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Abstract: We perform an analytical study on the allow-
ance of forbidden transitions for a hydrogen atom placed 
near line dipole sources, mimicking light emanating from 
a one-dimensional metallic nanogap. It is shown that the 
rapid variation of the electric field vector, inevitable in the 
near zone, completely breaks the selection rule of Δl = ± 1. 
While the forbidden transitions between spherically sym-
metric S states, such as 2S to 1S or 3S to 1S (Δl = 0), are 
rather robust against selection rule breakage, Δl = ±2 tran-
sitions such as between 3D and 1S or 3D and 2S states are 
very vulnerable to the spatial variation of the perturbing 
electric field. Transitions between 2S and 3D states are 
enhanced by many orders of magnitude, aided by the 
quadratic nature of both the perturbing Hamiltonian and 
D wavefunctions. The forbidden dipole moment, which 
approaches one Bohr radius times the electric charge in 
the vicinity of the gap, can be written in a simple closed 
form owing to the one-dimensional nature of our gap. 
With large enough effective volume together with the sym-
metric nature of the excited state wavefunctions, our work 
paves way towards atomic physics application of infinitely 
long nanogaps.

Keywords: nanogap; selection rule; forbidden transition; 
quantum plasmonics.

1  �Introduction
Long wavelength approximation is at the heart of well-
known selection rules in atomic spectroscopy. The wave-
length of light is much larger than the atom size, so that 
the light-atom interaction Hamiltonian can safely ignore 

the spatial variation in the scale of the wavelength, 
resulting in an effective Hamiltonian in the form of 

0
i tp E ex E e ωε −− ⋅ = − ⋅

� �� �  where p�  is the dipole moment oper-
ator, E

�
 the electric field of light, ε

�  the polarization direc-
tion unit vector, E0 the amplitude of the electric field, and 
ω the angular frequency of light. Thereby, spontaneous 
emission, stimulated emission, and absorption are all pro-
portional to the matrix element f ixψ ψ

�  (ψf, ψi = final and 

initial state wavefunctions, respectively), from which all 
selection rules follow. The most important selection rule 
Δl = ± 1; Δm = ± 1, 0 originates from the position operator 
x�  being represented by the spherical harmonics of order 
1. While this selection rule can be broken by magnetic 
dipole transition, electric quadrupole transition, or by two 
photon transitions, these forbidden transitions are typi-
cally several orders of magnitudes weaker. For instance, 
the 2P-1S allowed transition lifetime of 2 ns for a hydro-
gen atom compares favorably with 4.6 days for the forbid-
den magnetic dipole transition lifetime of 2S to 1S. On the 
other hand, the electric quadrupole transition between 3D 
and 2S is somewhat less forbidden, taking 20 ms [1, 2]. Of 
some practical importance, this one-photon lifetime of the 
forbidden magnetic dipole transition between 2S and 1S 
is so impractically long that it is easily superseded by the 
two-photon lifetime of 0.15 s [3], which played an impor-
tant role in the measurements of the Lamb shift [4].

While the spatial variation of electromagnetic waves 
in free space occurs within the wavelength scale, close to 
the induced sources such as surface current and surface 
charges which naturally occur in metallic nano objects, 
electric field vectors can vary in length scale much smaller 
than their vacuum wavelength, in the length scale of the 
nano objects themselves or the gap size between the 
metallic objects [5–19]. Of particular interest in the present 
paper is the one-dimensional metallic nano- and sub-
nanogaps whose widths can be in the 1–0.1 nm regime [17–
19], comparable to the spatial extents of hydrogen atom 
wavefunctions while maintaining a macroscopic length of 
1 mm to 1 cm. Electric fields emanating from these gaps 
possess rapidly varying electric fields, both in magnitude 
and in direction, in the length scale of the gap itself, cre-
ating a potentially very useful field configuration for the 
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purpose of breaking down well-known selection rules, 
thereby facilitating forbidden transitions in large enough 
volumes to be experimentally detectable.

