +  In fiber systems, 
polarization controllers (PCs) are usually used to redis-
tribute electric field.

Polarization separation module is used to separate 
two orthogonal polarized OAM modes after polarization 
control module. It is composed of a QWP and a polarizer 

Figure 2: Sketch figure of the transformation matrix connecting lth 
CV mode bases and OAM mode bases.
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with particular angle. The angle depends on the mode 
distribution before the polarization separation module. 
If the field control module generates the electric field of 
two orthogonal polarized OAM modes, which carry dif-
ferent TCs, such as ˆ ˆOAM M ,OAl lσ σ+ −

− ++  the two polar-
ized orthogonal OAM modes can be separated through 
polarization separation module. Polarization separation 
module is not necessary if the electric field after polariza-
tion control module carrying pure TC.

Figure 4 shows our experiment setup. It is a fiber 
Mach-Zehnder interference system. An optical coupler 
with a splitting ratio of 5:5 is used to split the power 

of tunable laser (KEYSIGHT, 8164B, N7786B) into two 
branches. Tunable attenuators are used to adjust the 
power in each branch. The right branch is used to generate 
higher-order modes. A long period of fiber grating is used 
to couple fundamental modes into a particular higher-
order mode. PCs are used to adjust the relative amplitudes 
and phases among the modes in fiber. A 40× objective lens 
(Obj.) is used to focus the generated higher-order mode on 
the charge coupled device (CCD) camera. The left branch 
provides fundamental modes. The fundamental mode is 
used to interfere with the generated higher-order mode 
because we need to confirm the phase information of 
light in the right branch through the interference patterns. 
Beams from two branches interfere with each other after 
passing through the non-polarization beam splitter. QWP 
and polarizer (Pol.) are used to get the information of the 
mode field from the right branch in different polarization 
directions. Finally, a CCD camera (400–1800  nm, FIND-
R-SCOPE-VIS,85700) is used to record the beam patterns 
(with or without interference), from which we can deter-
mine the electric field from the right branch.

Next, we are going to introduce some electric field 
distributions in the OAM mode bases and give the general 
formulas to describe these situations.

As shown in Eq. (4), the electric field in fiber can be 
regarded as superposition of two OAM modes with oppo-
site TCs and arbitrary polarization. Thus, we discuss 
all the lth-order electric fields as long as we discuss all 
polarizations of these two OAM modes. We set (x−l, y−l, 
x+l, y+l)T as the arbitrary complex vector in four-dimen-
sional complex space, which can be also expressed as 

Figure 4: Experimental setup for the generation and detection of 
high-order modes.
OC, optical coupler; PC, polarization controller; SMF, single mode 
step index fiber; FMF, few modes step index fiber; Obj, objective 
lens; Col., collimator; NPBS, non-polarization beam splitter; QWP, 
quarter-wave plate; Pol, polarizer; CCD, charge coupled device.

Figure 3: Sketch figure of the fiber OAM mode generation system.



B. Mao et al.: Analysis between CV and OAM modes in fiber systems      277

3 41 2
1 2 3 4(| | , | | , | | , | | ) .i ii i TE e E e E e E eδ δδ δ  |E1−4 | and δ1−4 are arbi-

trary real values, indicating the amplitudes and phases of 
x−l, y−l, x+l, y+l. As the vector in OAM mode bases been con-
firmed, the corresponding CV mode bases can be calcu-
lated by Eq. (5). Some situations under this general vector 
are given below.

3.1  �A single circular polarized OAM mode

For a circular polarized beam, |E1 | = | E2 | and 

2 1  ( 1)
2
k kπ

δ δ= + = ±  should be satisfied (the same for 

|E3 |, |E4 |, δ3, δ4). Thus, the general vector in OAM bases to 
describe all states in this situation is

	

1
1

3
3

2
1 1

2
3 3

( , , , ) , , 0, 0

or  0, 0, , ,

TkiT i
l l l l

Tki
i

x y x y R E e E e

R E e E e

π
δ

δ

π
δ

δ

 
+  − − + +

 
+  

 =   

 
  

