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Abstract: Plasmonic structures are known to support 
the modes with sub-wavelength volumes in which the 
field/matter interactions are greatly enhanced. Coupling 
between the molecular excitations and plasmons leading 
to the formation of “plexcitons” has been investigated for 
a number of organic molecules. However, plasmon-exci-
ton coupling in metal/semiconductor structures has not 
experienced the same degree of attention. In this work, we 
show that the “very strong coupling” regime in which the 
Rabi energy exceeds the exciton binding energy is attain-
able in semiconductor-cladded plasmonic nanoparticles 
and leads to the formation of Wannier exciton-plasmon 
polariton (WEPP), which is bound to the metal nanopar-
ticle and characterized by dramatically smaller (by a fac-
tor of a few) excitonic radius and correspondingly higher 
ionization energy. This higher ionization energy, which 
exceeding approaches 100 meV for the CdS/Ag structures, 
may make room-temperature Bose-Einstein condensa-
tion and polariton lasing in plasmonic/semiconductor 
structures possible.
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1  �Introduction
Polaritons [1] are bosonic quasi-particles formed by 
photons and matter excitations such as phonons [2], 
excitons [3, 4], intersubband transitions [5], or others. 
Polaritons can be formed in a relatively unconstrained 
geometry (“free space”), in the waveguides [6], or in the 
fully confining resonant structures, as in the case of the 
widely studied exciton-photon polaritons in microcavi-
ties [4]. Polaritons are enabled by the coupling between 

the vacuum fluctuations of the electromagnetic field and 
the matter, quantified by the Rabi energy ħΩ. When the 
Rabi energy exceeds the dissipation rates of both photons 
and excitons, the exciton-photon system is said to enter 
the so-called strong coupling regime [7] and polaritons 
get formed, as manifested by characteristic Rabi split-
ting. Furthermore, a number of fascinating phenomena 
take place, most notably the Bose-Einstein condensa-
tion and polariton lasing. Satisfying the strong coupling 
criterion is far from being easy, and it is only in the last 
20 years that the progress in microcavity fabrication and 
growth of high-quality III–V semiconductors has led to 
the observation of large Rabi splitting, exciton condensa-
tion [8], and polariton lasing in multiple quantum wells 
(MQW) GaAs [9]- or GaN [10]-based structures. The term 
ultrastrong coupling (USC) had also been introduced to 
describe the situation where the coupling (Rabi) energy 
becomes comparable to the photon energy itself, meaning 
that the coupling changes the electronic structure of the 
material itself. This regime is difficult to achieve in the 
optical range of frequencies, but it can be feasible with 
THz radiation [11, 12].

At the same time, with the MQW exciton-polariton in 
the semiconductor cavity, another intermediate regime of 
the so-called very strong coupling (VSC) exists in which 
the Rabi energy ħΩ is much less than the photon energy 
ħω but it is comparable or larger than the exciton binding 
energy EX. Then as shown in ref. [13], one can no longer 
consider coupling as a weak perturbation to the “rigid” 
exciton – the exciton in cavity polariton becomes flexible 
or, better said, “pliable” as its radius decreases for the 
lower polariton and increases for the upper one, causing 
increase of the effective binding energy in the lower 
polariton. The simple semi-analytical results of Khurgin 
[13] were confirmed by a rigorous Green function analy-
sis in ref. [14] and, after numerous attempts [15, 16], were 
experimentally verified in ref. [17].