2  �Materials and methods
To model spatial variation of the electric field emanating 
from nano- and sub-nanometer gaps, we first consider a 
line dipole with a line charge density λ and a gap width 
of w, fed by an alternating current source of angular 
frequency ω and surface current density Ke−iωt with the 
charge conservation relationship K = iωλ. In the extreme 
subwavelength regime of our interest, we can ignore the 

retarded time, so that the electric field is approximated by 
the near-field term only [20–26]:
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as plotted in Figure 1A for w = 1 nm. By replacing λ with σ 
dz and integrating over a film thickness of h = 100 nm, we 
obtain a realistic field profile of a capacitative nanogap of 
surface charge density σ, as shown in Figure 1B. For large 
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Figure 1: (A) Electric field lines above a line dipole of gap width 1 nm. Line charges are located at x = ±0.5 nm, z = 0. (B) Electric field profile 

obtained by an integration of the line dipoles from z = −100 to 0 nm, well fitted with an analytical form σ
πε

−=
+

�
2 2

0

( , )( , )
2
w z xE x z

x z
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from the gap. (C) Electric field lines −
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0 0( , ) ( , )E x z E x z  around a center position of (x0, z0) = (3 nm, 3 nm) together with |ψ320(x, 0, z)|2. The color 
scale is in arbitrary units and we use the integrated field profile of Eq. (2). (D) Contour plot of an xz cross section of the overlap integrand 
ψ ψ(2)

320 int 200H  around the center position of (x0, z0) (3 nm, 3 nm). The color scale is in arbitrary units.
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enough h < < w, this field is well approximated by a simple 
form:

	
2 2

0

( , )( , , )
2

i tw z xE x z t e
x z

ωσ
πε

−−=
+

�

�
(2)

for distances larger than w but smaller than h. Unless oth-
erwise indicated, calculations are performed using the 
integrated field profile of Eq. (2) using Mathematica and 
Matlab.

3  �Results
We now place a hydrogen atom at a position (x0, z0) in a 
field profile given as Eq. (3), and ask how the transition 
rates between different states will change relative to the 
case of a plane wave excitation. Near the source, say, at a 
position of (x0, z0) = (3 nm, 3 nm), the field lines are curved 
in the scale of the 3D wavefunctions of a hydrogen atom. 
It behooves us to examine the behavior of the electric field 
and the interaction Hamiltonian at the near field. Plotted 
in Figure 1C at (x0, z0) = (3 nm, 3 nm) are the electric field 
lines minus their central value, 0 0( , ) ( , ),E x z E x z−

� �
 with 

an xz cross section of the 3D wavefunction |ψ320|2 (n = 3; 
l = 2; m = 0) in an area of 2 nm by 2 nm squared. The field 
lines approximate those of a vector field (x′, −z′), with 
(x,  z)≡(x0 + x′, z0 + z′), producing an interaction Hamilto-
nian with a symmetry of x′2 − z′2, as can be seen clearly 
when we expand around (x0, z0):
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where e is the electron charge.
The first term is the dipole approximation Hamilto-

nian that gives rise to the usual selection rules, whereas 
the second term contains all the salient features:
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having taken advantage of the divergence relation 

0.x zE E
x z

∂ ∂
+ =

∂ ∂
 To see how this Hamiltonian consisting  

of two-dimensional quadrutic polynomials can be 
taken advantage of by the D waves, we resume our 

interest in the 2S to 3D transition. With the photon energy 

of 
1 113.6 eV 1.89 eV
4 9

 
− =    (656  nm) well within the 

visible range, we can produce the essentially cylindrical 
field profile near the nanogap using common transition 
metals. In Figure 1D, the y cross section of the overlap 
integrand (2)

320 int 200Hψ ψ  is shown in a 2 nm by 2 nm area 
with the hydrogen nucleus at (x0, z0) = (3 nm, 3 nm). The 
integrand (2)

320 int 200Hψ ψ  stays mostly positive, because the 

symmetries of z′2 − x′2 from the Hamiltonian and 2z′2 − x′2 
from ψ320 are quite similar. This result suggests that there 
will be a significant transition matrix element between 2S 
and 3D states, especially at the vicinity of the gap.

Note that 32 2 32 2
322 2

ψ ψ
ψ + −+

≡  also couples to ψ200 

through z′2 − x′2, with a matrix element smaller by a factor 

3,  whereas the 
0 0( , )

z
x x z z

E
ex z

x = =

∂
− ′ ′

∂
 part of the Hamilto-

nian does not participate significantly along the x = z line 

since 0zE
x

∂
≈

∂
 along this line. Clearly, for general direc-

tions we also need to consider excitations into ψ32+1 and 
ψ32−1 through x′ z′.