�

(6)

where R is the rotation matrix 

cos sin 0 0
sin cos 0 0

,
0 0 cos sin
0 0 sin cos

θ θ

θ θ

θ θ

θ θ

 
 − 
 
 − 

 

where θ is the arbitrary constant. θ depends on the angle 
of the selected coordinates. The value of θ does not change 
the physical meaning but changes the expression. If given 
physical meanings, Eq. (6) can be expressed as an equiva-
lent form as Eq. (4),

	

31
1 3

1 1
( ) OAM  or OAM .ii

l lE E e E e
i i

δδξ − +

   
=    ± ±   

� (7)

Eq. (7) indicates a single circular polarized OAM mode 
with arbitrary amplitude and phase. That is why Eq. (6) 
includes all the single circular polarized OAM mode 
situations. In other words, any electric field that can be 

expressed by Eq. (6) is a single circular polarized OAM 
mode. For example, ˆ OAM lσ+

−  can be expressed as (x−l, y−l, 
x+l, y+l)T = (1, i, 0, 0)T, where |E1 | = 1, δ1 = 0, θ = 0, and k = 1. 
We get

	

1
ˆ( )  OAM .il

lE e
i

ξξ σ− +
−

 
= = 

 
� (8)

It is a left-hand circular polarized OAM mode with TC 
−l. Substituting this vector into Eq. (5), we get (A, B, C, D)T =  
(1, i, 0, 0)T. It This indicates that the electric field expressed 
in CV mode bases is even odd

1, 1, 0, 0,( ) for  1 .l m l m m mEH iEH TM iTE l− −+ + =
Similarly, (x−l, y−l, x+l, y+l)T = (1, −i, 0, 0)T, a pure right-

hand circular polarized OAM mode with TC −l, corre-
sponds with (A, B, C, D)T = (0, 0, 1, −i)T. It is even odd

1, 1,l m l mHE iHE+ +−  
in the bases of CV modes. If we set (x−l, y−l, x+l, y+l)T = (0, 0, 
1, ±i)T, a circular polarized OAM mode with TC +l, we will 
get similar results in the same analysis method.

In our previous work [32], we have researched these 
states. We used long period fiber grating to couple funda-
mental modes into the first- and second-order CV modes. 
The experiment device is similar to that shown in Figure 4. 
The experiment results are shown in Figure 5. We define ψ 
as the counterclockwise angle from the slow axis of QWP 
to the axis of polarizer. And we fix the fast axis of QWP 
on the y-axis. The two rows in Figure 5 show the patterns 
without interference (intensity patterns) and with interfer-
ence (interference patterns). The first column shows the 
patterns without passing-through QWP and polarizer. The 
second column shows the patterns with a single QWP. The 
last two columns show the patterns with QWP and polar-
izer where ψ = −45° and 45°, respectively. Because QWP is 
able to change arbitrary polarization into linear polariza-
tion, we can judge the origin polarization from the angle 
ψ. When ψ = 45°, the intensity pattern vanishes, which 
indicates the polarization to be left-handed circular  ˆ .σ+  
The interference pattern is clockwise vortex, indicating the 
phase factor e−ilξ. Thus, the origin mode should be OAMˆ .lσ+

−

Figure 5: Intensity and interference patterns of circular polarized OAM modes.
(A) σ+

−1
ˆ OAM  and (B) σ+

−2OAMˆ . The title is the corresponding expression in CV mode bases and OAM mode bases.
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As can be seen, even odd
1, 1,

ˆ OAM EHl l m l miEHσ+
− − −= +  corre-

sponding to a special value of |E1 | = 1, δ1 = 0, and k = +1 in 
the general vector Eq. (6). Indeed, |E1 |, δ1 can be arbitrary 
values, and k can be ±1. Equation (6) may be more uni-
versal, which concludes all the circular polarized OAM 
modes and their corresponding CV modes. A few articles 
belong to this situation [32, 38, 39, 41, 43].