Microcavities used in all the above experiments typi-
cally provide confinement in only one dimension, which 
limits the strength of vacuum field and which is inversely 
proportional to the square root of the cavity volume. Even 
three-dimensional all-dielectric cavities have volumes 
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larger than (λ/n)3. Therefore, in recent years, the atten-
tion of the polaritonic community had been turned in the 
direction of plasmonic structures, which enable localized 
surface plasmon (LSP) modes whose volume is far below 
the diffraction limit (V < <(λ/n)3) [18] and in which elec-
tromagnetic field can be greatly enhanced in the vicinity 
of resonance. For this reason, LSPs are widely used (or, at 
least, on their way to being used) in a variety of sensing 
[19], spectroscopic [20], and other applications [21]. 
Obviously, vacuum field strength in LSP is also greatly 
enhanced, which means that the coupling between LSP 
and the medium placed in close proximity to it also gets 
stronger, which results in the strong Purcell enhance-
ment of spontaneous radiation rate. Once the Rabi energy 
exceeds the damping (broadening) rate of LSP Γ, a new 
type of quasiparticle – plasmon-exciton-polariton or 
“plexciton” – is formed [22, 23]. Plexcitons had been 
observed with a variety of metals [24, 25] in the shape of 
both individual nanoparticles/nanoantennas and in their 
arrays [26]. Strong coupling has led to such exotic behav-
ior as plexcitonic lasing [27] and condensation [28, 29]. 
There had been reports of USC regime [30] with Rabi split-
ting exceeding hundreds of meV [31, 32].

Most of the plexciton research had been performed 
with various types of organic and other molecules in which 
the exciton is essentially a local excitation localized on a 
scale of a few atoms and capable of moving around in the 
medium. One can easily model these excitons as isolated 
two-level entities that get coupled via interaction with LSP 
cavity and thus form plexcitons. The spatial characteris-
tics of excitons do not change – one can say that these 
excitons, usually referred to as Frenkel excitons [33, 34] in 
condensed matter science, remain “rigid”. But in an inor-
ganic semiconductor, medium excitons are formed from 
free carriers in the conduction and valence band attracted 
to each other; their wavefunctions are usually spaced 
over many lattice sites, and they are usually referred to as 
Wannier excitons [35]. The radius of Wannier excitons can 
vary depending on the environment, and as was shown 
in ref. [13], it can change in the VSC regime. One can 
say that unlike rigid Frenkel excitons, Wannier excitons 
are quite pliable. Furthermore, due to their lower mass, 
Wannier excitons can travel through the medium easier 
than Frenkel excitons do, and they can also be localized in 
the region where their potential energy is lower, forming 
bound excitons.

In this paper, we consider the interaction between 
Wannier excitons in the semiconductor and LSPs in metal 
nanoparticles to form a quasiparticle of a different flavor 
– Wannier exciton-plasmon polariton (WEPP). Using 
the example of WEPP in an Ag/CdS structure, we show 

that the VSC regime can be rather easily reached. In this 
VSC regime, WEPP becomes quite flexible or pliable, as 
the excitonic radius decreases at least threefold and the 
WEPP becomes bound to the Ag nanoparticle, forming a 
shell with the thickness of a few nanometers.

2  �Theory of WEPP
The Hamiltonian of the system consisting of a localized 
surface plasmon (LSP) and collective excitation of elec-
tron-hole pairs with momenta ke and kh forming Wannier 
exciton can be written as follows [36]:
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b bk k k k  are the creation-annihilation 
operators for the plasmons with energy ħωpl and electron-
hole pairs with energies 2 2
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the Coulomb attraction energy, εs is the static dielectric 
permittivity, and Hint is the interaction energy between 
the plasmons electric field and the electron hole pair. The 
WEPP state can be described as follows:

	 , ex ex1 , 0 0 , 1 ,pl plP
α β

α β= + � (1)

where α and β are the relative weight of plasmon and 
exciton (Hopfield coefficients [37]), the ket vectors refer 
to the states with 1(0) plasmons and 0(1) excitons, the 
plasmon (or rather LSP) is described by its electric field 
E(R), and the Wannier exciton, by its wavefunction Фex 
(R, ρ), which can be approximated by the product of 
normalized wavefunctions for the center of mass (COM) 
motion Ф(R) and the relative motion of the electron and 
hole  Ψ(ρ). Here the relative electron-hole coordinate is 
ρ = re–rh and the COM coordinate is R = (mere–mhrh)/M, 
where M = me + mh.