To quantify how strong the forbidden transition 
matrix elements are between 2S and 3D states, we recall 
transition dipole moments of allowed excitations. Choos-
ing a local electric field orientation as the z direction, a 
relevant dipole moment is defined as

int 0
allowed

0 0

~ ,f i f i
f i B

H eE z
d ez ea

E E

ψ ψ ψ ψ
ψ ψ= = =

where E0 is the electric field strength at the hydrogen 
nucleus and aB is the Bohr radius. Analogously, we define 
the transition dipole moment of a forbidden 2S to 3D exci-
tation such that

320 int 200
200 320

0 0 0

.
( , )
H

d
E x z

ψ ψ
→ =

In Figure 2, we quantify forbidden dipole moments 
of the 2S to 3D transitions. We calculate the total forbid-
den dipole/transition moment 2

2S 3D 200 32m
m

d d→ →= ∑  along 

the x = z line, as shown in Figure 2A. Calculations using 
the full Hint are represented by blue squares, while those 
using only 

int

(2)H  are represented by a blue line, display-

ing near perfect agreement. Finally, taking advantage of 

1
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zE
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≈  and 0zE
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∂
 along this line, we reach the 
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simple closed form approximation for the total forbidden 
dipole moment:
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represented by a red line. In unit of eaB the red line 
corresponds to 

00

0.719 0.719 ,
2x ρ

=  where x0 and the distance 

from the origin ρ0 are in nanometers. All three results 
agree rather well.

To see the angular dependences of various forbidden 

excitations, we plot 2 2
200 320 200 322d d→ →+  in Figure 2B, dem-

onstrating that indeed excitations into ψ322 and ψ320 are 
maximum along the x = z line. Transition dipole moments 
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 in units of eaB where aB is the Bohr radius, in a 20 nm by 20 nm area starting from z = 1 nm. 

(C) Contour plot of the forbidden transition moment 
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 (D) Contour plot of the total forbidden transition moment 

→ → → →= + +2 2 2
2S 3D 200 320 200 322 200 321 .d d d d  The cylindrical symmetry is largely restored.
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is obtained (Figure 2D), fitted rather well with the simple 

analytical expression of 
0

0.719
ρ

 now applicable to all 

directions within an error of 0.2–2%, as we move away 
from the z-axis towards the x-axis.

We now study the width dependence of the forbidden 
transitions. Since the cylindrical symmetry of the total for-
bidden dipole moment is only approximate in our geom-
etry, we expect to find deviations as we increase the gap 
width. Figure 3A depicts the case of d2S→3D for w = 3  nm. 
Away from the gap, the cylindrical symmetry is recov-
ered, whereas for distances less than 5 nm, angular devia-
tions and weaker moments are evident. For w = 10 nm in 
Figure 3B, the deviations are more pronounced, but again, 
at distances larger than 10  nm, the forbidden dipole 
moment converges to those of narrower gaps. Figure 3C 
plots the forbidden dipole moment along the z-axis for 
several gap widths. For gap widths of 3, 5, and 10 nm, the 
forbidden dipole moments eventually converge to the 1/z 

line at z ~ w. Scanning along the x-direction for a fixed 
z = 1  nm, the behavior is very different. At x = 0, forbid-
den dipole moments are smaller mainly because along 
the middle of the gap, field curvatures are less. For w = 3, 
5, and 10 nm, d2S→3D peaks at 

2
wx ≈  because sharp edges 

of the charge distributions are located at , 0 .
2
wx z

 
= ± =    

Again, at all instances d2S→3D recovers the 
0

0.719
ρ

 depend-
ence for x > 10 nm.