3.2  �Two orthogonal circular polarized OAM 
modes with opposite TCs

Besides the restriction of circular polarization as shown 
in Situation 1, an extra restriction should be added that 
the two OAM modes with opposite TCs are orthogonal in 
polarization. That is, * * 0l l l lx x y y− + − ++ =  should be satis-
fied. Thus, the general vector in OAM bases to describe all 
states in this situation is

	

1
1

3
3

2
1 1

2
3 3

( , , , ) , ,

,  .

ki
iT

l l l l
Tki

i

x y x y R E e E e

E e E e

π
δ

δ

π
δ

δ

 
+  

− − + +

 
−  


= 


− 

� (9)

Consider the vector in the OAM mode bases (x−l, y−l, 
x+l, y+l)T = (−0.5i, 0.5, 0.5i, 0.5)T, where |E1 | = | E3 | = 0.5, 

1 3, ,
2 2
π π

δ δ= − =  θ = 0, and k = 1. E(ξ) is

	

1 1
( )

2

ˆ ˆ( OAM OAM ).
2

il il

l l

iE e e
i i

i

ξ ξξ

σ σ

−

+ −
− +

    
= − +    −    

= − +
� (10)

Substituting this vector into Eq. (5), we get (A, B, 
C, D)T = (0, 1, 0, 0)T. This situation corresponds to a pure 
TE0,m/EHl−1,m mode. As shown in Eq. (3), a pure CV mode 
can be regarded as a superposition of two OAM modes 
with opposite TCs. And their polarized states are orthogo-
nal. Arbitrary orthogonal polarized beams can be trans-
formed into two linear orthonormal polarized beams by 
a QWP. Thus, we can use a QWP and a polarizer to sepa-
rate these two beams. Figure 6 shows the intensity and 
interference patterns of this situation. We still set the fast 
axis of the QWP as the y-axis. When passing through the 

QWP, ˆ OAM lσ+
−  is transformed into 1

,OAM
1 l−

 
 − 

 a −45° LP 

OAM beam, while ˆ OAM lσ−
+  is transformed into 1

OAM ,
1 l+

 
 
 

 

a 45° LP OAM beam. The intensities of OAM−l and OAM+1 
are almost the same. If we set a polarizer or birefringent 
crystal behind the QWP with ψ = ±45°, we can separate 
these two orthogonal LP states. Their carried opposite TCs 
are separated simultaneously. At other ψ angles, the states 
cannot be expressed by a single OAM mode. The interfer-
ence pattern does not appear at the pure vortex property 
at these ψ angles. They are hybrid OAM mode states. As 
shown in Figure 6, when ψ = 0° or 90°, the patterns do not 
present the properties of the OAM mode. It is the pattern 
of pure LP modes.

The phase difference between OAM−l and OAM+l is 
hinted at the intensity patterns at ψ = 0° or 90°, which can 
be regarded as the interferece of OAM−l and OAM+l. Take 
ψ = 0 for example; after passing through the QWP, the 
mode field should be

	

( )1 1
,

1 1
il i l

QE e eξ ξ α− +
   

= +   −   
� (11)

Figure 6: Intensity and interference patterns of the generated hybrid state combined by two orthogonal circular polarized OAM modes, 
which carry opposite TCs.
(A) Experimental results. (B) Corresponding simulations. The title is the corresponding expression in CV mode bases and OAM mode bases. 
ψ is the counterclockwise angle from the slow axis of QWP to the polarizer. The fast axis of the QWP locates on the y-axis.
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where α is the phase difference between OAM−l and OAM+l. 
When inserting a polarizer, the mode field should be

	

2

cos sin 1 0 cos sin
sin cos 0 0 sin cos

.cos
2      2

0

QP Q

i

E E

l
e

α

ψ ψ ψ ψ

ψ ψ ψ ψ

α
ξ

     −
=      −     

  
+   =  

 
 

� (12)

The intensity of the final field after QWP and polarizer 

should be 
2 24cos .