The total energy of the WEPP can then be written as 
follows:
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where Egap is the bandgap energy, 
2 * 2E / 2 ( ) ( )cm M Φ Φ= − ∇R R�  is the kinetic energy of the 

COM motion in exciton, 2 * 2E / 2 ( ) ( )eh rm Ψ Ψ= − ∇� ρ ρ  
is the kinetic energy of the relative electron and 
hole motion, 1 1 1( )r e hm m m− − −= +  is the reduced mass, 
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2 * 1
0E ( ) ( ) / 4C se Ψ ρ Ψ πε ε−= − ρ ρ  is the Coulomb energy of 

electron-hole attraction, and ħΩ is the strength of exciton-
plasmon coupling (Ω is a Rabi frequency). The strength of 
the coupling can be found as follows:

	
vac

1(0) ( ) ( ) ,
2cv dΩ Ψ Φ

 
= ⋅ 

 
∫ R E R R� μ � (3)

where a factor of ½ accounts for the fact that only the pos-
itive frequencies component of the “vacuum” electric field 
Evac ~ cosωplt is responsible for the coupling between the 
states and μcv is the matrix element of the dipole moment 
between the valence and conduction bands. It can be 
related to the interband matrix element of the momentum 
Pcv as μcv = eħPcv/m0 Egap, where Egap is the bandgap energy, 
and then using the relation between Pcv and the conduc-
tion band effective mass, 2 2

0 gap/ 2 /Ee cvm m P=  [38] to obtain 
μcv = (e2ħ2/2meEgap)1/2.

Finding the “vacuum field” Evac (R) of the LSP mode 
responsible for vacuum Rabi oscillations and splitting are 
different from the case of dielectric microcavities, where 
the total energy is equally split between electric and mag-
netic energies. In subwavelength LSP modes with charac-
teristic size seff < < λ, the magnetic energy UH is very small in 
comparison to the electric energy UE, roughly UH ~ (2πseff/λ)2 
UE, and can be neglected. Then the energy of one LSP 
can be found as 2

0 vac
1 ( ( ) / )| ( )| ,
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where εr is the co-ordinate-dependent relative per-
mittivity at optical frequencies. Furthermore, in the 
metal described by the Drude relative permittivity 

2 2( ) 1 / ,m pε ω ω ω= −  2 2( ) / /m pωε ω ω ω∂ ∂ ≡  and as shown 
in refs. [39, 40], in the absence of the magnetic field, 
exactly one-half of the total energy of the plasmon is con-
tained in the form of kinetic energy of the free electrons, 
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the field of the plasmonic mode to the field at some spe-
cific point, for example, point R0, where the electric field 
is at maximum, 0

ˆ( ) ( ) / ( ),e E E R=R R  and then we immedi-
ately obtain the following:
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where the “effective volume” of the plasmon is as follows:
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Note that the coefficient in front of ˆ( )e R  in ref. (4) is 
precisely the coefficient relating operator of the electric 

field and the creation/annihilation operators [41] for the 
modes in vacuum, with the only difference being the defi-
nition of the mode volume (5).

Substitute (5) into (3) and obtain the following:
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where ˆ cvμ  is the unit vector collinear with the momentum 
of the interband transition. Integration over the volume 
involves averaging over the direction so the mean value 
of the projection of ˆ cvμ onto the direction of electric field 
is 1 / 3. Then we introduce the effective overlap between 
the plasmon electric field and the exciton wavefunction 
as 1/2 ˆ( ) ( )plV e dκ Φ= ∫ R R R and finally obtain (assuming 
ħωpl ~ Egap) the following:
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Finally, we can normalize the dimensions to 
the free exciton radius a0 = 4πε0εsħ2/mre2 and the 
energy to the binding (Rydberg) energy of 1S exciton 

4 2 2 2 2
0E / 32 ,R r sm e π ε ε= �  where εs is the static dielectric con-

stant of the semiconductor and obtain the following:
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and also
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The wavefunction for the relative electron-hole motion is 
that of the usual lowest hydrogen state Ψ(ρ) = exp(–ρ/a)/ 
π1/2 a3/2. Therefore, if all the dimensions are normalized to 
the Bohr radius of exciton and the energy, to that of the 
binding energy, we obtain the following:
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where gap( E ) /Epl pl R∆ ω= −�  and the energy EWEPP is now 
measured relative to the bandgap.
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3  �WEPP bound to a metal 
nanosphere