We now consider the excited state wavefunction

	
ex 321 321 int 200 320 320 int 200

322 322 int 200

H H

H

ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ

∝ +

+ � (6)

at various locations and conditions. The near-perfect 
cylindrical symmetry of d2S→3D for the 1 nm gap case sug-
gests a strong symmetry for exψ  as well. Figure 4A dis-
plays the excited state wavefunction squared using the 
full interaction Hamiltonian at three different locations. 
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The excited state wavefunctions faithfully reproduce a 
pure 321ψ  state within a coordinate system defined by 
the local field orientation. While physically intuitive, 

mathematically it is because 
2 2( )

2
z zE Ex z xz
z x

∂ ∂− =
∂ ∂

 when 

using the field profile of Eq. (2). We found that even with 
larger gap widths, excited wavefunctions’ orientations 
following the local field orientation remain largely unaf-
fected except for right above the sharp edge (Figure 4B). In 
stark contrast, as shown in Figure 4C, the single wire case 
described by Eq. (1) displays wavefunctions not rotating 
with the local field orientation in a simplistic way. In spite 
of this complication, the excited wavefunctions remain a 
pure 321ψ  state at a properly rotated coordinate system, 

which directly follows from the Hamiltonian of Eq. (4) 
containing only two quadratic terms: (x2 − z2); 2xz. Replac-
ing our source by a simple point dipole and using Eq. (6) 
with three-dimensional Hamiltonian produce a whole 
combination of D wavefunctions evident in Figure 4D. On 
the equator relative to the dipole orientation, pure 321ψ  
still get excited, whereas at most of other directions, all 
three states contribute.

4  �Discussion and conclusion
With the 2S to 3D transition being essentially allowed near 
the gap, we estimate the spontaneous decay lifetime from 
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3D to 2S states. An effective dipole moment of one Bohr 
radius gives rise to a lifetime of 44 ns, six orders of magni-
tudes faster than the quadrupole transition in the vacuum. 
The physics of this spontaneous emission modification by 
nanostructures [27, 28] is clear in our case: in vacuum, the 
quadrupole transition is weaker than the dipole transi-

tion by 
2

0

2
,Baπ

λ

 
∼   

 where λ0 is the wavelength of light; 

on the other hand, near the nanogap with a distance of 

ρ, we replace this factor by 
2

2
,Baπ

ρ

 
∼   

 resulting in fast 

lifetimes comparable to those of the allowed transitions. 
Our infinite nanogaps have the advantage over point 
gaps in that it stretches to millimeter to centimeter length 
scale in the y-axis [11, 12], offering more robustness and 
million times larger effective areas than point gaps [29]. In 
attempts to break selection rules by going to shorter wave-
length light, for example, X-rays [30], the transitions nec-
essarily involve core orbitals of comparable short length 
scale, so that the effect is less dramatic than that pre-
sented here. Finally, while our technique applies to any 
S to D transitions, it may not apply to 1S to 3S transitions 
such as described in [31]. This is because the quadratic 
potential still gives rise to zero matrix element between 
two S states because of symmetry.

Our two-dimensional quadratic potentials have, in 
addition to the obviously larger volume, another advan-
tage over point source dipoles that also give rise to 
forbidden transitions in surface-enhanced Raman scat-
tering and infrared absorption [23–26] in molecules. The 
excited wavefunctions are all of one nature, as shown in 
Figure 4A–C, which can give rise to constructive interfer-
ence of quadrupole radiations. Finally, while an analyti-
cal field profile has been used throughout our paper, a 
COMSOL calculation assuming a 1 nm gap sandwiched by 
aluminum layers of 100 nm thickness at 656 nm produces 
a field profile of a cylindrical symmetry well described 
by Eq. (2). Finite-difference-time-domain calculations as 
well as vector field mapping experiments also support this 
picture [5, 32–34]. We therefore expect similar quantum 
mechanical results under finite elements electromagnetic 
simulations.

In conclusion, we have shown that the 2S-3D forbid-
den transition is allowed for all practical purposes, near 
the vicinity of a metallic nanogap. The relevant scale of 
this quadrupole transition becomes not the wavelength of 
light but the gap width and the distance of the atom from 
the gap. With million times larger effective volume than 
point gaps, together with the highly symmetric excited 
state wavefunctions, we foresee an intimate interaction 

between atomic spectroscopy and now mature nanogap 
technology in the near future, especially with free stand-
ing gaps. With the advantage of metallic nanogaps of 
infinite length with an ultimate field enhancement [32] 
whereby electromagnetic waves from microwaves to 
ultraviolet have all the same near-field profile [33, 34], 
up to the plasma frequency of metal, selection rule-free 
spectroscopy of atoms, molecules, and quantum dots will 
become of wide use.
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