2QPI E l α
ξ

 
∝ = +  

 When I reaches the 

maximum, 2cos
2

l α
ξ

 
+  

 should be 1, where 2
k

l

α
π

ξ
− +

=  

 for =1 .
2

k lα
ξ π

 
= − +  

 Going back to Figure 6, when 

ψ = 0, the maximum of intensity pattern locates at .
2
π

ξ =   
 
Thus, the phase difference between OAM−l and OAM+l, 
α is calculated to be π + 2kπ. The same α value can be 
calculated at ψ = 90°.

Thus, 1 1
.

1 1
il il

QE e eξ ξ−
   

= −   −   
 The original field before 

passing through the QWP is

	

odd
01 1,

1 0 sin
/ ,

0 cosQ l m

l
E E TE EH

i l
ξ

ξ −

   −
= = =   −   

� (13)

where we neglect the common amplitude and phase factor 
before Jones matrix because they do not affect the final 
result. The last row in Figure 6 shows the common verifica-
tion of TE01 mode, by inserting a polarizer only.

For another example, (x−l, y−l, x+l, y+l)T = (0.5i, 0.5, −0.5i, 
0.5)T also satisfies the general vector. It corresponds to (A, 
B, C, D)T = (0, 0, 0, 1)T, which indicates a pure odd

1, .l mHE +  And 
some similar situations can be derived in the same process. 
Notice that the pure CV modes are some, but not all, states 
of situation 2. There are a series of states satisfying Eq. (9) 

besides the pure CV modes. In our previous work, Han has 
found the relation TM01, TE01, TM01 + TE01, and TM01–TE01 
and their corresponding CV modes [35]. There are several 
special states under this situation. Any vector satisfying 
Eq. (9) belongs to this situation.

3.3  �A single LP OAM mode

For an LP beam, δ2 = δ1 + kπ(k = 0, 1) should be satisfied 
(the same for δ3, and δ4). The general vector in OAM bases 
to describe all states in this situation is

	

( )( )
( )( )

11

33

1 2

3 4

( , , , ) , , 0, 0

or  .0, 0, , 

Ti kiT
l l l l

T
i ki

x y x y R E e E e

R E e E e

δ πδ

δ πδ

+
− − + +

+

=
�

(14)

Consider the vector in the OAM mode bases (x−l, y−l, x+l, 
y+l)T = (1, 0, 0, 0)T, where |E1 | = 1, |E2 | = 0, δ1 = 0, θ = 0, and 
k = 0. E(ξ) is

	

1
ˆ( )  OAM .

0
il

lE e xξξ −
−

 
= = 

 
� (15)

Substituting this vector into Eq. (5), we get 
(A, B, C, D)T = (0.5, 0.5i, 0.5, −0.5i)T. The state 
is  even odd even odd even odd

1, 1, 1, 1, 01 01 21 210.5 0.5 0.5 0.5 (0.5 0.5 0.5 0.5l m l m l m l mEH iEH HE iHE TM iTE HE iHE− − + ++ + − + + − 
even odd even odd even odd

1, 1, 1, 1, 01 01 21 210.5 0.5 0.5 0.5 (0.5 0.5 0.5 0.5l m l m l m l mEH iEH HE iHE TM iTE HE iHE− − + ++ + − + + −  for l = 1). The electric 
field is also equivalent to even odd

, ,ˆ ˆ .l m l mxLP ixLP−  The symbol LP 
represents LP modes, which are another group of bases 
to describe the electric field in fibers. In this paper, we 
are not going to discuss LP modes in detail. It is a special 
situation in which the QWP can be neglected because the 
states are intrinsic linear polarization. That is, we can 
observe the intensity vanishing without the assistance 
of QWP. When the QWP is removed, ψ loses the original 
definition (the counterclockwise angle from the slow axis 
of QWP to the axis of polarizer). We can define ψ = 0 on 
arbitrary axis. Figure 7 gives the first-order (l = 1) intensity 

Figure 7: Intensity and interference patterns of a single linear OAM mode (after passing through a QWP and polarizer).
(A) Experimental results. (B) Corresponding simulations. The title is the corresponding expression in CV mode bases and OAM mode bases.
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and the interference patterns of this state in experiment 
and simulation, which corresponds well with we have dis-
cussed above. Here, x̂ just represents the linear polariza-
tion, which can be substituted by other linear polarization 
symbols when the observation coordinates rotate (with 
different rotation factor R).