To continue the analysis, it is necessary at this point to 
choose a particular geometry. In order to facilitate carrying 
on of analytical derivations for as long as possible before 
finally switching to numerical calculations, we consider the 
most simple example of a spherical metal nanoparticle with 
radius R0, as shown in Figure 1A. These nanospheres are 
capable of supporting a strong dipole surface plasmon mode 
whose electric field magnitude relative to the maximum 
field just outside the nanoparticle (R = R0) is as follows:

	

1 2 3
2 0 0

1
02

3cos 1( / )ˆ( ) .R R R Re
R R

θ + >= 
<
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The condition for the surface plasmon resonance 
is εm  (ωpl) = –2εs,opt, where εs,opt is the relative dielectric 
permittivity of semiconductor cladding at optical frequen-
cies whose dispersion (not counting the exciton) is insig-
nificant over the range of frequencies considered here. 

Therefore, from (5), 3
0 ,opt

1 (1 2 ).
3pl sV Rπ ε= +  To avoid the 

surface recombination of excitons, the wide gap spacer 
of a few Angstrom thickness must surround the metal, as 
shown in Figure 1A. This will cause some distortions of the 
electric field due to the difference between the permittivi-
ties, but this difference can be ignored in the present order 
of magnitude estimate.

Next we consider the COM wavefunction of the 
bound exciton Ф(R) = ФR(R)Ф

θ
(θ). To start, we assume 

that the angular function of the exciton is the same 

as the field, 21( ) 3cos 1 / 2 ,
2θ

Φ θ θ π= +  where (2π)−1/2 
stands for normalization in the angular domain. 

Then the angular integral in the expression for к is 
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Φ −= ∫  We now find the kinetic 

energy of the angular motion as follows:
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Next, the radial wavefunction must be chosen, and it 
must satisfy the boundary condition ФR(R0) = 0, hence, an 
appropriate radiation wavefunction can be as follows:
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where d is the distance of the peak from the nanosphere 
surface, to which we can refer as polariton shell thickness.

This wavefunction is plotted in the curve in Figure 2 
next to the normalized electric field distribution, while 
the total COM probability density 

2
( ) ( )R R

θ
Φ Φ θ  is shown 

in Figure 1A and B. Now we calculate the all-important 
overlap integral in the following:
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( ) exp( ) /Ei z tz tdt

∞
= −∫  is the exponential integral. 

The function is shown in Figure 3A, and it reaches the 
maximum value of roughly 0.5 for d ~ 0.22R0.

Now all that is left is to calculate the kinetic energy 
term * 2 2

kin 0 0( ) ( ) ( / ) / ,R R F d R RΦ Φ−∇ =R R  where
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Figure 1: Explanation of Wannier exciton localization on the metal nanosphere of radius R0.
(A) Plot of |Φ(R, θ) | 2 – the probability density of the exciton center of mass. Also shown is a the excitonic radius. (B) Three-dimensional 
representation of center of mass probability density around metal nanosphere.
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is shown in Figure 3B. Now, the equation for the total 
lower WEPP energy follows from (10),
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Clearly, for large nanosphere radius R0, the exciton-
polariton will probably localize within the thin shell 
d ~ 0.22R0, but for smaller radii, the COM kinetic energy 
term, inversely proportional to 2

0 ,R  may become too large 
and it will force the polariton shell thickness to increase 
and thus reduce the coupling strength ħΩ. For the exci-
tonic radius, it is determined by the interplay of the last 

three terms in (16), where the positive kinetic energy 
term ~a−2 is counteracted by the Coulomb term ~a−1 and 
Rabi splitting ~a−3/2.

4  �Material choice and background 
oscillation strength

We shall now consider a choice of materials. The metal 
sphere can be made of silver, and among the semicon-
ductors, cadmium sulfide (CdS) appears to be a good can-
didate because it supports robust free Wannier excitons 
[42, 43] with a radius of a0 ~ 3 nm and binding energy of 
ER = 30  meV observable at room temperature. Further-
more, a surface plasmon supported by a small Ag nano-
sphere surrounded by CdS has an energy of ħωpl ~ 2.30 eV, 
which places it in the region where intrinsic losses in 
silver are small and also very close to the bandgap exciton 
energy 2.42 eV. It means that detuning Δpl can be always 
adjusted within a fairly broad range of positive and nega-
tive values by either small variations in the Ag nano-
particle shape (making it slightly oblong) or changing 
semiconductor composition by introducing small fraction 
of selenium [44] to shift the bandgap energy of CdS1−xSex 
slightly downward.