Li et  al. [40] using a mechanical long period 
fiber grating, realized the first-order LP OAM 
modes, even odd

1 11 11
ˆ  ( )OAM ( ) ( )ˆ ˆˆ ˆ ˆ .x y x y LP ix y LP± = ±  Wu et  al. 

[37] extended this relation to the second order, that is, 
even odd

2 21 21( )OAM ( )ˆ ˆ ˆˆ ˆ ( .)ˆx y x y LP ix y LP± = ±  These results [36, 37, 
40, 42, 44] are some special states included by Eq. (14).

3.4  �Two orthogonal LP OAM modes with 
opposite TCs

Similar to situation 2, besides the restriction of linear 
polarization δ2 = δ1 + kπ(k = 0, 1), the restriction of orthogo-
nal polarization * * 0l l l lx x y y− + − ++ =  should be satisfied too. 
The general vector in OAM bases to describe all states in 
this situation is

	

( )(
( ) )

11

3 3

1 2

2 1

( , , , ) , ,

, ,

i kiT
l l l l

T
i k i

x y x y R E e E e

F E e F E e

δ πδ

δ π δ

+
− − + +

−

=

−
� (16)

where F is an arbitrary complex constant. Consider the 
vector in the OAM mode bases (x−l, y−l, x+l, y+l)T = (0, i, 1, 0)T, 

where 1 2 1 30, 1, , 0, 1, 0, 0.
2

E E F kπ
δ δ θ= = = = = − = =  

E(ξ) is

	

0 1
ˆ ˆ( )  OAM OAM .

1 0
il il

l lE ie e iy xξ ξξ −
− +

   
= + = +   

   
� (17)

Substituting this vector into Eq. (5), we get 
(A, B, C, D)T = (1, 0, 0, i)T. The electric field is 

even odd odd
1, 1, 0, 2,  for( )  1l m l m m mEH iHE TM iHE l− ++ + =  in CV mode 

bases. The constant i before ˆOAM ly −  just represents the 

relative phase between ˆOAM lx −  and ˆ ,OAM ly +  which will 
not affect the separation of these two OAM modes (0° and 
90°) but affects the pattern at other angles. The phase 

difference between OAM+l and OAM−l is ,
2
π

 where the 

calculated method is given in Section 3.2. Figure 8 shows 
the corresponding state. In this situation, the QWP is not 
needed because the polarization is intrinsic linear. The 
opposite TCs can be separated by a polarizer, as men-
tioned in situation 2.

Jiang et al. [33, 34] and Yao et al. [45] have researched 
the states even

1 1 01 21OAM OAMˆˆ  x iy TE iHE±± =∓ ∓  and 
odd

1 1 01 21OAM OAMˆx̂ iy TM iHE± ± = ±∓  yet, which are some 
special states of the general vector Eq. (15). Their experi-
ment setup is similar to Figure 4, but without the QWP. 
The other difference is that they use an extrusion long-
period grating to couple the fundamental modes into the 
first order modes. It should be underlined that their theory 
model is a little different from ours. We set TE01 as (−sinξ, 
cosξ)T while they set TE01 as −(−sinξ, cosξ)T. The two 
models are both allowed, but TE01 in our model should be 
substituted into −TE01 in their model. even

01 21TE iHE∓  is the 
expression in our model but even

01 21TE iHE− ∓  in their model. 
The other results are the same. These results [33, 34, 45] 
are the several special states included by Eq. (16).