Interestingly, given the relevant material characteris-
tics of CdS: me = 0.2m0, mv = 0.8m0, εs = 8.9, and 0

,opt 6.35,sε =  
the square root term in (16) is equal to 1.02, i.e. very close 
to unity. In fact, this term is not that far from unity for any 
polar semiconductor in which εs > εs,opt and me < < mv (it is 
1.1 for GaN, for instance, and 1.01 for GaAs).

If we compare (16) with the corresponding equa-
tion for VSC in the microresonators incorporating QWs 
[13], two major differences can be identified. First, one is 
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that the non-uniform electric field in the plasmon mode 
causes exciton-polariton to become bound and intro-
duces the third (in addition to Hopfield coefficients and 
exciton radius) variational parameter – shell thickness d. 
The second difference is the three-dimensional character 
of exciton, which is manifested in the presence of a−3/2 in 
place of a−1 in the last term in (16). This stronger depend-
ence of oscillator strength and Rabi energy tends to reduce 
the excitonic radius in CdS WEPP from an already small 
value of 2.8 nm by at least an order of magnitude, where 
it practically becomes a Frenkel exciton with a very large 
oscillator strength [45]. But this giant oscillator strength 
of the exciton with a small radius does not appear from 
nowhere. As the exciton wavefunction is simply a super-
position of the free carrier states in valence and conduc-
tion bands and as the oscillator strength of exciton grows 
with the reduction of its radius, the sum of the oscillator 
strengths of continuum interband transitions decreases. 
And it is these transitions that are primarily responsible 
for the susceptibility εopt – 1 at optical frequencies. There-
fore, when the radius of the exciton approaches the radius 
of the unit cell, r0, essentially the entire oscillator strength 
of the interband transitions gets transferred to the exciton 
and the susceptibility decreases. The reduction of “back-
ground” optical dielectric constant can be approximated 
as 0 0 3 3

,opt ,opt ,opt 0( ) ( 1) / .s s sa r aε ε ε= − −  This ensures that the 
same electron-hole pair transitions are not counted 
twice – first, as the free carrier transition and then again 
as constituents of excitonic transition. This reduction will 
cause a small change in the coupling strength term under 
the square root in (16), but the main effect of it will be in 
the upward shift of the “undressed”, i.e. in absence of 
exciton frequency of the plasmonic mode, which can be 
found as follows:

	
0 1/2 0 1/2

,opt ,opt( ) [(1 2 ( )) (1 2 ) ].pl pl p s sa a∆ ∆ ω ε ε− −= + + − +� � (17)

As shown in Figure 4, the reduction of exciton radius 
means that the oscillator strength of the free carrier inter-
band transitions gets reduced, which causes the upward 
shift of the “undressed” plasmon, which prevents cou-
pling with the exciton into polariton mode. While the 
exact form of εopt (a) dependence is difficult to obtain, 
our approximation works really well in ensuring that the 
exciton radius can only approach the unit cell size but 
never get smaller than as that indicated by the shaded 
region in Figure 4.

Introduction of dependence of plasmon resonance on 
excitonic radius means that VSC between the exciton and 
plasmon not only affects the exciton energy and shape 
but also (albeit less strongly) the energy and shape of 

plasmon. This is to be expected as (as will be discussed 
below) the formation of polariton is essentially a classical 
phenomenon. From this point of view, the “mobile” polar-
izable medium is attracted towards the electromagnetic 
mode (which is manifested by the phenomena taking 
place in optical tweezers [46] and multitude of micro opto-
mechanical devices [47]). Therefore, the easily polarizable 
and very mobile exciton is naturally attracted towards the 
plasmon mode. At the same, if the polarizable medium is 
not mobile, then it is the electromagnetic mode itself that 
tends to gravitate towards the more polarizable medium 
– hence, all the waveguiding and other light-confining 
phenomena in dielectrics. It is only natural then to expect 
that the shape and energy of the plasmon mode will also 
change in the presence of polarizable medium. Interest-
ingly, in most situations, one side of the light-polariza-
ble medium interaction easily dominates the other – in 
optical tweezers, for instance, the micro-particles move 
while the optical mode stays largely undistorted. In the 
optical waveguides, the situation is exactly the opposite 
– the light “moves” while the medium stays put. What 
makes the case of WEPP special is the fact that both 
optical mode and the exciton move and neither motion 
should be neglected.

5  �Results
We can now perform a minimization of plasmon-exciton-
polariton energy (16) over three variational parameters, 
α, d, and a, for different nanoparticle sizes R0 and detun-
ing between the bandgap (in the absence of exciton) and 
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Figure 4: Upward shift of the “undressed LSP resonance” as a 
function of the exciton radius a. Shaded region indicates the range 
of excitonic radii at which the upward shift of LSP precludes its 
effective coupling to the exciton.
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plasmon mode 0 .pl∆  Note that unlike the typical dispersion 
curves for cavity polaritons [3, 4] where change in detun-
ing is achieved simply by changing the in-plane kinetic 
energy of COM motion (i.e. the angle of incidence) in real 
time, for bound exciton-polaritons, each data point cor-
responds to the change of either semiconductor composi-
tion or the aspect ratio of Ag nanoparticle. The entire span 
of detunings of ±200  meV can be handled by growing 

ZnxCd1−xS [48] for positive detuning and CdS1−xSex [44] for 
negative ones, with the alloy fraction x not exceeding 
30%. Of course, for experimental purposes, one should 
consider only a few compositions where the Rabi splitting 
is at a maximum and dressed exciton radius is small, as 
shown in the results displayed in Figures 5–7.

First, in Figure 5, the plasmon and exciton weights 
|α|2 and |β|2 in the WEPP state are shown for three 
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different values of the nanosphere radius R0. One can 
see a substantial difference between these curves and 
what one would expect from the case where the plasmon 
mode interacts with the “rigid exciton”, which can be 
described by the two-level system. The curves in Figure 
5 are not symmetrical around the resonance, especially 
for the larger nanospheres in Figure 5A and B. While 
plasmon resonance stays well below the bandgap, 
the WEPP composition varies slowly, as its character 
gradually changes from 100% plasmonic to being par-
tially excitonic. But once the 50%/50% composition is 
achieved, the character of lower WEPP quickly becomes 
mostly excitonic. Note that at positive detunings, “rigid” 
polariton is expected to have mostly an excitonic char-
acter α < β; however, in the VSC regime, adding more of 
plasmonic (increased α) character causes energy lower-
ing and, as a result, 50%/50% split occurs at positive 
detunings.

The dispersion of WEPP for different radii is shown 
Figure 6. Two dashed lines show dispersion of lower 
and upper polaritons in the “rigid” approximation, i.e. 
disregarding the effect of VSC on the exciton radius 
and location. Once that coupling is introduced, the 
lower polariton dispersion curve shifts downward. That 
shift, ΔħΩ, is the largest (nearly 50 meV) for the largest 
nanosphere radius R0 = 10  nm, because for that radius, 
the entire exciton shell of thickness d is located in the 
high field region, while for the smaller radii, the electric 
field of plasmon mode drops down inside the exciton 
shell, causing the decrease of the overlap factor Fк (see 
Figure  3). The lowering of the polariton energy makes 
the effective binding energy as large as 5kBT, where T is 
at room temperature, which means that it is expected 
to be very robust, which can be beneficial for observing 
such phenomena as Bose-Einstein condensation at room 
temperature. Furthermore, the effective binding energy 
is larger than the linewidth of the LSP mode (~80 meV), 
which ensures that the lower polariton is observable. 
The upper polariton is not shown in Figure 6 because it 
is pushed within the absorption band of CdS and thus 
cannot be observed.