3.5  �A single elliptical polarized OAM mode

The general vector in OAM bases to describe all states in 
this situation is

	

( )
( )

1 2

3 4

1 2

3 4

( , , , ) , , 0, 0

or  0, 0, , ,

Ti iT
l l l l

Ti i

x y x y R E e E e

R E e E e

δ δ

δ δ

− − + + =
�

(18)

where δ1 ≠ δ2 + kπ (k = 0, 1) (linear polarization if 

unsatisfied, situation 1) and 1 2  ( 1)
2
k kπ

δ δ≠ + = ±  when 

Figure 8: Intensity and interference patterns of the generated elliptical polarized OAM mode (after passing through a polarizer).
(A) Experimental results. (B) Corresponding simulations. The title is the corresponding expression in CV mode bases and OAM mode bases.
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|E1 | = | E2 | (circular polarization if unsatisfied, situation 3). 
|E1 |, |E2 |, δ1, and δ2 can be any value except these. If |E1 |, 
|E2 |, δ1, and δ2 satisfy this restriction (the same for |E3 |, 
|E4 |, δ3, and δ4), the electric field described by Eq. (18) is a 
single elliptical polarized OAM mode.

Consider the vector in the OAM mode bases 
(x−l, y−l, x+l, y+l)T = (0.24, 0.97i, 0, 0)T, where 

1 2 1 2, 0.97, 0, ,  0,0 24
2

.E E π
δ δ θ= = = = =  E(ξ) is

	

0.24
( ) .

0.97
ilE e

i
ξξ −
 

=  
 

� (19)

In this situation, solving Eq. (5), we get (A, B, C, 
D)T = (0.61, 0.61i, −0.37, 0.37i)T. If setting l = 1, the elec-
tric field  is even odd

01 01 21 210.61 0.61 0.37 0.37TM iTE HE iHE+ − +  
expressed in CV mode bases. After passing through the QWP, 

the electric field should be 1 0 0.24 0.24
0 0.97 0

,
.97

il ile e
i i

ξ ξ− −
     

=     −     
 

which indicates a −76° LP OAM mode with TC = −l. Thus, 
the  polarizer should be placed at ψ = 14° to make the 
pattern vanish, which is different with ±45° in situa-
tion 1 (circular polarized OAM modes) and 0° or 90° in 
situation 3 (LP OAM modes). Figure 9 gives the experi-
ment and simulation results of this state. The intensity 
pattern vanishes after passing through the QWP and 
polarizer  with  ψ = 14° and reaches a maximum when 
ψ = −76°.

It is obvious that, unlike the discrete spin angular 
momentum = −1, 0, 1 mentioned in previous works, the 
polarized states of OAM modes should be continuous. 
Between linear and  circular polarized OAM modes, 
there should be a series of continuous elliptical polar-
ized OAM modes. The specific polarization of OAM mode 
can be confirmed by the ψ angle at which the pattern 
intensity vanishes. These states have not been reported 
in fiber OAM systems.

3.6  �Two orthogonal elliptical polarized OAM 
modes with opposite TCs

Similar to situations 2 and 4, besides satisfying the 
restriction in situation 5 ( 1 2 1 2 1 2 ( 0, 1) and ( 1) when | | | |

2
kk k k E Eπ

δ δ π δ δ≠ + = ≠ + = ± = 

1 2 1 2 1 2 ( 0, 1) and ( 1) when | | | |
2
kk k k E Eπ

δ δ π δ δ≠ + = ≠ + = ± = ), * * 0l l l lx x y y− + − ++ =  

should be satisfied. The general vector in OAM bases to 
describe all states in this situation should be

	

1 2

2 1

1 2

2 1

( , , , ) (| | , | | ,
| | , | | ) .

i iT
l l l l

i i T
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Consider the vector in the OAM mode bases (x−l, y−l, 
x+l, y+l)T = (0.83, –0.56i, 0.56e1.68i, 0.83ie1.68i)T, where 

1.68
2
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2

i
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π
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� (21)

It is a hybrid state of two orthogonal elliptical polar-
ized OAM modes carrying opposite TCs. When passing 
through the QWP, whose fast axis locates on y-axis, the 
electric field becomes

	

1.680.83 0.56
( ) .