In Figure 7A, the thickness of polariton shell d is 
plotted versus detuning Δ0 – for lower plasmon energies, 
the polariton gets strongly bound around the nanosphere 
as electron-hole pairs get attracted into the high field 
region where their potential energy gets lowered by emit-
ting and re-absorbing virtual plasmons (the value of Fк in 
(16) increases according to Figure 3A). This phenomenon 
is akin to lowering the electron energy via emission and 
reabsorption of phonons when the polarons are formed 
[49]. It is also conceptually similar to the Lamb shift in 

atomic physics [50] where the energy of atomic transition 
in hydrogen gets reduced due to absorption and reemis-
sion of photons. At higher plasmon energies, as the weight 
of plasmon in the lower polariton decreases and so is the 
product αβ in (16), the lowering of potential energy of the 
electron-hole pairs becomes less pronounced and the 
electron-hole pairs spread out away from the nanoparti-
cle surface to lower their COM kinetic energy (the value of 
Fkin in (16) increases according to Figure 3B). The onset of 
this sharp increase in the shell thickness d occurs earlier 
for the small radii of nanoparticles where the COM kinetic 
energy is larger.

As one can see from Figure 7A, the ratio d/R0 at 
which maximum Rabi splitting is achieved decreases 
from roughly 0.56 for the 2.5-nm sphere to 0.27 for the 
10-nm sphere, which causes commensurate increase 
of the overlap factor Fк in Figure 3A from 0.33 to 0.48. 
Therefore, Rabi splitting increases with radius R0, as 
shown in Figure 6. When the radius R0 further increases, 
this behavior is expected to saturate; the ratio d/R0 is 
further reduced and reaches the optimum value of 0.22. 
In practice though, one should be careful about further 
increasing R0 as the polariton dimensions may exceed 
the coherence length and that will reduce the oscillator 
strength.

Finally, in Figure 7B, the dependence of exciton radius 
a on the detuning is shown. For negative detunings, the 
composition of polariton includes relatively small exci-
tonic fraction β2 (as shown in Figure 5); hence, the impact 
of kinetic energy of relative electron-hole motion is not sig-
nificant, while the small exciton radius favors the energy 
lowering due to virtual plasmon emission and reabsorp-
tion (Rabi energy, the last term in (16)). The exciton radius 
a gets reduced by almost a factor of 3 relative to the “rigid” 
exciton radius a0 = 2.8 nm. The behavior is similar to the 
one in [13] but is more prominent due to the stronger (a−3/2 
rather than a−1) dependence of the Rabi frequency on exci-
tonic radius. As the polariton composition changes first 
to become more equal and then predominantly excitonic, 
the kinetic energy of relative electron hole motion starts 
playing a more important role, while the last term in (16) 
decreases with the product αβ. Naturally, the uncoupled 
exciton radius then gradually increases towards free 
exciton radius a0.

Note that the decrease of the excitonic radius is the 
most important and, in fact, the only sign of VSC as it 
can be easily detected by the reduction of the diamag-
netic shift, as it was done in ref. [17]. Simple change of the 
resonant frequency between “dressed” and “undressed” 
exciton would be difficult to detect due to a variation in 
samples.
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6  �Classical picture of WEPP 
formation

Before finalizing the discussion, it may be worthwhile 
to offer an alternative, fully classical explanation for 
the reduction of excitonic radius in the presence of VSC 
with a LSP mode. For that, all that one needs to do is to 
recall the equation defining the localized surface plasmon 
frequency, εm(ωpl) + 2εs,opt(ωpl) = 0, or

	
,opt

1 ( ) ( )
2 m pl s plε ω ε ω− = � (18)

and consider its graphic solution in Figure 8.
The left hand side of (18) (metal dispersion 1 ( )

2 mε ω−  
is plotted as the solid curve, while the dashed curve repre-
sents 0

,opt( )sε ω  dispersion of the semiconductor permittiv-
ity disregarding the exciton. The intersection at point A 
defines ħωpl ~ 2.385 eV – the “undressed” LSP frequency 
disregarding the exciton effects. Once the “rigid” exciton 
with radius a0 is included in the dispersion (dotted curve), 

ex
, opt( )sε ω  becomes anomalous around excitonic energy 

Eex ~ 2.38. As a consequence, the metal dispersion curve 
1 ( )
2 mε ω−  intersects ex