0.56 0.83
il il iE e e eξ ξξ −

   
= +   −   

� (22)

The left term indicates a 34° LP OAM mode with TC = –l, 
while the right term indicates a –56° LP OAM mode with 
TC  = +l. They can be separate by a polarizer or a birefrin-
gent crystal, as mentioned above. The first-order (TC  = ±1) 
results are shown in Figure 10. The corresponding expres-
sion in CV mode bases is (A, B, C, D)T = (0.14e−0.73i, 0.13e2.41i, 
0.66e0.84i, 0.73e−2.30i)T. Obviously, this situation is more 
complicated than the linear and circular polarized OAM 
modes as shown in situations 2 and 4. However, elliptical 

Figure 9: Intensity and interference patterns of the generated elliptical polarized OAM mode (after passing through a QWP and polarizer).
(A) Experimental results. (B) Corresponding simulations. The title is the corresponding expression in CV mode bases and OAM mode bases. 
ψ is the counterclockwise angle from the slow axis of QWP to the polarizer. The fast axis of the QWP locates on the y-axis.
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polarization is the most common polarization in reality. It is 
meaningful to discuss elliptical polarized OAM modes.

The six situations have been discussed already and a 
short conclusion is given below.

Situations 1, 3, and 5 give pure circular, linear, and 
elliptical polarized OAM modes. These situations provide 
a single pure OAM mode generated by the combination of 
CV modes directly, which is convenient and simple. Situa-
tions 2, 4, and 6 give hybrid states in which two orthogonal 
circular, linear, and elliptical polarized modes carry oppo-
site TCs. If satisfying * * 0,l l l lx x y y− + − ++ =  the two polarized 

modes in Jones vector l

l

x
y

−

−

 
 
 

 and l

l

x
y

+

+

 
 
 

 are orthogonal and 

can be separated by cooperation of a QWP and a polarizer 
with particular intersection angle. We can derive the spe-
cific polarization through the intersection angle. When 
the polarizations have been separated, the TCs are sepa-
rated too. These situations may lead to an extra benefit. 
The TCs are adjustable by the polarizer.

Each situation has their general vector to describe all 
their states. In these six situations, circular polarized and 
LP OAM modes (situations 1–4), have been reported in 
many papers [32–45], which are some particular states of 
Eqs. (6), (9), (14), and (16). In more general situations, ellip-
tical polarized OAM modes have not been reported in fiber 
OAM systems. We discuss these elliptical polarized OAM 
modes in detail and find their corresponding CV modes. 
As we can see in situations 5 and 6, the corresponding CV 
modes of elliptical polarized OAM modes are a little com-
plicated so that we cannot judge the physical properties 
directly. It is hard but meaningful to discuss these states 
in detail because elliptical polarization is the most univer-
sal state in reality. We give a procedure to analyze these 
states more intuitively. One just needs to find the situation 
of the OAM modes of interest, express it in the correspond-
ing general vector in situations 1–6, and substitute it into 
Eq.  (5). The corresponding CV modes of the OAM modes 
can be calculated. It should be noticed that the general 

vectors (x−l, y−l, x+l, y+l)T restricted by situations 1–6 do not 
fill each point of four-dimensional complex space. In other 
words, the states in situations 1–6 are not all the states that 
can describe the arbitrary combination of CV modes. There 
are still many states that may be used. Besides, situations 
1–4 are enough to describe most transformation relations 
that have been reported. We are going to study the other 
situations and pick some useful states in our further work.

As has been mentioned above, the propagation con-
stants β1−4 of these four CV modes are almost the same but 
are not. A more accurate model should consider the dif-
ference of β at the same time. In ideal fibers, the propaga-
tion constants of even mode and odd mode with the same 
order are exactly equal for any CV mode. For example, 

even odd
5,3 5,3

.
EH EH

β β=  Meanwhile, β is generally different among 
any other modes. For example, even even even

5,3 6,3 6,3
.

EH EH HE
β β β≠ ≠  And 

for TM0,m and TM0,m, their propagation constants are not 
equal. Equation (5) should be corrected as
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If OAM modes are generated by several CV modes 
with different propagation constants. The OAM 
modes can not propagate at a long distance because 
it will lead to a state change. Take the situation 

even odd
1, 1, 0, 0, for ( )1l m l m m mEH iEH TM iTE l− −+ + =  for an example. 

Back to Eq. (4), the electric field of E(ξ, z) should be
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Figure 10: Intensity and interference patterns of the generated two orthogonal elliptical polarized OAM modes, which carry opposite TCs.
(A) Experimental results. (B) Corresponding simulations. The title is the corresponding expression in CV mode bases and OAM mode bases. 
ψ is the counterclockwise angle from the slow axis of QWP to the polarizer. The fast axis of the QWP locates on the y-axis.
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 E(ξ, z) has a pure TC +l. It means that 

if we generate the OAM mode through combining several 
CV modes in different values of β, the TC of the OAM mode 
is not invariant along with propagation distance but has 
a period change of ±l. The walk-off length will be shorter 
along with the increased difference of effective refractive 
index Δneff. Take TE01 and TM01 in most of commercial step 
index fibers, for example, at the wavelength λ = 1.55 μm, 
the typical value of effective refractive index Δneff ≈ 10−6, 
zwalk−off ≈ 0.775  m. This means that TC changes from one 
state to the opposite at meter-scale. It indicates that OAM 
modes combined by TE01 and TM01 are unstable when 
propagating a long distance. Moreover, if the source pro-
duces pulse light, when propagating a distance, TE01 and 
TM01 will stagger in time domain and will not interfere 
anymore. Thus, it is better to use CV modes with smaller 
Δneff to combine the needed OAM mode.

In ideal fibers, any even and odd modes are degen-
erated in theory. However, in reality, fibers always suffer 
intrinsic defects and external perturbations, such as 
stress, bending, heating, twisting, and so on. These 
factors may affect the weak guiding property in a degree 
and lead to a larger Δneff. Chen and Wang [50] has studied 
these factors. For 100 mode step index multimode fibers, 
when suffering 5% ellipticity, the effective refractive index 
between the even and odd modes of almost all orders rises 
to Δneff ≈ 10−7. The walk-off length is just tens of meters. 
Thus, in reality, OAM modes generated by combining the 
even and odd modes are unstable in propagation, too. To 
avoid this effect, the OAM transfer fibers should be care-
fully designed to make the Δneff smaller and should be pro-
tected well from external perturbations.

4  �Conclusion
We have constructed a four-dimensional complex space 
model and derived the complete transformation relation 
connecting arbitrary lth order CV modes and OAM modes 
in fiber systems. No matter what the desired OAM modes 
in fibers are, there must be a specific group of intrinsic 
CV modes corresponding with them and that can be cal-
culated. The results in previous articles and ours verify 
the reliability of the constructed complex space model. 
Using this model, we succeeded in explaining many 
results reported in previous articles and extended these 
results into more general situations. That is, we predicted 
the existence of elliptical polarized OAM modes in fibers, 
which are the most general states and have not been dis-
cussed before.

Besides generating a single pure OAM mode from the 
combination of CV modes, there are some other states 
that can be utilized. That is, if a hybrid state consists of 
two orthogonal polarized OAM modes with opposite TCs, 
we can obtain the two pure OAM modes, respectively, by 
a QWP and a polarizer (or a birefringent crystal) with a 
particular angle. Compared with the states generating a 
single pure OAM mode directly, the TC is tunable in these 
states. We also researched on these states and gave the 
simulation and experiment results.

Then, we analyzed the effect of different propagation 
constants. When OAM modes are generated by several CV 
modes with different propagation constants, the TCs of 
the OAM modes change periodically along with the trans-
mission distance. To avoid this effect, the OAM transfer 
fibers should be carefully designed and protected to make 
the difference in propagation constants between the four 
degenerated CV modes smaller.

In summary, we demonstrated the complete transfor-
mation relation connecting arbitrary lth order CV modes 
and OAM modes. Also, we verified some common situa-
tions and gave the general formulas to describe the cor-
responding relations. These general formulas can explain 
previous articles well and include many results that have 
been reported in fiber OAM generation systems. This 
analysis method is able to describe arbitrary fields in fiber 
conveniently, which may have great potentials in the gen-
eration and application of arbitrary fields based on optical 
fibers.
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