,opt( )sε ω  at three different points, of 

which only the first one, B, and the third one, B′, are 
stable solutions corresponding to lower and upper polari-
tons. As the energy of the upper polariton B′ is above the 
absorption edge of semiconductor, this polariton is not 
observable while the lower polariton can be observed at 
energy Elp ~ 2.35 eV. Let us see what is going to happen if 
the excitonic radius is reduced to a < a0. First of all, the net 

difference between the kinetic energy of relative electron 
hole motion Eeh and the Coulomb attraction energy EC will 
increase, causing the excitonic energy to move upward to 
Eex+ ~ 2.41 eV, as indicated by the right-pointing arrow in 
Figure 8. At the same time, reduced excitonic radius will 
increase the oscillator strength of exciton so that its dis-
persion ex

, opt( )sε ω+  will develop more prominent anomalous 
Lorentzian feature around Eex+ ~ 2.41 eV as shown by the 
solid curve, which now intersects the metal dispersion at 
point C leading to the downward shift of the lower WEPP 
energy to Elp+ ~ 2.32 eV, as indicated the left-pointing arrow 
in Figure 8. The actual radius a will correspond to the 
minimum value of Elp+ where the positive kinetic energy 
is balanced by negative Coulomb energy and negative 
coupling with plasmon energies. Thus the whole process 
of WEPP formation can be understood from a perfectly 
classical point of view, although using quantum picture 
greatly facilitates the determination of exciton radius, as 
it was done here.

7  �Conclusions and perspective
In this work, we considered the VSC between the Wannier 
exciton in semiconductor and localized surface plasmon 
(LSP). Using a simple variational technique, we showed 
that once the coupling (Rabi) energy approaches the value 
of exciton binding energy, two previously not considered 
phenomena ensued. First of all, the Wannier exciton gets 
localized in the region of high field of LSP so that a quasi-
particle – WEPP – is formed. In addition, the radius of the 
excitonic component of WEPP gets reduced by a factor 
of a few in comparison to free excitonic radius and the 
effective Rabi splitting increases accordingly. Notably, the 
increase in Rabi splitting beyond large broadening associ-
ated with LSP makes WEPP observable and robust even at 
room temperature and thus one can guardedly anticipate 
that Bose-Einstein condensation and polaritonic lasing 
may be within reach in WEPPs.

Although we considered only the simplest and easily 
(almost analytically) solvable problem of WEPP bound to a 
spherical metal nanoparticle embedded into the semicon-
ductor, one can consider far more interesting configura-
tions that would allow real-time manipulation of WEPPs. 
For instance, one can contemplate a WEPP formed by a 
two-dimensional exciton in a transition metal dichalcoge-
nide material, such as MoS2 or WSe2 and a strong fringe 
(in-plane) field of a metal nano-tip, as shown in Figure 9. 
Then vertical motion of the tip will cause the change of 
the excitonic radius and energy in WEPP, while the lateral 
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tip motion will cause the WEPP to follow the tip, just as 
it happens in optical tweezers, except the force moving 
the WEPP does not rely on optical pump and is entirely 
due to the vacuum field strongly enhanced in the vicin-
ity on the tip. Furthermore, changing the geometry of the 
field confinement by considering, for example, field of the 
plasmonic dimers with their large in-plane component of 
the electric field would change the shape of WEPP in a 
prescribed way, “sculpting” the pliable polaritonic matter.

At this point, it would be prudent to avoid overhyping 
this new phenomenon and not to dazzle the reader with 
an expansive array of potential transforming applications 
of WEPP in every walk of life, as is regrettably often done, 
with a great detriment to science. And yet, in my view, the 
remarkable physics of WEPPs, specifically their unique 
property of “pliability” in the engineered electro-mag-
netic environment, should be further explored in differ-
ent geometries and material systems so that, eventually, 
applications, perhaps unanticipated, will materialize.
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